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K-FUNCTION AND OPTIMAL STOPPING PROBLEMS

By Seizo Ikuta
University of Tsukuba

December 9, 1996

Abstract

In this paper a certain function of the real number z, referred to as the K-function, is defined and its some
properties are examined. We reveal the close relation of the function to some optimal stopping problems by
demonstrating that it plays important roles in the examination of the structures of their optimal decision rules.

1 Introduction

In this paper we define a certain function of the real number z, K (z), and reveal its some properties. Let
us refer to it as the K—function, which is defined in Section 2. In the twelve subsections of Section 3 we
demonstrate that, in some optimal stopping problems and some other types of decision problems, how
the function is used and applied in order to describe the optimal equations of them and examine the
natures of their optimal decision rules.

For the most typical and conventional models of optimal stopping problems presented in the first two
subsections, the model with no recall and model with recall, a complete examination has already been
made, especially it is to be appreciated that Sakaguchi [26] showed the first and clear formulation of the
models using the dynamic programming technique in order to reemphasize the importance of its roles
in optimal stopping problems. However, we provide here the complete reexamination of them by use of
the K—function in order to reemphasize the importance of its role in the treatment of optimal stopping
problems. In the subsequent six subsections we show the applications of the function to other types of
optimal stopping problems; the models with uncertain recall [8][15][16], with controlled recall [25], with
recall cost [14], with multiple search areas [11], with finite search budget [9], and the model of Pandora
type [29]. By these it will be realized that the K-function and the solution of the equation K (z) =0,
denoted by h*, have a close relation with these models, especially in their mathematical treatment to
investigate the structures and properties of their optimal decision rules.

Furthermore, in the last four subsections we show that the T-function and S—function which are defined
as the relatives of the K—function have also the close relations with other types of decision problems: the
sequential assignment problems [5], the Markovian decision process with random observation [10] which
is a general model including all the above problems, and the well-known newsboy problem.

From all these considerations above, a fragment of the effectiveness of the K—function in the discussions
of different decision problems such as been stated above could be recognized.

It can be expected that some or many models of decision problems that will be posed in the future,
although they might be such types or classes as been discussed in this paper, are well defined and examined
by use of the K—function, T-function, and S-function, and their properties.

2 K-Function

Let F(w) be a one dimensional distribution function, discrete or continuous, with a finite expectation j.
Here for certain given numbers a and b such that 0 < a < b < co let F(w) =0 for w < a, 0 < F(w) <1
fora <w<b,and F(w) =1 for b < w, hence e < 1 < b. Let B and c be certain given numbers such
that 0 <3< 1and ¢ >0, and let a = B — ¢ < b. Then for any real number z define the function

K(z) = B[)w max{w,z}dF(w) — = — ¢, (2.1)



referred to as the K—function, which can be rewritten as follows.

K(z) = ﬁ/oo{w—z,O}dF(w) -(1-B)z—c (2.2)
=B /w(w — 5)dF(w) - (1 - B)z —c. (2.3)
Let us define - =
T(z) = / max{w — z, 0}dF(w) =/ (w — z)dF(w), (2.4)
0 >
S(z) = /w max{w,z}dF(w) = T(z) + z, (2.5)
0

referred to as the T—function and S—-function, respectively. The T(z) is usually called the shortage
function. Now here note that K (z), T(z), and S(z) are all continuous functions even if F (w) is discrete.
For convenience of later discussions, let us define

T(-00) =00, T(c0)=0, S(—00)=p, S(c0)=o0. (2.6)

Then the K-function can be expressed as

K(z) = fT(z) - (1 =Pz —c (2.7)
= BS(z) -z —c (28)

Furthermore for any given real numbers v and § let us define
L(z,,6) = vz + 6T(z). (2.9)

It is immediately seen from Eq. (2.1) that

K( a-—z, r<a, 5
I)—{-(l_ﬁ)z—cso: bSCE, (10)
from which we have

lim K(z) = oo, (2.11)

T——00
) -0 if B<1
lim K(z) = <0, (2.12)
T —c if =1

implying that the equation K(z) = 0 has at least one solution, so let A* be the minimum solution, that
is, h* = min{z | K(z) = 0}. Now clearly for any y we have

K(z) > B oo(w —z)dF(w)—(1-B)z —c (2.13)
T(z) > /oo (w — z)dF(w). (2.14)
(2.15)

From Eq. (2.3) and Eq. (2.13) we have the following inequality for any z and y.

K(z) = K(y) < (y — 2)(1 - BF(2)), (2.16)

K(z)+z - K(y) —y < By — z)F(z). (2.17)



If F(w) is a discrete distribution function defined on w = 0, %1,--- where a and b are both integers,
then T(z) for any real number z can be expressed as follwos.

T(z) = ) (w—2)f(w) (2.18)
w>T
= > (w-2)f(w) (2.19)
w>[z]+1

where [z] represents the maximum integer less than or equal to z, usually called the Gauss’s symbol. Then
for any integer z let AK(z) = K(z)—K(z—1), AT(z) = T(z) - T(z —1), and AS(z) = S(z) - S(z - 1).

Lemma 2.1

(a) K(z) is nonincreasing in T on (—c0,00), strictly decreasing on (—co,b), so K(z) > K(b) for any
z < b, and convez in x. If B < 1, then K(z) is strictly decreasing in = on (—co,c0).

(b) K(z)+ z is nondecreasing in = on (—oo, ), strictly increasing in T on [a,00), and convez in T.
Furthermore K(z) +z > a for a < = with K(a) +a = a and K(z) +7 < b for z < b with
K(b)+b=pb—-c<b,

(c) For any z and y we have
1. |K(z) - K@) < ly —zl,

2. |[K(z)+z—-K(y) —y| < Bly —=z|.

ProoF (a) It is clear from Eq. (2.2) that K(z) is nonincreasing in z on (—o0, c0). From Eq. (2.16), if
y <z <b, then 1—BF(z) > 0 due to F(z) < 1, hence K (y) — K(z) < 0, that is, K(z) < K(y), implying
that K (z) is strictly decreasing in z < b. If 8 < 1, then 1 — 8F(z) > 0 for all z on (—o0, c0), hence it
follows that K (z) is strictly decreasing in z on (—co, 00). The convexity is immediate from the fact that
max{w, z} is convex in z on (—oo, c0) for any given w.

(b) It is clear from Eq. (2.1) that K(z) + z is nondecreasing in z on (—00,00). From Eg. (2.17)
,ifa <z <y, then K(z) +z — K(y) —y < 0 due to F(z) > 0, hence K(z) +z < K(y) +,
that is, K (z) + = is strictly increasing in z > a. The convexity is clear from (a). If a < z, then
K(z)+z > K(a)+a=ca—a+a=a. Ifz <b, then K(z)+z < K(b)+b=—(1-B)b—c+b=pb—c <b.

(c) Interchanging r and y in Eq. (2.16) and Eq. (2.17) and then multiplying the both sides by —1 yield

K(z) - K(y) 2 (y — z)(1 - BF(y)), (2.20)
K(z)+z - K(y)—y = —-Bly—z)F(y). (2.21)

It is immediate from Eq. (2.16), Eq. (2.17), Eq. (2.20), and Eq. (2.21) that |K(z) — K(y)| < |y — z| and
|K(z)+z—K(@y)-y|<PBly-=z|. =

Lemma 2.2

(a) h* > a.

(b) If(1—=pB)2+c% =0, then h* =b.

(c) If 1 =B)2+c%2 #0, then
1. h* is given by the unique solution of K(z) = 0 where h* <,
2. ifa<a, thenh* =a<a,
3. ifa>a, thena < h* <b.

(d) h* is strictly increasing in 8 and strictly decreasing in c.

ProoF (a) By definition we have 0 = K (h*) > 8 [;° wdF(w) — h* —c¢= a — h*, hence h* > a.
(b) Since 8 = 1 and ¢ = 0 in this case, we have K(z) = 0 for all z > b from Eq. (2.10) and

K(z) > K(b) =0 for all z < b from Lemma 2. 1 (a). Hence by definition we have h* =b.



(c1) The existence of the solutions has already been shown. Its uniqueness is clear from Egs. (2.11),
(2.12) and Lemma 2. 1 (a). The inequality h* < b is clear from K(b) < 0 in this case due to Eq. (2.10).

(c2) If a < a, then K(a) = @ — a = 0 from Eq. (2.10), hence h* = a < a from (c1).

(c3) If @ > a, then K(a) = a —a > 0, hence a < h*.

(d) The statement is immediate from the fact that K (z) is strictly increasing in 8 and strictly decreasing

in c for any given z (Fig. 2.1). ®

From Lemmas 2.1 and 2.2 it can be easily understood that K (z) is graphed as in Fig. 2.2. From

Lemma 2.2 we have the following corollary.

Corollary 2.1

The h* can be classified into the following three cases.

a=h*<a < (1-B2+c®*#0anda<a,
a<h*<b «— (1-p)*+c*#0anda<a,
B*=b < (1-p)°+c?=0.

K(z)

" 7

T h h* h* T
B < B & B8" ! > d > c
Relationship with g Relationship with ¢
Figure 2.1: Relationship of 2* with 8 and ¢ (h* = e)
K(z) K(z) K(z)
B=1 B <1
B<1
N\ a bz bz | =
a a b
g=1
c c = ¢

(1-8)24+c?2#0, a<a

(1-B)24+c2#0, a>a

(1-B)2+c2=0

Figure 2.2: The function K(z) (h* =)



The following corollary that is immediately derived from the above discussions will be sometimes useful.

Corollary 2.2

(a) K(z)>0 forz < h* and K(z) <0 for z > h*.
(b) If (1= B)% +c% #0, then K(z) <0 for z > h*.
(c) If 1 =PB)2+c2 =0, then K(z) =0 for z > h*.

Lemma 2.3

(a) T(z) is nonincreasing in z with T(z) = p —z forz < a and T(z) = 0 for z > b.

(b) S(z) is nondecreasing in ¢ with S(z) = i for z < a and S(z) =z for x > b.

(c) If(1—=PB)2+c%2 =0, then K(z) =T(z) = S(z) — z.

(d) If T(z) is differentiable with respect to z, then dI'(z)/dz = F(z) — 1 and dK(z)/dz = BF(z) — 1.

(e) If F(w) is discrete, then AT(z) = F(z — 1) — 1 and AK(z) = BF(z — 1) — 1 for any integer z.

(f) Suppose v < 6. Then L(z,v,8) is minimized at the real number z* such that F(z*) = 1— /6 if
F(w) is continuous and at the integer z* such that F(z* —1) < 1—v/6 < F(z*) if F(w) is discrete.

Proor (a) to (e) Easy.
(f) Noting Eq. (2.14), for any z and y we have
L(y) s 5) - L(‘T: 7 6) = A/(y - (ZI) -+ 6(T(y) - T(IE))
Ay=2)+8( [ w-niaFw) - [~ w-a)drw))

(y—z)(v—-86(1- F(y)))
= 6(y — z)(F(y) — 1+7/96).

IA

Il

Hence, if F(z) is continuous, then L(z*,,6) — L(z,7, §) < 0 for any z, hence it follows that L(z,v,6) is
minimized at z = z*. If F(z) is discrete, then from (e) we have

L(z, 7, 6) = L(z — 1,7, 6) = §(F(z — 1) — 1+ +/6), (2.22)

which is nondecreasing in z. Thus we have L(z*,v,6) — L(z* —1,v,6) = §(F(z* —1) —=1+~/6) < 0 and
L(z* +1,v,6) — L(z*,7,6) = 6(F(z*) —1++/6) > 0, hence L(z*+1,7,6) > L(z*,7,6) < L(z* —1,7,6),
implying that L(z,~, §) is minimized at z =z*. B

As a generalized one of the K—function we shall define
(o)
K(M(=),z) =8 / (M(w) - 2)dF(w) — 2 — ¢, (2.23)
0

referred to as the generalized K—-function. In almost the same way as been stated above it can be easily
shown that K (M (=), r) is nonincreasing in z with K(M(-),z) — coast — —coand K(M(-),z) <0 as
t — oo, hence the equation K (M (—),z) = 0 has a solution. An example of application of the generalized
K-function is given in Section 3.10.

3 Applications of K—Function

Here we give some examples of decision problems where the K-function is well used to examine the
properties of their decision rules. They have all already been completely investigated so far. Through
the subsequent subsections it could be realized that all the statements in the theorems stated there are
all closely related to the K—function and h*, the solution of K(z) = 0, and that the properties of the K-
function which were verified in Section 2 play important roles in the proofs of not only these statements
but also other theorems that are described in the original papers. In Theorems 3. 1 and 3. 2 for the model



with no recall in Section 3.1and the model with recall in Section 3.2 we state all the necessary statements
characterizing the properties of the optimal decision rules and give in Appendix their complete proofs
using the K—function. Although some of these statements are not seemingly connected to the K—function,
the reader could know that the function plays essential roles in their proofs.

3.1 Model with No Recall [26]

Consider the following discrete-time stochastic decision process with a finite planning horizon. For con-
venience let points in time be numbered backward from the final point in time of the horizon, time 0, as
0, 1,---, and so on, and a time interval between two successive points in time, say time ¢ and time ¢t — 1,
is called the period t. If some fixed cost ¢ > 0, called the search cost, is paid at a point in time, then an
offer can be obtained at the next point in time. Offers w,w’,- - obtained at successive points in time are
assumed to be independent identically distributed random variables with a known distribution function
F(w), called the offer distribution, where for certain given numbers a and b such that 0 < a < b < oolet
Fw)=0forw < e, 0< F(w) <1fora<w<b,and F(w) =1 for b < w, hence a < p <b. An offer
must be necessarily accepted up to time 0, assumed that an offer once inspected and passed up becomes
instantly and forever unavailable. Here being available means that an offer once inspected and passed up
can be accepted at any time in the future. In general, the following three models can be considered in
terms of the future availability of a past offer: 1. the model with no recall where it becomes instantly and
forever unavailable, 2. the model with recall where it remains forever available, and 3. the model with
uncertain recall where the availability is stochastic. What we are going to examine in this section is the
model with no recall. The other two will be deal with in the subsequent two sections. Let a per-period
discount factor be denoted by 8 < 1, and let a = Bu — ¢ < p and a > 0. We shall refer to the rule
prescribing when to stop the search by accepting an offer as the stopping rule. The objective here is to
find the optimal stopping rule maximizing the expected present discounted net value, the expectation of
the present discounted value of an offer w accepted minus the total present discounted value of search
costs paid up to the termination of the search with its acceptance.

Let u,(w) represent the maximum expected present discounted net value starting from time ¢ with an
offer w. Then clearly uo(w) = w and

ug(w) = max{w, Uy} 2w, t2>1, (3.1)

where w and U, in the right hand side are, respectively, the gain from stopping the search and the
maximum expected present discounted net value from continuing the search by using the optimal stopping
rule over the remaining planning horizon, expressed as

U= B / (O —¢ 121, (3.2)

where ¢ is the value of an offer that will be obtained at the next point in time. Since uo(§) = £ by
definition, we have U; = a > 0. Then the optimal stopping rule of time ¢ can be prescribed as follows: If
w > Uy, stop the search by accepting the present offer w, or else continue the search. The critical value
Uy, at which whether to stop or not becomes indifferent, is usually, especially in economics, called the
reservation value of time t. Now, using the K—function, we can express Eq. (3.2) as follows.

Ut = K(Ut_l) + Uf_1, i Z 1: (33)

If U,, hence u:(w) converges as t — oo, then let their limits be denoted by U and u(w), respectively.

Then we have the following theorem.

Theorem 3.1



~

(a) U, is nondecreasing and concave® in t.

(b) U: converges to a limit U = h* ast — oo with a < Uy < b for all 1.

(c) u(w) = max{w, h*}

(d) Ifa<a, then Uy = (< a) for allt > 1,

(e) If a > a, then U, is strictly increasing and strictly concave in t, hence Uz < h* for allt > 1.

ProOOF See [26]. For the proof using K-function, see Appendix. ™®

3.2 Model with Recall [26]

This is the model where even if an offer is once inspected and passed up, it can be accepted at any time

in the futuer.
Let u¢(y) represent the maximum expected present discounted net value starting from time ¢ with the

best offer y so far appeared. Then, clearly uo(y) =y, and

uw(y) =max{y,U:(y)} >y, t>1, (3.4)

where y and Uy (y) in the right hand side are, respectively, the gain from stopping the search by accepting
the best offer y and the maximum expected present discounted net value from continuing the search by
using the optimal stopping rule over the remaining planning horizon, expressed as

Uew) =B A " vtz (max{y, ENAF(E) — e (3.5)

Arranging U; (y) by substituting uo(max{y, £}) = max{y, £} into yields

Ui(y) = K(y) +v. (3.6)

Then the optimal stopping rule can be prescribed as follows: If y > U,(y), stop the search by accepting
the best offer y, or else continue the search. If U;(y), hence u(w) converges as t — co, let their limits be
denoted U(y) and u(y), respectively. Then we have from Eq. (3.5)

U(y) =B A ” u(mex{y, €})dF(E) — c. (3.7)

Then we have the following theorem.

Theorem 3. 2

(a) Us(y), hence u(y) is nondecreasing in t and y.

(b) Ify > h*, then Us(y) < y, hence u(y) =y, and if y < h*, then y < Us(y) < h*, hence u(y) =
Ue(y) < h*.

(c) Ify > h*, then U(y) = K(y) +y for all t > 1, and if y < h*, then U.(y) converges to U(y) as
t — 0.

(d) Ify > h*, then U(y) = K(y) +y < v, henceu(y) =y, and if y < h*, then y < U(y) < h*, hence
u(y) =U(y) < h*

(e) U(y)=h* fory < h*.

(f) For any y we have u(y) = max{y, h*} and U(y) = max{K(y) +y,h*}.

PROOF See [26]. ®

The statement (b) of the theorem implies that the optimal stopping rule can be restated as follows. If
y > h*, stop the search by accepting the best offer y, or else continue the search. This means that the

{Here in general a function g(z) defined on 2 = 0,£1,£2,--- is said to be concave (convex) in z if the difference
Ag(z) = g(z) — g(x — 1) is nonincreasing (nondecreasing) in .



model becomes completely identical to the model with recall which has the infinite planning horizon (
Theorem 3. 1(b)).

3.3 Model with Uncertain Recall [8]

This is the same as the model with recall only except that the recall is uncertain. Here the uncertainty
of recall is defined as follows. An offer once inspected and passed up j periods ago becomes unavailable
at the next point in time with probability p;, j = 0,1,---, provided that it still remains available at
the present time, so po is the probability that an offer obtained at the present point in time becomes
unavailable at the next point in time. If p; = 0(1) for all j > 0, then it is reduced to the model with
recall (with no recall®).

In this section let us assume that there exists a fixed integer N > 0 such that 0 < p; < 1 for
0<j<N-1andp; =1for N <j. This implies that every offer has at most NV periods of age. The
case of N = 0 is reduced to the model with no recall. Now suppose the search starts from time . Let
w; denote the offers of time ¢ + j (7 periods ago), and let yo = wp and y; = 0 (w;) if the offer w; is
unavailable (available) at the present time ¢. Then a state of the search process at time ¢ can be described
by the vector y = (Yo, Y1, ", YN)-

Let u:(y) denote the maximum expected present discounted net value, starting from time ¢ when in
state y. Then clearly uo(y) = maxy and

u(y) = max{maxy, Us(y)}, 21, (3.8)

where max y is the gain from stopping the search and U:(y) is the maximum expected present discounted
net value from continuing the search. If N =1, so y = (vo,%1), then U:(y) can be expressed as

Uayor 1) = B(p | veo1(€ 0)AFE) + (1 —p0) [ eor(€,90)dF()) = e (3.9)
0 0

where £ is an offer obtained at time ¢ — 1 (next time). Then we have

Ui(yo, 1) = Poc + (1 = po)(K (yo) + yo)- (3.10)

In general let C; = {y | maxy < U:(y)}. Then if y € C;, it is optimal to continue the search, or else
stop, so let us refer to C; as the continuation region and its compliment S; = Cf as the stopping region.
Let z = (y1,%2, -, yn). Then, if the optimal stopping rule has the following property, it is said to have
a double reservation property, DRV property, for short.

DRYV Property For at least one z with a <y; <bfor j=1,2,--- ,IN, there exist two different critical
values w, and w* with a < w, < w* < b such that, for a present offer wo, if w. < wo < w*, then
continuing is optimal, or else stopping is optimal.

Then we can prove the following theorem.

Theorem 3.3

(a) The necessary and sufficient condition for the optimal stopping Tule to have DRV property for any
t>1 and any N > 1 is given by a > a.

(b) Ast tends to co, the continuation region C: increases and converges to the cube H* = {(yo, Y1, **, UN) |
0<y; <k, 0<j< N}

PrROOF See (8. ®

*The case of po = 1, even if p; > 0 for all j > 1, is also substantially reduced to the model with no recall.



The statement (b) implies that DRV property gradually fades and completely disappears in its limit,
implying that if the planning horizon is infinite, then the model with uncertain recall becomes completely
identical to the model with no recall which has the infinite planning horizon ( Theorem 3. 1 (b)).

3.4 Model with Controlled Recall [25]

This is the model with no recall in which it is assumed that that an offer y once inspected and passed
up can be recalled and accepted if some deposit d is paid for it. For convenience let us call an offer
appearing at the present time and the best of the offers reserved so far, respectively, the current offer and
leading offer. In this model there exist the following four possible decisions: AS: accept the current offer
and stop the search, RC: reserve the current offer and continue the search, PS: pass up the current offer,
accept the leading offer, and stop the search, and PC: pass up the current offer and continue the search.
Available decisions at the time 0 are only AS and PS.

Let u¢(z,w) denote the maximum expected present discounted net value starting from time ¢ with
a leading offer z and a current offer w, and let v(z) = [;° w(z,w)dF(w). Then clearly uo(z, w) =

max{w, z} and

ui(z, w) = max{w, —d — ¢ + Bvi_1 (max{z,w}), z, —c+ Pve_1(z)}, t2>1, (3.11)

where the four terms inside the braces corresponds to the decisions AS, RC, PS, and PC, respectively,
and the two terms inside the braces of ug(z, w) to the decisions AS and PS, respectively. Then, using
the K—function, we can express Eq. (3.11) for ¢t = 1 as follwos.

uy (z,w) = max{w, —d + K (max{z, w}) + max{z, w}, z, K(z) + r} (3.12)

By AS:, RC:, PS¢, and PC: let us denote the sets of (z,w) at which decisions AS, RC, PS, and PC
becomes the optimal at time ¢. Then it can be shown that these sets are depicted as in Fig. 3.1, and
the following theorem can be proved.

Theorem 3.4
(a) If it is optimal to accept a leading offer, then it is only at time 0 (deadline).
(b) The reserving region of time t = 1, RCy, is not empty if and only if d < max{a — a, K(a)}.

h*
h*—d

0 a jt h* b

Figure 3.1: AS:, RC¢, PS:, and PC:
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w
b
h* =
w Z
hO / %

G
a

Yy

Ua— ho Y« y*= h*s b

Figure 3.2: DRV at t =1

(c) Ast tends to co, the reserving region RC: gradually fades and completely disappears in its limit and
converges to the rectangle {(z, w) ] a<z<h*a<w<h*—d}.

PrROOF See [25]. H

3.5 Model with Recall Cost [14]

This is the model with recall in which it is assumed that the best offer y so far appeared can be recalled
and accepted if some cost 7y is paid with 0 < 7 < 1. Then the value obtained from it, if it is accepted,
isy—ry=sy wheres=1-r.

Let u:(w, y) be the maximum total expected present discounted net value starting from time ¢ > 0 with
a present offer w and a best offer y so far appeared. Then clearly uo(w,y) = max{w, sy} and

ue(w, y) = max{max{w, sy}, Us(w,7y)}, t>1, (3.13)
Udw) = 6 [ e (g, mas{u,y))dF(e) = o (3.14)

where max{w, sy} is the gain from stopping the search and U;(w,y) is the maximum total expected
present discounted net value from continuing the search. Then clearly we have

U; = K(s max{w, y}) + s max{w, y}. (3.15)

Let C: = {(w,y) | max{w, sy} < Us(w,y)}. Then if (w, sy) € Ct, it is optimal to continue the search,
or else stop, so let C; be called the continuation region, and its compliment S; = C¢ the stopping region.
If the optimal stopping rule has the following property, let us say that it has a double reservation value
property, DRV property, for short.

DRV Property For at least one w with a < w < b, there exist two different critical values vy, and y*
with @ < y.« < y* < b such that, for a present offer w, if y, < y < y*, then continuing is optimal, or else
stopping is optimal.

Then it can be shown that the continuation region C; is depicted as Fig. 3.2 where h; is the solution of
Ui(w,y) —y = 0 with w > y, and the following theorem can be proved.

Theorem 3.5
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(a) The necessary and sufficient condition for the DRV property to appear for all t > 1 is given by
(1-pB)2+c2#0,s>h*/b, and a > a.

(b) Ast tends to oo, the continuation region C: increases and converges to the rectangle C = {(w,y) [
a<w<h*a<w<h*/s}.

PROOF See [14]. H

The statement (b) means that as ¢ tends to oo, the DRV property gradually fades and completely
disappears in its limit.

3.6 Model with Multiple Search Areas [11]

This is the model with no recall only except that there exist multiple search areas where a search area to
conduct the search must be determined every point in time. Suppose there exist N > 1 possible search
areas, and let the set of them be S = {1,2,...,N}. When the searcher moves from search area 7 to j,
a travel cost d;; > 0 is incurred with d;; = 0. If paying s; > 0 in search area ¢, then an offer can be
obtained. Below, for all 7, j € S define ¢;; = d;; +s;, called a travel and search cost. An offer w obtained
in search area j is a random variable having a known distribution F;(w) with a finite expectation x;.
Sequentially obtained offers w,w/,--- are assumed to be stochastically independent. Throughout the
paper let a;; = Bu; —¢;; > 0 for all 4,5 € S. The objective here is to maximize the expected present
discounted net value, the expected value of an offer accepted minus the total expected travel and search
cost. The optimal decision rule in the model consists of the following two rules: optimal stopping rule,
prescribing how to stop the search by accepting an offer and optimal selection rule, stating, if continuing
the search, whether or not to conduct the search by staying in the current search area or, if not, which
search area to move to. Let

K;j(z) = ﬁ/ow max{w, z}dFj(w) — T — ¢j, (3.16)

and let the minimum solution of the equation Ki;(z) = 0, if it exists, be denoted by hij, and let
ht = max;es hij and h* = hj. = maxies hf = max; jes hij.

Let u¢(w, 1) denote the maximum expected present discounted net value starting from time ¢ in search
area i with a current offer w. Then, clearly uo(w,?) = w, and

ue(w, 1) = max{w, Us(?)}, t=>1, (3.17)

where U, (i) is the maximum expected present discounted net value when continuing the search, written

i) = max(B [ weer (6 1AF(6) — o) (3.18)

in which £ is the value of an offer that will be obtained in search area j at the next point in time.
Rearranging Eq. (3.18) by substituting Eq. (3.17) into yields

U(i) = I}leag({Kij(Ut—l(j)) +Ua()} t21 (3.19)

where U, (i) = max;¢s ;;. Supposing an offer w has been obtained at time ¢ in search area i, we can
prescribe the optimal decision rules as follows. If w > U.(4), stop the search by accepting the offer w, or
else continue the search. If it is decided to continue the search, the optimal search area of the next point
in time is given by the j attaining the maximum of the right hand of Eq. (3.19). Let the j be denoted
by v¢(i). Then if v;(i) = i, it is optimal to continue the search by staying in the current search area 1.
If d;; is independent of 7, then Uy(7), v4(i), and h;; are all independent of 7, so let them be denoted by,
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respectively, Ug, 14, and h;. Then let the limits of U; and v; in ¢, if they exist, be denoted by U and v,
and let hJ‘- = MaXjes h]' (= h*)
Then the following theorem can be proved.

Theorem 3.6
a) U:(7) is nondecreasing in t and converges ast — oo to a limit U(1) < h* with hy; < U(7),
g
(b) If d;; is independent of i, then U = h* and v = j*.

Proor See[11]. H

The statement (b) means that if d;; is independent of 7, once entering into search area j*, it is optimal
to continue the search staying in search area 7* till an offer w > h} (= h*) appears and it is accepted.

e Recall Model

In this model we can also consider the model with recall. Then let u¢(y, 1) denote the maximum expected
present discounted net value, starting from time ¢ in search area ¢ with the best offer y so far. Then
clearly uo(y, 1) =y, and u:(y, 1) = max{y, Us(y, 1)} for t > 1, in which Us(y, ?) is the maximum expected
present discounted net value when continuing the search, expressed by

Ut(yr 7’) = ma“({ﬁ/w Ut—l(max{é)y}])dﬂ(g) - cij}: t2>1, (320)
JES 0

where U (y, %) = max;jes K;;(y) +y. Let z(i) be the minimum solution of the equation Uy(y,7) —y =0
with unknown y, and let the limit of U;(y, 1) in ¢ be denoted by U(y, 1), if it exists. If d;; is independent
of 7, then U:(y, 1), ue(y,1), and U(y,1) are all also independent of 7, so let them be represented Us(y),
u¢(y), and U(y), respectively. Then the following theorem can be proved.

Theorem 3.7

(a) There exists the minimum solution of U(y,i) —y =0, 2z.(i) > 0.

(b) ue(y,1) = Us(y,9) >y for y < 2(i) and us(y,1) =y > Us(y,9) for z(i) <v.

(c) 21(t) = hf and hf < z(1) < h* for allt,i, hence z(i*) = h* for all t.

(d) If dij is independent of i, then ut(y) = Ue(y) >y if y < h*, and u(y) =y > Ue(y) if * < vy, and
w(y) =U(y) >y ify <h*, andu(y) =y 2 U(y) if B* < y.

PROOF See[11l] ®

The statement (b) means that the optimal stopping rule can be stated as follows. If y > z/(7), then stop
the search by accepting the current best offer y, or else continue the search. The statement (d) implies
that, if d;; is independent of 7, then, even if the search is conducted in any search areas, it is optimal to
accept the current offer w if w > h*, or else to continue the search.

3.7 Model with Finite Search Budget [9]

This is the model with recall where a search cost invested at each point in time can be controlled within
a given search budget. Suppose that if ¢ dollars out of the search budget is invested in a search activity
of each point in time, then at the next point in time an offer can be obtained whose value is a random
variable having a known distribution function F(w|c) with a finite expectation u(c¢) where F(w|c) = 0 on
w < 0 for all ¢ > 0. Sequentially obtained offers w,w’,- - - are assumed to be stochastically independent.
The objective is to maximize an expected present discounted revenue, the expected present discounted
value of the sum of the offer w accepted and the search budget remaining at that point.

Let u¢(t, w) denote the maximum of the total expected present discounted revenue starting from time ¢
with a remaining search budget 7 and a current offer w. Then, clearly uo(i,w) =7+ w and

ue(l,w) = max{i +w, U(d)}, t>1, (3.21)
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where i +w is the gain from stopping the search by accepting the offer w and U:(7) is the maximum of
the total expected present discounted revenue, expressed as

i) = goas 8 [ wecs(li = 0)/B, AP (el (3.22)
For any real numbers ¢ > 0 and z define
K, &)= ongai('{ﬁ /oo max{w, z}dF(w|c) — ¢} — . (3.23)
<c<lti 0

Then we have U; (i) = K (i,0) +1. Now define V;(i) = Us(i) — i and V; = lim; .o V4(?). Then the decision
strategy in this model can be stated as follows. If w > V4 (1), stop the search by accepting the offer w, or
else continue the search. The optimal investment c; (i) is provided by the c attaining the maximum of the
left hand of Eq. (3.22). Fig. 3.3 is a numerical example of V;(7) and c:(7). Then the following theorem
can be proved.

Theorem 3.8
(a) If K(00,0) =0, then Vi(i) =0 for allt and 1.
(b) If B <1, then V; converges to h* < 00 ast — 09,

PROOF See (9. ®H

e Model with recall

We can also consider the model with recall. In this case let u:(i,y) denote the maximum expected
present discounted value starting from time ¢ with a remaining search budget i and a present best offer
y. Then, clearly uo(i,y) =i +y and

ue(i,y) = max{i+v,U:(i,9)}, t2>1, (3.24)

where i +y is the gain from stopping the search by accepting the best offer y and U(,y) is the maximum
of the total expected present discounted revenue, expressed as

Udiy) = B max, [ e ((i — ©)/8, max{y, €})dF(€lo), (3.25)

0<e<i Jo

ce(1): Case 3
Vi(i): Case 3

Figure 3.3: Reservation value V;(7) and Optimal investment c:(7)
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where U1 (i, y) = K(i,y) + y +i. Now define Vi(i,y) = Ue(i,y) — i and Vi(y) = lim;_, Vi(i,7). Then we
have the following theorem.

Theorem 3.9

(a) Suppose K(0o,0) = 0. Then Vi(i,y) <y for allt,i, and y.

(b) Suppose K(c0,0) > 0. If B = 1, then Vi(i,y) > y for all t,i, and y, and if B < 1, V;(i,y) is
upper-bounded in t and i for all y.

(c) Suppose K(co,0) > 0 and 8 < 1. Then we have V(y) = h* < co for y < h*, and if h* < y, then
Vi(y) <y, hence v¢(y) =y, and if y < h*, then Vi(y) >y, hence v:(y) = Vi(y).

PrROOF See[9. H

3.8 Model of Pandora Type [29]

Suppose there are IV closed boxes. Each box ¢ contains an unknown reward w with a known distribution
function Fi(w) having a finite expectation ;. The cost ¢ is incurred in opening box i, and the reward
in it becomes known after the time lag ¢; since opening box i. Both cost and reward are continuously
discounted by an instant discount rate a > 0, implying that one unit of monetary value after time periods
¢ is equivalent to e~** at that time. Below let 8; = e=**. If y is the best of rewards in boxes opened
so far and is accepted, then the process terminates. If the search is terminated after opening some or
all boxes, then the maximum rewards in boxes opened up to that point, including the initial reward Yo,
must be accepted as a gain.

The objective is to find the optimal decision strategy so as to maximize the expected present discounted
net value, the expectation of the present value of the maximum rewards gained after having terminated
the search minus the total present value of costs incurred in opening boxes to that point in time. The
optimal decision rule in the model consists of the following two rules: optimal stopping rule, prescribing
when to stop the search by accepting an offer and optimal selection rule, stating, if continuing the search,
which box should be opened.

Let us denote a set of the N boxes by § = {1,2,--, N}, and by u(S,y) we shall denote the maximum
expected present discounted net value starting with the set of boxes § and a maximum reward y sampled
so far. Then, clearly u(®,y) =y, and for S # &

ee]

u(S,y) = max{y, ﬁi/w u(S;, max{y, £})dFi(€) — ¢} (3.26)

where §; = § — {i}. For any S letting

Ui(S,v) = B | u(Sumax{y, )R -y - e (3.27)
we can express Eq. (3.26) as
u(S,y) =y + max{0, Ui(Ss, )} (3.28)
Then clearly
Ui(®,y) = K:(y) (3.29)
where for any real number y
Ki(y) = ﬁi/ max{y, £}dFi(§) —y — ;. (3.30)

Let the minimum solution of K;(y) = 0 be h;. Here without loss of generality let hy > hy > - > hy.
Then the optimal decision strategy is given by the following theorem.



Theorem 3.10

Stopping rule The search is to be terminated whenever the mazimum sampled reward so far is greater
than or equal to the mazimum among the h;’s of closed bozes.

Selection rule If a boz is to be opened, it should be that box with the mazimum h; among the bozes that
have not yet been opened.

PrOOF The complete proof of the theorem is given by Weitzman [29], the way of which is very technical
and complicated, so in Appendix II the author rewrite the proof with supplying omitted interpretations
in the original paper. In Appendix I let us show a conventional way of proof using the K—function. ®

3.9 Sequential Assignment Problem I [1]

Assume that i jobs arrive at a group of ¢ workers one by one. If worker z, 1 < z < i, is assigned to
an arriving job of value w, the group can obtain the reward of r,w where 11 < 79 < --+ < 713 Let
r; = (11,72, +,73), i-vector. The value of each arriving job is assumed to be an independent identically
distributed random variable having a known distribution F(w) with an expectation p < 0o. A worker
assigned to a job is unavailable for future assignment. The objective is to find the optimal assignment
rule maximizing the total expected reward obtained. For convenience let us refer to the problem as the
7;-problem.

By v(w, ;) we shall denote the maximum total expected reward, provided that a job of value w has
arrived. Then, clearly u(w, 1) = mw and

U('U),'T‘i) = max_{rxw + - U(§v T,(Z))dF(f)} 1 2 27 (331)
1<z<s 0

where if i > 2, then 7;(z) is the (i — 1)-vector resulting from removing the z-th element of the i-vector
;. Let

v(r;) = /oo v(w, r;)dF(w). (3.32)
0
Then Eq. (3.31) can be expressed as
u(w, ;) = lrgféi{v"mw +v(ri(z))}- (3.33)

The optimal decision rule is given by the following theorem.

Theorem 3.11 For i > 2 we have

(a) The optimal assignment rule is to assign the worker z if ¢;(z) < w < ¢i(z + 1) with ¢;(1) = —o0 and
c(i+1) =o00.

(b) The c;(z) satisfy the following equations where ¢;(x) is nondecreasing in z for all i > 2.

&(®) = S(e1(@ — 1) ~ T(a(a), 2<z<i i22, (3.34)
ProOF See [5]. Another proof by use of T-function and S-function is given in Appendix. H

3.10 Sequential Assignment Problem 11

Let us consider the following variation of the sequential assignment problem I in Section 3.9. The decision
process proceeds on the discrete time axis without deadline, that is, its planning horizon is infinite. Ifa
fixed cost ¢ (search cost) is paid at each point in time, then a job can be obtained, and if its value is not
so high, it can be rejected. Then
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u(w, ;) = max{M(w,r;), Bv(r;) — c} (3.35)

where M (w,r;) and Bv(r;) — ¢ are the maximum expected total present discounted rewards, respectively,
from accepting an arriving job w and assigning a worker to it and from rejecting it. Clearly M (w, 1) =
riw and

M(w,r;) = 1n<1§1:<<i{rzw +Bu(ri(z)) — ¢}, 1>2. (3.36)

Let V(r;) = Bu(r;) — ¢. Then Egs. (3.35) and (3.36)can be written

w(w, ;) = max{M(w,r;),V(r:)}, i2>1, (3.37)
M(w,r;) = lxgspéi{rmw +V(ri(z)}, i>2. (3.33)

Suppose i > 2. Then, using the generalized K—function defined by Eq. (2.23), from Eq. (3.37) we have
K(A/I(_:Ti)7v(ri)) =0. (339)

Consequently, letting the minimum solution of K (M(—,7;), z) = 0 be denoted by A(r;), we have
V(r:) = h(rs). (3.40)

Here note that h(r;(z,y)) = h(ri(y,z)) for any z and y with = # y. Then Egs. (3.37) and (3.38)can be
rewritten, respectively,

w(w,r;) = max{M(w,r;),h(r:)}, (3.41)
M(w,r;) = max {rzw+h(ri(z))} (3.42)

where M (w, ;) is nondecreasing and concave in w. Then we have the following theorem.

Theorem 3.12
(a) M(w,r;(z)) is nonincreasing in = for all w and @ > 2.
(b) A(r;i(z)) is nonincreasing in .

PROOF See Appendix. H

When i = 1, Eq. (3.39) can be rewritten as follows.
(o]
7'1,6/ max{w, V(r1)/r1}dF(w) = V(r;) —c=0. (3.43)
0
Let us define
o
Ki(z) = ﬁ/ max{w, z}dF(w) — z — ¢/T1. (3.44)
0

Then Eq. (3.43) becomes K;(V(r1)/r1) = 0. Letting the minimum solution of K (z) = 0 be denoted by
h,, we have V(ry)/ry = hy, or V(r1) = rihy. Consequently, if 7 > 2, then we have

1‘{[(11), ’I‘g) = maX{T]_'LU + Tghg: ToW —+ Tlhl}- (345)

Let ¢(2,72) = (r2he —71h1)/(r2 — 1) if 72 > 71. Then, if M(w,T2) > h(r2), it is optimal to accept the
arriving job w, and in this case, if w < ¢2(72), it is optimal to assign the worker 1 to it, or else worker 2.
If M(w,r2) < h(rz), it is optimal to reject it.



3.11 Markovian Decision Process with Random Observations [10]

Consider a decision process whose state at each point in time is characterized by a pair (i, w) of two
vectors i and w, called the first-state and second-state, respectively. The second-state w is a random
observation, which is a random sample from an i-dependent distribution F;(w) with a sample space (2;
and a finite expectation p;. Let the action that can be taken when in first-state ¢ be designated by
e A) = {1,2,--,k;} with k; > 1 is a given integer. If an action z is taken in state (i, w), then an
immediate reward (i, w, ) is obtained. If an action z is taken in state (i,w), the current first-state 1
changes into j at the next point in time with probability p(jli, z). Let a discount factor be 3 € (0, 1].

The objective here is to find the optimal decision policy attaining the meaximum of the total expected
present discounted reward, the expectation of the sum of immediate rewards obtained at each point in
time over the finite planning horizon.

By u (i, w) we shall denote the maximum of the total expected present discounted reward starting from
time ¢ when in state (i, w). The uo(i,w) are usually appropriately defined; in many cases, ug(i, w) =
max ¢ 4¢;) (¢, w, ), and for ¢ > 1 we have

ue(i,w) = mex r(i,w,2) +ﬁjeZIp<j|i, zyve_1(f), t2>1, (3.46)
where
) = / R, (3.47)
weR;

Let w be a scalar random variable with a distribution function F;(w) where F;(w) = 0 for w < 0,
and let 7(i,w,z) = r(i,z)w + e(i,z)" where (i, z) is assumed to be either strictly increasing or strictly
decreasing in z for all 7, and define

z(i,z) = e(i, z) +5ip(ﬂi,$)”t—1(j% (3.48)
a(i, z) = —Az(i, ) /JAr(i, z), (3.49)
ci(i) = —Az(i) | Ar(d), (3.50)
Az (i, 1) = 2(1,z) — z:(t,z — 1), (3.51)
Ary(i, z) = 1¢(1, z) — (i, T — 1), (3.52)
Az () = (3, k;) — 2(i, 1), (3.53)
Ary(i) = ro(3, k) — (5, 1), (3.54)

Then we have the following theorem.

Theorem 3.18 For certain given t and 1 we have
(a) Suppose Ar(i,z) and Az(i,z) are both nonincreasing in .
1. Assume 7(i,z) is strictly increasing in z and let ¢(i,1) = —oco and (i, k; + 1) = co. Then
(i, ) is nondecreasing in z, and if c:(i,7) < w < ¢(i,z + 1), then the optimal solution is z,
and

ki

ve() = 7(i, D + 2(3,1) + > Ar(i, 2)Ti(ex (i, 7). (3.55)

=2

TIn the original paper [10], a general case is discussed.
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2. Assume 7(i,z) is strictly decreasing in = and let c.(i,1) = oo and c(i,k; + 1) = —oco. Then
c:(i, ) is nonincreasing in z, and if c.(i,x + 1) < w < (7, ), the optimal solution is z, and

ki
ve(i) = v(1, ki) ps + 2:(3, ki) — ZAr(i, z)T: (e (7, z)). (3.56)

(b) Suppose Ar(i,z) and Az(i,x) are both nondecreasing in .
1. Assume r(i,7) is strictly increasing in z. Then, if w < c.(i), the optimal solution is x =1, or
elsez = k;, and

v (i) = (i, D + 2(3, 1) + Ar(8) Ti(ee(3)). (3.57)
If ei(i,z) < w < (i, + 1), then the optimal solution is z.
2. Assume r(i,z) is strictly decreasing in . Then, if w < c(i), the optimal solution is x = 1, or
else z = k;, and

(@) = (6, ks + ze(i, k:) — Ar()Ti(e(3)). (3.58)

ProOF See [10]. ®

3.12 Newsboy Problem

Consider the following conventional newsboy problem. Let ¢ be a purchasing price per copy, p a selling
price per copy, d a disposing price per copy left-over, and s a shortage cost per copy where p > ¢ > d. Let
the number 6 of customers who come to buy the papers to him every morning be identically distributed
random variable having a known distribution F(w) with a finite expectation p. The objective is to find
the optimal purchasing quantity attaining the maximum of the every day’s expected profit. Suppose he
has decided to purchase z papers from a newspaper office every morning. Then, the expected profit of
every day can be expressed by

v(z) = Aw{pmin{ﬁ, z} — e — smax{0 — z,0} + dmax{z — 0,0} }dF'(0). (3.59)

Arranging Eq. (3.59) by using the formula max{z — 6,0} = max{# — z,0} + z — 6 and min{f,z} =
6 — max{f — z, 0} yields

v(z) = (p—d)p—T(z,7,96) (3.60)
where v = c—d and § = p+s — d. Clearly v < § due to the assumption of ¢ < p. Then we have
Theorem 3.14 v(z) is mazimized at =* such that F(z* —1) < (p+s—c)/(p+s—d) < F(z*).

ProoF Immediate from Lemma 2.3 (f). ®
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Appendix I

B Proof of Theorem 3.1 (Model with Recall)

(a) From Eq. (3.2) we have U; > 8 [£dF(§) —c= a = U, for any ¢ > 1, hence U > U;. Suppose
Us > U;_;. Then, from Lemma 2. 1 (b) we have Uyyq = K(U;) + U > K(U—1) + Uiy = Ue. Thus it
follows by induction that U, is nondecreasing in t > 1. From Eq. (3.3) we have U; — U,y = K(U;_1),
which is nonincreasing in ¢ from the above result and Lemma 2. 1 (a), so U; is concave in ¢.

(b) First note U; > a, hence U; > a for all ¢ from (a). Next clearly Uy = a < p <b. If Uim1 <0,
then from Eq. (3.3) and Lemma 2.1 (b) we have U; < K(b) +b < b due to K(b) < 0 from Eq. (2.10)
. Hence it follows by induction that U; < b for all ¢ > 1. Consequently since U; is upper-bounded in
t, the U; converges to a finite number U < b as t — 00, so we get 0 = K(U) from Eq. (3.3). Hence, if
(1=PB)2 +c2% #0, then U = h* from Lemma 2. 2 (c1). Suppose (1 — 3)® + ¢ = 0. Then, if U < b, we
have the contradiction of 0 = K(U) > K(b) = 0 from Lemma 2. 1 (a) and Eq. (2.10). Therefore, from
Lemma 2. 2 (b) it must be U = b = h*.

(c) It is immediate from Eq. (3.1) and (b).

(d) Suppose o < a. Then clearly U; = & < a. If U;—; = a < q, then from Eq. (3.3) and Eq. (2.10) we
have Uy = a—U;_; + Uiy = a < a.

(e) Assume a > a. Then a < U; < b for all ¢ from (b). Since u1(§) > £ for a < £ < U; < b and
uy(§) =€ for a < Uy < € < b, we have Uz > B [° €dF(§) — ¢ = a = U;. Suppose U1 > U2 (> a).
Then U, > K(Us_3) + U;_a = U;_; from Lemma 2. 1 (b). Therefore, it follows by induction that U, is
strictly increasing in t, from which we have U; < U = h* for all t > 1. The strict concavity is immediate
from the fact that Uy — Us_; = K (U,) is strictly decreasing in t from the above result and Lemma 2. 1

().

B Proof of Theorem 3.2 (Model with no Recall)

(a) Easily proved by induction starting with U;(y) being nondecreasing in y from Lemma 2.1 (b) and
Uz(y) > B [ max{y, £}dF(§) — c= K(y) +y = U1(y).

(b) The assertions for ¢t = 1 are immediate from Eq. (3.6), Corollary 2.2 (a), and Ui(y) < K(h*) +
h* = h* for y < h* due to Lemma 2.1 (b). Hence, if y < h*, then y < U(y) for all ¢ from (a).
Assume that the assertions are true for ¢ — 1, hence u;_1(y) < max{y,h*} for all y. Thus we have
v (max{y, £}) < max{max{y, &}, h*} = max{€, max{y, h*}} for all y and €. Arranging Eq. (3.5) by
substituting the inequality yields U:(y) < K (max{y, h*}) + max{y, h*} for all y. Hence, if h* <y, then
U:(y) < K(y) +y <y due to K(y) <0, and if y < h*, then U,(y) < K(h*) +h* = h*.

(c) Ify > h*, then max{y, &} > h* for all & hence u,_;(max{y,{}) = max{y, £} for all £ from (b).
Therefore arranging Eq. (3.5) by substituting this yields U;(y) = K (y) +y. If y < h*, then U,(y) is upper
bounded in t from (b), hence U;(y) converges as t — oo from (a).

(d) Immediate from (b).

(e) 1. First suppose h* < b, hence F(h*) < 1. Now, if y < h* < &, then max{y, &} = & > h*, hence
Eq. (3.7) can be expressed as

h* )
U) = 6 [ ulme(y, )4F© +6 | ulmexty, NaF(E) - e (361)

h* (%)
=8 / w(max{y, €})AF(E) + B / €dF(E) - c. (3.62)
0 h=

In order to prove the assertion, it suffices to show that (i) U(y) = h* with y < = is the solution of the
equation Eq. (3.62) and (ii) the solution is unique.

First, let us prove (i). For this, we show that, when arranging the right hand side of Eq. (3.62) by
substituting U(y) = h* with y < h*, the resulting expression becomes equal to h*. Let the right hand side
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of Eq. (3.62) be designated by R(y). If £ < h*, then since max{y,{} < h*, we have u(max{y,£}) = A*.
Thus we have

R ]
Rw) =8 [ WIE<)FE+5 [ eaF©)-c

= ﬁ/oo max{h*,{}dF () — ¢
0
= K(h*) +h* = h*.

Thus, the proof of (i) is complete.
Next, let us prove (ii). Suppose there exist another solution Z(y) such that |Z(y)| < co for y < A%, and
let A =sup, - [U(y) — Z(y)| where 0 < A < oco. Then

R 0
2w)=8 [ smex{y, £)aF©)+5 [ car(e) e (3.63)

where z(max{y, £}) = max{max{y, ¢}, Z(max{y,§})}. Teking the difference of Eq. (3.62) and Eq. (3.63)
leads to

h*
U(y) - Z(w)] < B / lu(max{y, €}) — 2(mex{y, €})|dF(€)

.
< B A AdF(€) < AF(RY),

from which we get A < AF(h*), yielding the contradiction of 1 < F(h*). Consequently, the solution
must be unique.

2. Next assume A* = b, so 3 = 1 and ¢ = 0 from Corollary 2.1 . Note that for any y and &
we have u(max{y,&}) = max{max{y,{},U(max{y,é})} > max{¢,U(y)} because max{y, £} > € and
U(max{y,£}) > U(y) from max{y,&} >y and (a). Hence we have U(y) > [5° max{&, U(y) }dF(§), from
which we get 0 > [;° max{£ —U(y), 0}dF(§) > 0; that s, J5° max{€—U(y), 0}dF(§) = 0 for all y. This
implies £ < U(y) for all £ on [a, b]; hence it must be U(y) > b = h* for all y. From this and U(y) < h*
for y < h* due to (d) it must follows that U(y) = h*.

(f) From (d) and (e) if y > A*, then u(y) = y and U(y) = K(y) +y > K(h*) + h* = h*, and if
y < h*, then u(y) = max{y,h*} = h* and U(y) = h* = K(h*) + h* > K(y) +y. Therefore we have
u(y) = max{y, h*} and U(y) = max{K(y) +y, h*}.

B Another Proof of Theorem 3.10 (Model of Pandora Type)
For convenience let F;(w) be a continuous distribution function for all 7. In order to prove the theorem,
it suffices to show the following two points.

(a) If y > hq, then U;(S;,y) <0 foralli €S,

(b) Ify < hy, then max;es Ui (S, y) = U1(S1,9) > 0.
For the proof of the theorem, the following two supplementary statements must be also proved.

(c) Ui(S1, ki) — Ui(Si, hi) > 0 for all i,

(d) U1(S1,y) is nonincreasing in y.
The statement (d) can be easily proved by induction. Here note that if (a) and (b) are both are true,
then Eq. (3.28) can be expressed as follows.

u(S,y) = y+max{0,U1(S1,¥)} (3.64)

If S consists of more than one boxes, then by S;;, © # 7, let us denote the set resultant from removing
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element ¢ and then j from S. Then from Eq. (3.64) we have

u(S1,v) = y+ max{0,U2(S12, %)}, (3.65)
u(&y) =vy+ max{O, Ul(Sily y)} 2<1< N. (366)

Arranging Eq. (3.27) by substituting the above yields

U1(S1,9) = Ki(y) +51/°° max {0, Uz(S12, max{y, £}) }dFi(§), (3.67)
U:(Si,y) = Ki(y) + ﬁi/m max{O, U1 (Sin, max{y,&})}dF,-({), 2<i<N. (3.68)

If y < hy, then it is clear from Corollary 2.2 (a) that Ui(S1,y) > 0. Before proceeding to the proof,
note that without proof clearly Ui (S,y) < U1(S,y) f SC S.
e First from Eq. (3.29) we have for any y

U1({1}1,9) = K1(y), (3.69)
U2({2}2,y) = Ka(y)- (3.70)

Thus, in this case it is clear from Corollary 2. 2 (a) that (a) and (b) hold true. Therefore from Eq. (3.64)
we have

w({1},v) =y + max{0,U1({1}1, %)}, (3.71)
u({2},y) = y + max{0, U2({2}2, %) }. (3.72)

e Suppose S consists of more than one boxes. Then, noting {1,2}12 = {2}2 and {1,2}21 = {1};, we have

U1({1,2}h,9) = Ki(y) + B /oomax{(): Uz({2}2, max{y, £}) }dF1(§), (3.73)
U2({1,2}2,9) = K2(y) +52/_oomax{0, U1 ({1}1, max{y, £}) }dF2(§). (3.74)

where from Eqg. (3.69)

U1({1}1, max{y,£}) = Ki(mex{y,&}), (3.75)

O Proof of (a) Suppose y > hq (> he). Then, since max{y, &} > h1 (> k) for all £, from Corollary 2.
2 (a) we have Uy ({1}1, max{y, &}) < 0 and Uz({2}2, max{y,&}) < 0 for all . Thus it follows from
Egs. (3.73) and (3.74)that if y > hy, then

U1({1,2h,y) = Ki(y) <0, (3.77)
Uz2({1,2}2,y) = K2(y) <0. (3.78)

O Proof of (b) Supposey < hi. Ify > hy, then since max{y, £} > hy for all €, we have Ua({2}2, max{y,{})
< 0. Ify < ho, then € < y leads to Ua({2}2, max{y,£}) = Ka(y) > 0,y <§ < he to Uz({2}2, max{y,&}) =
(2(€) >0, and hy < € to U2({2}2, max{y, £}) = K2(§) < 0. Hence Eq. (3.73) can be arranged as

ha
U1({1,2}1,9) = Ki(y) + B (KZ(y)Fl(y) +/ Kg(é)dFl(ﬁ))I(y < hy). (3.79)

Y

If € < y(< hy), then U;({1}1, max{y,£}) = Ki(y) > 0, and if y <& < Ay, then Uy ({1};, max{y,&}) =
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K1(€) >0, and if y < &, then Ui({1}1, max{y, &}) = K1(&) < 0. Hence Eq. (3.74) can be expressed as

hy
Ua({1,212,9) = Kao) + B (Ks)BW) + [ Ki(©QAR(©). (3.50)

Differentiating Egs. (3.79) and (3.80)with respect to y by using Lemma 2. 3 (d) produces, respectively,

Ui({1,2}1,9) = BiF(y) + BiF(y) (B Fa(y) — DI(y < h2) — 1 (3.81)
= BiFi()I(he < y) + B Fi(y)B Fa(y)I(y < he) — 1, (3.82)
Us({1,2}2,9) = 1B Fi(y)Fa(y) - 1, (3.83)

from which we have

Ui({1,2},9) = Us({1, 2}2,9) = BiF1 (W) (1 + (Be P2 (v) = DI(y < he) = B F2(y))  (3:84)

where the right hand side is equal to 0 on y < h; and nonnegative on h; <y (< hi). Hence the difference
U1({1,2}1,9) — U2({1,2}2,y) is constant on y < he and nondecreasing on k2 < y (< h1). Consequently,
to complete the proof of (b) it suffices to verify (c), i.e., U1({1, 2}1, h2) — U2({1, 2}2, h2) 2 0.

O Proof of (¢) From Eq. (3.74), noting that 82 < 1, U1({1}1, y) is nonincreasing in y, and U1 ({1}1, h2) =
K1(h2) > K1(h1) = 0, we get

U2({1,2}2,h2) = ﬁz/_oo max {0, Uy ({1}1, max{hz,&}) }dF2(€)

< /_°° mex{0, U1 ({1}1, h2) }dFs(€)

U1({1}1, h2)
< Uh({1,2h, h2). (3.85)

Therefore we obtain Uy ({1, 2}1, h2) — U2({1, 2}2, h2) > 0.
e Suppose (a) to (d) hold true for S’s consisting of 2 box, 3 boxes, ..., and N — 1 boxes.

O Proof of (a) Suppose y > h; (> ho). Then, since max{y,£&} > hy > hy for all £, by assumption we
have Us(S12, max{y,&}) < 0 and U;(S;1, max{y,&}) < 0 for all £&. Thus it follows from Egs. (3.67) and
Eq. (3.68) that U;(S;,y) = K;(y) < Oforalli € S.

QO Proof of (b) Suppose y < hy. If y > hy, then since max{y,&} > hy for all &, Uz (S12, max{y,&}) <
0. If y < hy, then & < y(< hy) leads to Up(Siz,max{y,£}) = Uz(S12,y) > 0, y < £ < hg to
Us(S12, max{y, &}) = Uz(Si2,€) > 0, and (y <) ke < & to Uz(Si2, max{y, £}) = U2(Si12,§) < 0. Therefore
Eq. (3.67) can be expressed as

ha

Ui(1,) = Ka(w) + 1 (VS )Fio) + |

Yy

Ua(Si2, AR () Ily <o), (386)
If £ < y(< hy), then U;(Si1, max{y, £}) = U1(Si1,v) > 0, and if y < § < hy, then U1(S;1, max{y,€}) =

Ui(Si1,€) > 0, and if (y <) hy < &, then Uy(Sir, max{y, £}) = Ur(Si1, §) < 0. Hence Eq. (3.74) can be
expressed as

hy
Us(Si,y) = Ki(y) +5; <U1(Si1:y)Fi(y) +/ U1<Si1:§)dFi(§)>: 2<i<N. (3.87)
Yy
Differentiating Egs. (3.86) and Eq. (3.87) with respect to y produces

Ui(S19) = BRE)(1+U3(Su)ly < b)) = 1 (388)
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Ul(Sy) = BRE)(1+UiSa,1) -1, 2Si<N. (3.89)

Now define ['k(y) = Hle B;F;(y). Then from Eq. (3.82) we have

Ui({1,2},9) = () I(he S y) + (y)I(y < he) — 1. (3.90)
U3({2,3}2,y) = BoFa(y)I(hs < ) + B Fa(y)BaF3(y) I(y < h3) — 1
= D(y)I(hs < y)/BFi(y) + Is(v)I(y < hs)/BrFi(y) — 1. (3.91)

Therefore, noting {1, 2, 3}12 = {2, 3}2, we have from Eq. (3.88)

Ui({1,2,3}1,v) = BiA(y)(1+Us({2,3}2,9)I(y < h)) — 1
= iAW) (1 + (R (ks < v)/BiFi(y) + T3(y)I(y < ha)/BrFi(y) — 1)I(y < h2)) — 1
= B () + D) (hs < y)I(y < ho)+T3(y)I(y < h3)I(y < ho)=BiFi(y)I(y < h2) =1
= I (y)I(he <y) + () I(hs <y < he) + I3(y)I(y < h3) — 1.

Repeating the same operation leads to in general

N-1

Ui(S1,v) = @) I(he < v) + Y D@ (hipr Sy <hi) + In@)(y <hn) -1 (3.92)
k=2

Using this, we have from Eq. (3.89)

Ué(S2: y) = /BZFQ(y)(l =+ Ul({ly 3: 47 e 71V}1: y) =
N-1

= L(y)I(hs <y) + Z D) (hey1 Sy < he) + In()I(y < hn) - 1. (3.93)
k=3

U:(S,,,y) = ﬁth(y)(l +U1({1v2 e 7i—7i + 1: te ‘11V}1,y) =i
= BiFi(y)(N(w)I (k2 < v)

i—2
+ZFk(y)[(hk+1 <y <he)+ L) (hipr Sy < hisi))
k=2

N-1
+ Z I(y)I(hg1 <y < he) + FN(y)I(y < hn)—1, N—-1>212>3, (3.94)
k=i+1
Un(Sn,y) = B Fn () (D) I(he < )

N-2
+ Z Te()I(hegr Sy < he) + Tnoa (W) (y < hn-1)) — 1. (3.95)
=2
Now arranging Eq. (3.94) by substituting

Fia @) (hir Sy < hicy) = L) (hiyr Sy < hs) [BiFi(y) + Nia (@)1 (hs < y < hia) (3.96)

leads to
Ul(Si,y) = BF) (M) (ha <) + ifk(y)[(hkﬂ <y < hi))
k=2
N-1
+ 3 L) (hesr Sy <hi) + In)I(y <hn) = 1. (3.97)
k=i

Taking the difference of Eq. (3.92) and Eq. (3.96) yields, for 2 <1 < m,
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i-1
U1(S1:y) —Ui(Si,9) = (1 - /BiFi(y)) (Fl(y)l(}h <y)+ ZFk(y)I(th <y< hk)): (3.98)

k=2
the right hand side of which is nonnegative for any y and is equal to O on y < h;. This implies that the
difference Uy (S1,y) — Ui(S;, ) is constant on y < h; and nondecreasing on h; < y < hy. Consequently,

in order to complete the proof of (b), it suffices to verify (c).
Proof of (¢) From Eq. (3.68) we have

(o]
U,’,(Si, hz) = Kz(hz) +ﬁz/ ma.x{O, Ul({l 2) 37 SR )i - 17 i+ lyases lv}l: max{hi7 5})}dﬂ(‘£)

&)

IA

o
/ max{O, Ul({l, 2, 3, s 8 ,‘l: = 1,Z+ 1, LR lV}l, h,)}dF.,'(é)

-0

max{0,U1({1,2,3,-++,i = L,i+ 1,--+,N}, hi)}
U1({1,2,3,--+,i—1,i+1,---,N}1, hs)

U1({1,2,3,--+,i = 1,4,i+1,--, N}, hs)

U1(S1, hi). (3.99)

IA

Therefore, we have U;(S1, ki) — Ui(S;, ki) > 0, implying that (b) holds true.

B Another Proof of Theorem 3.11 (Sequential Assignment Problem I)

In order to prove the theorem it must verify also the following statement.

(c) For2 <z <1, there exists c;(z) such that ¢(z, ;) = v(ri(z — 1)) — v(ri(z)) = (12 — Tz—1)c(z).

First, clearly u(w, 1) = rw, so v(r1) = rip, hence v(r2(1)) = r2p and v(r2(2)) = 1. Therefore,
for ro-problem we have v(r2(1)) — v(r2(2)) = (r2 — 1)K, 50 2(2) = p. Ifw < c2(2), then since
raw + v(r2(2)) — mw — v(r2(1)) = (r2 — r1)(w — (2)), it is optimal to assign the worker 1, or else
worker 2. Let ¢1(1) = —oo and ¢ (2) = oo, so S(c1(1)) = p and T(c1(2)) = 0 due to Eq. (2.6).
Furthermore let c3(1) = —co and ¢;(3) = co. Then clearly (1) < ¢2(2) < ¢2(3), the inequalities
w < ¢»(2) and ¢;(2) < w can be written, respectively, ¢;(1) < w < ¢2(2) and c(2) < w < (3), and
c2(2) can be expressed as ¢;(2) = S(c1(1)) — T(c1(2)). Therefore the statements (a), (b), and (c) are all
true for the r-problem.

Second, assume that the three statements are true for r;-problem, hence for 2 < z <1 we have

TW + U(Ti(x)) Tz 1 W — 'U(‘T‘,;(I - 1)) = (Tx - Tz:—l)(w - C‘L(x))7

from which the following three points can be said.

1. fw<¢(2),sow< a2 <ad) < < ali), then u(w, ;) = mw +v(ri(1)),

2. For3<z<i-1ifg)<w<aglz+1),s0¢(2) < < cglz-1)<qglE)<w<glz+1) <

c(z +2) <--- < ¢(d), then u(w, ;) = rzw +v(ri(z)),

3. If (i) <w, 50 ¢(2) <+ < (i —1) < ¢(8) < w, then u(w, 7)) = Tiw +v(r;i(7)),
which implies that the maximum of the right hand side of Eq. (3.33) is attained at z for w such that
e:(z) < w < ¢(z + 1) with ¢;(1) = —o0 and ¢ (i + 1) = co. In other words, it is optimal to assign the
worker z if ¢;(z) < w < ¢;(z +1). Hence u(w, r;) can be expressed as

u(w,m;) = Y (rew+v(ri(@)) () <w < ez +1)). (3.100)
z=1

Noticing I(ci(z) < w) = I(ci(z) < w < ai(z + 1)) + I(a(z + 1) < w), the above expression can be
rearranged as follows.



w(w, ;) = rw+v(r;(1 +Z(TI Tz—1)(w — ¢ (2))I(c;(z) < w). (3.101)

Hence, by using T-function, we have

v(r;) = rip+v(r;i(1)) +Z = — Tz—1)T(ci(2)). (3.102)

Now by 7:41(%, 7), © # 7, let us denote the (i —1)-vector resulting from removing the ¢-th and j-th elements
of 7;41 where 7;41(4, j) = 7:+1(j, ). Then from Eq. (3.102) we have

v(ripa(1) = rap+o(risn(1,2)) +22(rx+1 r2)T(e:(2)), (3.103)
v(rita(y)) = rp+o(ria(y, 1) + yz_:(rx = ro-1)T(ci(@)) + (ry41 — my-1)T(c(Y))
2 Z ret1 —T=)T(c(z), 2<y <4, (3.104)
Rt
v(rip(t+1) = rp+o(riga(E+1,1) + i;(rr —72-1)T(¢;(2)). (3.105)

From the above expressions we obtain

v(rip1(y — 1)) = 0(ri1 (@) = (ry = 1y—1)(S(a(y = 1)) = T(a(y)), 2<y<i+1. (3.106)

Therefore we have

cn(y) =Sy —-1)-T(aly), 2<y<i+l (3.107)

Now clearly ¢;41(2) > ¢;41(1) = —00 and 00 = ¢;41(1 +2) > ¢41(i +1). Next for 3<z < i +1

Cir1(y) — i (y —1) = (Slaly — 1) - S(a(y -2)) - (T(a@) - T(a-1)). (3.108)

The differences of S—function and T—function in the above expression are, respectively, nonnegative
and nonpositive from the induction hypothesis and Lemma 2. 3 (a,b). Hence it follows that ¢;41(z) is
nondecreasing on 2 < z <1+ 2.

B Proof of Theorem 3.12 (Sequential Assignment Problem II)

Clearly M(w,72(1)) = row > riw = M (w,72(2)) for all w, hence the statement (a) is true for ¢ = 2.
Suppose the statement (a) is true for i — 1, hence K (M (—,7:-1(%)), 2) is also nonincreasing in x for
all z. This implies that h(r;(z)) is nonincreasing in z, hence the statement (b) holds. Here note that
be assumption we have h(ri(z,y)) = h(ri(y,z) > h(ri(y,z +1) = h(ri(z + 1,y) and h(r;(z,z + 1) =
h(ri(z +1,z) for all z and y, z #y. Then for all w

M (w, r;(z))

= max{ max {ryw+h(ri(z,y))}, rerwth(ri(z, v+1)), max. {ryw—(»h(ri(:r,y))}
1<y<Lz—-1 z+2<y<

vV

mw{lgr;lg_l{rywﬂm(n(zﬂ, v)) b rzw+h(ri(z+1, 7)), z+2!23§i+1{ryw+h(m(z+l, v))}

Z‘VI(’U), 7‘,,(‘7}—{-1))
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Hence K(M(—,7;(z)), z) is nonincreasing in z for all z. This completes the proof. ®

Appendix II

B Weitzman’s Proof of Theorem 3.10 [29]
Here for convenience let us denote a reward in box i by w;. First from Eq. (3.28) we have

u({k},y) =y + max{0, K ()}

for every k € S. Hence it follows that if y < hj, opening box k is optimal due to Kx(y) > 0, or else
stopping with accepting the maximum reward y is optimal due to K (y) < 0. This implies that Pandora’s
rule is optimal when starting with a single closed box.

Assuming that Pandora’s rule is optimal with any n closed boxes and any maximum reward y, we shall
start with any n + 1 closed boxes £ = {il,ig, e ,in+1} and any maximum reward y where let j and g
be boxes with, respectively, the highest and the second highest reservation value in £, that is,

h; >hy> max h.
1=1,2,---,n+1
1#5,1#g

Then, by Op we shall denote the expected present discounted net value from opening no box and stopping
with accepting the current maximum reward y; clearly O =y.

i. Suppose y > h;. Then since max{y,wk} > hj > hy, for any wy, the expected present discounted
value from opening any box k € £ becomes

Ok = ﬁk / rna.x{y, wk}dFk(wk) - Ck

from hypothesis. Therefore, since Ox — Op = Kx(y) < 0 because of y > h; > hy, it follows that opening
no box, or stopping with accepting the current maximum reward y is optimal.

ii. Suppose h; > y. Then the expected present discounted value from opening box j € £ and then
stopping becomes

O; =5j/_ max {y, w; }dF;(w;) — ¢;.

Hence, since O; — Op = K;(y) > 0, it follows that opening no box can not become optimal. Here a
question of which box to be opened arises. In order to answer the question, let us consider the three
alternatives:
A: Open box j and proceed by Pandora’s rule thereafter,
B: Open any box k (# 7) and proceed by Pandora’s rule thereafter,
C: Open box j. If w; > hg, stop, or else open any box k and proceed by Pandora’s rule thereafter,
Let the expected present discounted value for each alternative be designated by A, B, and C, respec-
tively. What should be proved here is A > B. Here, by hypothesis, clearly A > C. Hence, if C > B can
be verified, it follows that A > B. Weitzman proved the inequality by showing the difference C — B > 0.
First, by definition, we have
C = =¢; +ﬂj{Pr(wj > hg)E(max{y, wj}|w; > hg]
+Pr(hg > wy)(=ck + BxElu(S — {7} - {k}, max{y, wj,wel)lhg > ws]) },
B = —cx + B { Pr(ws 2 hj)Blwi|wi > hj]

+Pr(hy > we)(=c; + 8 Blu(S - {k} = {7}, max{y, we, w;Dlk; > wil) },



which can be rewritten as follows:

C=—c;+85 {Pr(-wj > hj)Ewjlw; > hj]
+Pr(h; > wj > hg)E[max{y, wj}|h; > wj > hg]
+Pr(hg > w_,~)(—c;c
+0k {Pr(wk > h;)Elwglwg > hj]
+Pr(h; > wy 2 ho)Blmax{y, we}lhs > wi > hol

+Pr(hy > wR)BIU(S - {3} — {6}, max{y,ws, wedlkg > s, by > wil}) |,

B=—ci + 0 {Pr(wk > hj)E|wg|we > hj)
+Pr(h; > we 2 ho)(=¢s

+8;{ Pr(w; 2 hj)Elw;|w; > hy]
+Pr(h; > wj > hy)E[max{y, wg,w;}|h; >wr > hg, hj >w; > hg]
+Pr(hg > wj)E[max{y, wi}lh; > wr > hg]})
+Pr(hg > wk)(—Cj
+8;{Pr(w; 2 h;)Elwjlw; > hy)

+Pr(hj > wj > hg)E[max(y, w;)|h; > w; > hg)

+Pr(hg > w;)E(u(S — {k} — {5}, max{y,we, w;Dlhg > wk, hg >w;]}) }

Now define
mj = Pr{w; > h;j},
mr = Pr{wg > hj},
Aj = Pr{h; > w; 2 hg},
Ax = Pr{h; > wy > hg},
px = Pr{hg > wi > hi},
ej = Elwjlwj 2 hyl,
er = Elwg|wi > hjl,
aj = Elwjlh; > w; > hgl,
ar = E[wglhj > wi > hy],
bi = Blwklhg > wi 2 hl,
a; = E[max{y,wj}lh; >w; 2 hl,
dr = E[max{y, wi}lh; > wi > hgl,
d = E[max{y,wg,wj}lhj > wp > hg, hj >wj > hy],
® = E[u(S - {j} — {k}, max{y, wg, w;})hg > wj, hg > wy].

By using the above symbols, C and B are expressed as follows:
C =—cj +ﬁj{ﬂ']’8j +Aja; + (Q=m;= /\j)(—ck +ﬁk{7rkek + Aglg + (1 — 7 — Ak)qD})},
B = —c +ﬁk{7rkek + /\k(_cj + B; {Wjej +Ad+ (-7 — ’\j)&k})
+(1 =7 — Ak)(—cj‘ +,3j {rjej + /\jaj +(1- = /\j)@})},

which furthermore can be arranged as follows:

C = —cj +mBie; + AiB5a; + (1 —m; — A;)5; (_Ck + meBrer + Akﬁkak)
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+(1 =75 — A1 — e — Ak)B;58x 2,

B = —ci + mfrer + Al (—c_,- +miBie; + AjB5d + Q=m5; - Xj),@jﬁk)
+(1 =7 — Ax)Bk (—Cj +m;B5e5 + /\jﬁj&j)
+(1 =7 = A) (A = 75 — A;)8:5;52.

Taking the difference of C and B with noting the underlined terms produces

C — B=—(cj — miB5e;)(1 — B + mkfBk) + (ck — mxBrex)(1 = B; + Bi7; + B5A;)
+Ai 8585 — AeBiA;Bid — (1 — mx — Ae)BeA; 5585

Now K;(h;) =0 and Kx(hx) = 0 can be expressed as follows, respectively,

-0

hj =]
c; = ﬁj(h]/ dF(’LUJ)'l"/ ’LUde(wj)) _hj
hj

= .Bj (hj(l = Pr{wj > h’j}) 4+ Pr{'wj > h,_,-}E[-ijwj > hj]) - hj

hy oo
ck = ﬁk(hk/ dF(wk)-i-/ wipdF (wg)) — hx
h

. .
=5 (hk(l — Pr{uwg > hj} — Pr{h; > wi 2 hg}) = Pr{hy > wy > hi})
+Pr{w, > h;}E{wg|we > hj]
+Pr{h;j > wi > hg})E[wglh; > wr > hy)

+Pr{hg > wg > hp})Ewilhg > wr > h_k]> — hy,

which can be expressed as, respectively
¢; = Bimslej — hj) — (1= Bj)hj,

ck = Bx (ﬁk(ek — ki) + Ak(ag — he) + pe(be — hk)) = (1 =Bk,
from which we obtain

cj = Bimie; = —h;(1 = Bj + B;m;),
cx — Brmrer = —hi(1 = Bi + Bkmi) + B (ax — ki) + Brepe(br — ki)

If substituting the above into the right hand side of Eq. (3.109), canceling some terms, and grouping
others, then the difference C-B can be arranged as follows:

C — B =h;(1 =85 +B575)(1 = Bx + TBx)
+(—hk(1 — B +Brm) + BrAr(ak — ki) + Bicp (bx — hk))(l = Bj + B5m5 +B545)
+A;8585 — AeBiAjBid — (1 — me — Ak)BrA; 8585

Now we have a; > E[wjlhj > w; 2 hg] > E[hglhj >w; 2> hg] = hg > hi. Similarly we get ar > hx
and b, > hi. Furthermore we obtain

d = hg + E[max{max{y,w;} — hg, Wk = hg}lh; > wx > hg, h; >w; 2 h]
hg + E[max{y,w;} — hg +wg — hglhj > wg 2 hg, hj > w; > hg]

IN

E[max{y, w;} + wklhj > wx > hg, hj > w; > hg]

I

Gj +ax — hg

A

a; +ag — hg.



Thus we have the following inequalities:

hj—hkzo, &j—hkzo, ar —hg >0, bp —hg >0, &j+ak—hk—d20.
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Weitzman states C — B > 0 without proof in his paper; this is quite puzzling. The author confirmed this

by transforming the difference C' — B step by step as follows:

C — B =h;(1 -85 +B575)(1 = Bx + mxBx)

—h(1 = B + B )(1 = B + Bim; + B Aj)

Bk Ak (ak — hi)(1 = B5 + Bjm; + B5A5)

Bk (br — hi)(1 = By + B35 + B5A5)

+A;858; — AeBrA;B5d — (1 — T — Ak )BiA;B5G;5
=h;(1 = B; +8;7;)(1 — Br + 7kBx)

—hi(1 = Br + Bimi)(1 = B5 + B;75)

—hi(1 = Bk + Bxm)B5Aj

+(ak — hi)BrAeBiA;

+(ak — h)BrAk(1 = B + Bm;)

+(bx = hie)Brpr(l = B + B5m5 + BiA;j)

+A;858; = AkBrAjBid — (1 — mx — Ae)BrA; 5585
= (hj — he)(1 = B + B57;)(1 = Br + 7 Bk)

—hi(1 = Bk + Bemr)B5A;

+ak — hi)BiAkBiAs

+(ak — hi)BrAk(l = B5 + Bi7j)

+(bx — hi)Brik(1 = B5 + Bimj + BjA;)

+Aj8585 — AeBrA;B5d — (1 — T — Ap)BrA;85a;5
= (hj — he)(1 = B5 + B575)(1 — Br + 7kBk)

+(@; = hi)(1 = Br + Bremi)B5 A5

+(ak = hi)BrAk (1 = B5 + Bi7;)

+(bk = hie)Bipr (1 = B5 + B5m; + B5A;)

—a;(1 = Bk + Bemk)Bi Aj

+(ak = he)BrAeB5A;

+A;858;5 — AeBeA;Bd — (1 — T — Ap)BrA;854;5

in which the last three terms can be reduced to the single term (@; + ax — hx — d)AxBx ;05

eventually the difference C' — B becomes

C — B = (hj — h)(1 = B5 + B5m5)(1 — Br + mxfk)
+(&; — he)BiA;(1 — Br + Bemr)
+(ak = hi)BrAk(1 = B5 + B5m;5)
+(bk = he)Brpr(l = B + Bim5 + B A5)
+(@; +ax — hg — A)ABr ;55

Thus,

(3.109)

Therefore it follows that the right hand side is nonnegative, hence C' > B. This completes the proof.



(5]

(7]
(8]

(9

[10]

1]

(12]

(13]
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