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Abstract

Multiple queue, cyclic service systems (called polling systems) have often been used as
performance evaluation models in communication and production systems with cyclic resource
allocation. However, most research has focused only on the mean waiting times due to
prohibitively growing complexity in computing higher-order moments of the waiting time.
This paper presents the explicit expressions for the second moments of the waiting time in
symmetric exhaustive and gated service systems of two, three, and four queues with Poisson
arrival processes. Numerical comparison reveals that they are ordered in the number of queues
(increasingly/decreasingly for exhaustive/gated service systems, respectively) and bounded
fairly tightly by those for single queue systems and by those for systems with infinitely many
queues. Conjecture of their heavy traffic limits is also made.

Key words: queues, cyclic service systems, polling systems, waiting time, exhaustive service,
gated service, heavy traffic limits.

1 Introduction

In polling systems, N queues are served by a single server in cyclic order. Such systems have
diverse applications in communication networks and production systems in which a single
resource is shared by multiple users with cyclic allocation. Two service disciplines among
others with respect to the set of customers served at each visit of the server to a queue are
exhaustive and gated service ones; they differ in respect to whether those customers that
arrive at a queue in service are served during the current visit ot reserved for the next visit.
As usual in queueing systems, of main interest from customer’s viewpoint is his/her waiting
time. A special case in which N = 1 is referred to as a system with server vacations. Another
extreme case in which IV = oo (the load at each queue is infinitesimally small) is called a
continuous polling system. Early studies of analysis and applications of polling systems are
surveyed in [12, 13].



Consider a polling system with exhaustive or gated service discipline in which each queue
has a Poisson arrival process and general service time distribution (like in an M/G/1 queue)
and the switchover times of the server also has general distribution. Then it can be shown
that the moments of any order of the customer waiting time in each queue can be evaluated,
in principle, through the solution to a set of linear equations. However, explicit analytical
formulas are unavailable for the waiting time moments, even for the the mean waiting time
except for a few special cases (for example, systems with N = 2 queues and symmetric
systems). Thus major efforts have focused on the mean waiting times, such as the reduction
in the number of the linear equations [6, 9] as well as efficient algorithms for their computation
(8], and linear dependence relationships among them called pseudoconservation laws {2].

This paper is concerned with explicit evaluation of the second moments of the waiting
time in exhaustive and gated service polling systems. The second moments generally give
measures of variability and can be used in Chebyshev inequality for estimating the probabil-
ity distribution. For simplicity, we confine ourselves to symmetric systems such that all the
queues are statistically identical. The explicit formulas are available for the mean waiting
times in symmetric polling systems of NV queues (1 < N < oo} [7]. To the authors’s best
knowledge, the second moments {(or variances) of the waiting time have been obtained for
the following special cases only (besides for server vacation systems N = 1): an asymmet-
ric exhaustive service system of N = 2 queues and zero switchover times [11}, symmetric
systems with deterministic service and switchover times of N = 2 and 3 queues [1], and sym-
metric continuous polling systems (N = o0) [3, 5]. Numerical computation procedures for
the variance are given in [5] and [10]. We present the explicit expressions for the second mo-
ments of the waiting time in symmetric exhaustive and gated service systems with N = 2, 3,
and 4 queues. They have been obtained by solving the traditional set of linear equations
using software package Mathematica [15] for symbolic formula manipulation. We show nu-
merical examples that the second moments are ordered in IV (increasingly/decreasingly for
exhaustive/gated service systems, respectively) and fairly tightly bounded by those for the
continuous polling systems (N = oo) and those for single queue systems (N = 1). We also
conjecture the heavy traffic limit forms of the second moments for general N. The heavy
traffic case of an exhaustive service system of N = 2 queues and zero switchover times is
studied in [4]

The rest of the paper is organized as follows. In Section 2 we describe our models more
specifically and introduce notation used in the paper. In Sections 3 and 4, we consider
symmetric exhaustive and gated service system, respectively, and gives the second moments
of the waiting time for systems of N = 2,3 and 4 queues. In Section 5, they are plotted and
compared numerically. We also discuss limiting forms of the second moments in heavy traffic
conditions.

2 Models and Notation

Let us describe our systems and introduce notation for system parameters. The number of
queues in the system is denoted by N. Queues are indexed by 4,3 = 1,2,---, N, in the
order of server movement. We assume a Poisson arrival process of customers at rate ); for
queue ¢ The Laplace-Stieltjes transform (LST} of the distribution function (DF), the mean,

and the nth moment of service time of a customer at queue ¢ are denoted by B}(s), b;, bgn ,



respectively. The total load offered to the system is then given by

N
Bor= Y pi 5 pii= b (1)

i=1

In each queue, customers are served on first-come first-served {(FCFS) basis. The buffer of
each queue has infinite capacity. We assume § < 1 which makes the whole system stable.

The LST of the DF, the mean, and the nth moment of time needed by (tl)le server to switch

from queue i to queue 7 + 1 (switchover time) are denoted by R!(s),ri,r;"

(2) _

i

, respectively. We
r?. The mean total switchover time is then given by

Foi= Zri (2)

The switchover times are assumed to be independent of the arrival and service processes.
The LST of the DF, the mean, and the nth moment of the waiting time W; of a customer
at queue i are denoted by W(s), E[W;], and E[W}], respectively. A system in which the
arrival and service processes in all queues and switchover times are independent of queue
index ¢ is called symmetric. For symmetric systems, we let p; = p = Ab, and omit subscript
¢ from other parameters; thus we get g = Np and 7 = Nr.

also use the variance 67 := r

3 Exhaustive Service Systems

We first consider exhaustive service systems. In such systems, the server continues to serve
each queue until no customers remain there. Customers arriving at the queue in service are
also served during the current visit of the server.

Let L;(t) denote the number of customers present in queue ¢ at time ¢. We define the joint
generating function (GF) for [Ly(t), L2(¢),...,Ln(t)] at time ¢ = 73(m), i.e., at the instant
when the server visits queue 7 in the mth polling cycle by

Fi(21,22,...,2n) = lim FE

m—oo )

N
2 (r.-(m))] 3)

j=1

By counting the number of customers in each queue at ¢ = mi{m) and ¢t = 1341(m), we get
the relation

Fit1(z1,22,.. . 2N)

N N

=R} Z(J\j —/\ij) F; | 21,29,...,2-1,0; Z(’\j --/\jzj) yZidly ey ZN (4)
j=1 j=1
vy

where ©}(s) is the LST of the DF for the length of a busy period at queue ¢, and satisfies
the equation

©i(s) = Bils+X—X0j(s)] (5)



The LST of the DF for the waiting time W; in an exhaustive service FCFS system is given
by ‘

l—ﬁ. 1—-Fi(1~s/A;)

Wils) = — s — i+ \Bi(s) (6)
where the marginal GF for L;(t) at time ¢ = 7;(m) is defined by
Fi(z) = lim E[M5)) = F(1,...,1,2,1,...,1) (7)

and z is the ¢ th argument in F3(1,...,1,2,1,...1). See [12] for the derivation of these
formulas.
In order to find the moments of the waiting time, let

) OFi(21,20,...,2
fg) = nzn ) (52)
Zj ez
z=ze=..=zy=1
. 02Fi(z1,29,...,%
s = TEEI ) 3b)
ZjO%k z1=z3=...man=1
) BFiz1,22,...,2
fili, k1) = ‘59:_62 5 ) (8¢)
JY%RI2 Z=zs—..=zpy=L
i,k 1=1,2,...,N
A set of N? equations for {f;(7);4,7 = 1,2,..., N} is then given by
. . . (Db .,
fimld) =rdi 5 fan(d) = ridj + £(5) + ﬁl(t_)# j#Fi (9)
1 .
which yields the solution
A1 7 ) . —j+1 Pk .,
f,()—(—g‘l LR = [wa “*1 ] i#i ()
o=
From (6) with (10), the mean and the second moment of W; are expressed as
Ap® 1 BVli s
E[W;] — i0; + ( P)fz('%") (lla)

2(1—p;) * 2(1— pi)NFF

D a-psei | - 96,0 (i)
3(1—~ps) 2(1—p:)%2  3(1—p)ASF 2(1 — p;)2 A7

Thus we need f;(3,7) to obtain E[W;]. A set of N? equations for { f;(5,k);4,7,k =1,2,... , N}
is given by '

EW}) =

+

(T oo

jELk#4  (12)

(2)
Forn ) = Aar® 4 M) + rid AR + £ ()AiA [ Ty ]

T N+ £l DA + 7, ) + G AN

1 (1—p:)?
fir1(5,9) = A + Nirs | £:5) + ”Ab] i#i (12b)
fira(3,4) = )\?T?) (12¢)



Although no explicit solution to (12) is available in general, f;(i,2) is for a symmetric system

given by

SAIN(1—p) NN -1 N2p2)2(1 — p)?
1-Np (1—Np)? (1 - Npp?

fi(i,4) (13)
where 6% = r(2) 2, Using this fi(%,2) in (11a), we get the mean waiting time for a symmetric
exhaustive service system [T7}:

& Nr(l—-p) N2

EWl = ot sa-n, t sty

(14)
For the second moment E[W?}, we need f;(i,4,4). A set of N* equations for {fi(4,k, 14,4,
k,l=1,2,...,N} is given by

: ] 3N AL Ah; £ (2
Firr (G R 1) = Aghrd + |:Aj/\kf;'(l) + A A fulk) + Ao fi(5) + —Jlk—_lz)m] r$?

2bs( A AR fi(6, 1) + AN fild k) + )\k'xlfi(i,j)} "

+ [’\jfi(ks 04+ Mfild, )+ M0 k) +

. , bz?-fi(iv i) bg2)fi(7:) ) 3)\,‘5(2)2 33) »
P { T—p? " W=p) | TN\ T TS ot ) 70

3\ AeAbi fi4,4) } B

+ [)\j)\kfi(i, )+ XAAifs(i, k) + AeAifi(2, 5) +

1 - pi (1 - Pi)3
‘AT :-;i-z-a' . ' 2 bi 2
+"~")‘L()1m[)—z ii(): )y sAnfild, 2, 0) + Ash fild, 4, k) + Aedifild, 4, 5) (1 - pi)

.. ) 2 :0: 100 ]
Fera(i 4, k) = Adider® + A [»\jfi(k) + Aefild) + Jl—k_f-@] D & NrifilG,B)

Qi) + Mefiles Noirs | Mididribd (G, 4) A Aprd® £i(0)

1—pi (1 —p:)? (1—p:?
j#6k #i(15b)
L o, AiAipifie .,
feer(ini ) = A0r + 23 15) + ——-—fff_(z) J # i (15¢)
i
firrliyiyi) = A3V (15d)

We have not been able to derive an explicit expression for fi(2,1,7) even for a symmetric
system with a general values of N. However, we can get fi(i,,1) for specific values of N.
Here we have solved these equations using Mathematica for symmetric systems of N = 2,3,
and 4 queues. The resulting second moments are as follows:

N=2:
_ 2 {3) (3)
E[W2]= 2—p+2p r_+ Ab
3(l—p+p?) | 2r 1-2

L (2—p+20%) 2@ [82 N b2 (2 —3p +4p?) 82
TQ-20)(0—p+p%) |2r T1-2p|  2(1-20)(1—p+p?)



(2—5p+6p%—4p%) 27 (3~ 2p) Arb®)

16a
2(1-20)"(1—p+p?)  (1-2p)° (162)
N=3:
—9p 4 992 — 3,3 (3) Ap(3
1—3p+4p% — 3p° 1-3p
. (9 — 28p +39p" — 45p° + 27p*) (@ [42 N Ab(2)
2(1—p)(1—3p)(1—3p+4p2 —30%) |3r 1—3p
(2—Tp+13p% — 12p%) 62 (8 — 37p + 76p? — 93p° + 54p*) 72
(1-3p)(1—-3p+4p~3p%)  3(1-3p)*(1—3p+4p%—3p%)
3(5 — 3p) Arb®
TRy (16b)
N=4;:
B = ~ 14p + 28p” — 51p° +46p* — 40p° [r(D  Ab3)
3(1—2p)(1—3p+7p — Tp® + 5p*) 1—4p
(8 — 22p + 51p% — 72p° + 669% — 40p°) ,\b(z) gﬁ N A2
(1-p)(1—4p)(1—3p+Tp? —Tp® +5p%) |dr 1—4p
3 (4 — 22p + 68p? — 127p° + 130p* — 80p°) 62
4(1-2p)(1—4p}(1—3p+Tp? —Tp> + 5¢%)
(20 — 134p + 444p% — 943p% + 1278p* — 1064p° + 480,°) 2
4(1-2p)(1—4p)* (1~ 3p+Tp? — Tp3 + 5p%)
— (2)
L 2(7—4p) Mrb (16)

(1-4p)

4 Gated Service Systems

We next consider gated service systems. Here, the server serves only those customers that
are found at the instant when the queue is visited. Those customers that arrive during the
service period are set aside to be served in the next round of visit. For a gated service system,
the joint GF Fi(zy,22,...,2y) defined in (3) satisfies the equation

Fiz1(z1,22,...,2n)
N

D= Ayz)

=1

N

Z (A; — )\jz_?'):l s Zidly e .- ,ZN) (17)

=1

= R}

*
Fi (21,22, .. .,z,-_l,B,-

from which we can get f;(?), fi(4, z) and f;(,%,7) in the same way as in Section 3. A set of
N? equations for {f;(5);i,7 =1,2,. ., N} is given by

fir1(@) =rdi +pifi(i) 5 firr(F) = midj + NbiFi() + fi(§) 5 #14 (18)
which solves as

- i-1
fi(i) = 1)\:?‘5 » fil(d) =2 [Z %+ EL"‘LPLJ JFi (19)

k=j

6



A set of N3 equations for {f;(j, k);i,j,k=1,2,..., N} is given by

Firr (k) = Mher® + i £i(d) + radg filk) + fald) A e (2riby + b()

+£i(G, k) + bidi fi(3,5) +bid; fi(i, k) + bIA AL F (3, ) j#ik#i (20a)
firr(i,3) = AArl + rdafi() + FilNA(2ribi + 67) + Aibi fili, 5)

+AiA;B2 i, 6) j #1i (20b)
firr(i,d) = M)+ fi()A2(2ribs + 6)) + (\ibi)? (3, 1) (20c)

For a symmetric system we get

622N - N2X3rb2) N?r2)?
+ +
(1-Np)(1+p) (1-Np)*(1+p) (1-Np)?

A set of N* equations for {f;(é,7,k,1);4,7,k, 0 =1,2,..., N} is given by

fi(isi)

(21)

FirrGr e 1) = Ader + Dadfi(G) + A fild) + MAufi(k) + 3N NAb fi(d)] )
i+ [3'\1'/\14/\15&2)13‘(1') + 3NN fild, 1) + A fulk, 1) + M fi(5, 1) + M fi(, k)
+ {2 i fi(3, 7) + 22 A0 filis k) 4 2250 fi(, 1) } bi] s
AN FOBE + A Fili, 5) + MM filhy k) + MMk fi(6,1) + 33 Medibi (i, )] 6
+ [’\Jfa(za k1 I) -+ ’\kfi(?:s j) l) —+ ‘\lfi(iaj: k)] bi
+ A fi(d,4,5) + AALFi( 8, k) + XA file,4, 1)) 82 + Aghid? £i(3, 4, 6)
j#i,k :,:5 i, l#1 (22a)
Fiaal(d, 5, B) = Ai)\j/\kf'ga) + A BAjARbi fi(2) + A fi(F) + A fi(k)] ng)
ol [3A,-Akb§2) Fi(8) + b; {2M1fi(3, 7) + 2X; i3, k) + 3bidj A fi(3,4)} + £i(4, k)] 7
AN £16) + A [ fier 5) + A Fil, k) + 33 Aebi £i(i, )] b2
i [£ild, 5, k) + Agbifildy i, ) + Mebifildyd, §)) b+ XidjAeb? fiG, 4, 4)
j#ik#i(22b)
Fir1(iy5,5) = A2Ar 4+ A2 BA;b:£i(6) + £i(5)] D
+27 [35; {b") £ill) + B2 £il6, 1) ) + 2bifill, 5)] v
2B £:6) + 3AZN b2 £i(d, §) + A26ED £, )

1

+ATBE fi(3,4, ) + MEA0F fil4,4,9) j#i (22¢)
Firr(56,8) = A3 + 2368 £(4) + 303b;r ) £,(3) + 3A3b3r; £ili, 1)
+3X3 (rifi(3) + bifi(d, 4)) 652 + X382 £33, 4, 4) (22d)

The LST of the DF for the waiting time W; in a gated service FCFS system is given by

i _ 1—p Fi[B;(s)]—Fi(l—s/Ai)
Wils) = — s— i+ MBrs)

(23)

from which we get

EW; = (1 - ﬁ)(lz;gi)fi(i,i)

(24a)



- .. (2 e
(=Pt s+ D50 | (1= D f )
Thus the mean waiting time for a symmetric gated service system is given by
52 Nr(l4+p)  NX®@
BV = %t aq—wp T5a-mp) (25)

We have obtained the second moments of the waiting time in symmetric gated service systems
of N = 2,3, and 4 queues as follows:

N=2:
1+p+p8) (24p—208) [+® xp®
B = ( 3 (1P+ 13 ()1(+ ﬂzp— p;)) ) [7; * W}

(2+4p+6p% — 3p* —205) XD [§2  \p@

(L+p)*(1—-2p) (14 p2 — p%) [_+ 1—2pJ

(I+p+0%) (2+50+20 —4p%) r2 | (L+ p+p?) (24 3p + 8p% — 8p%) 62
2(1+p) (1 - 2p)% (1 + p2 — p?) 2(1+p)(1—2p) (1 + p% ~ p%)

(5 + 3p + 20?) /\7‘1;(2) (262)
(1+p)(1-2p)

N=3:
3 4 [r(“) AB(3) }

g — (et p?) (1+p=p° —3p")
(W¥] = — 3 3 4 1—-3,
(1=p) (14 p) (1+ p+ 4p% + 2p3 + 3p%) 1-3p
(9 + 20p + 54p% + 18p° — 8p* ~ 7505 — 6306 — 27p7) ABY [ 42 N A6(2)
2(1~2) (1+p)* (1= 3p) (14 p + 492 +2,o3+3p4) 3 1-3p
(14 p+ p%) (84 14p + 24p% + p® — 12p* — 2755) 12
3(1~p)(1+p) (21 = 3p)° (1 + p+ 492 + 203 + 3p%)
(L+p+6%) (2+2p + 129" — 5p° + 3p* — 18/°) 47
(L—p)(1+p)(1=3p) (14 p+ 4p% + 293 + 3p7)
3 (7 +4p + 3p*) Arbl2
(T4 4p 4 3°) Al (26b)
2(1+p)(1-3p)

EW?] = (4 +2p — 20% — 150% — 31p" + 75 + 1808 + 40,7) & e
3(1+p)(1—p+4p2—5p%) (1 — p+ pZ + 29%) 1—4p
(8 +4p + 419" — 850° — 9p" — 144p° + 660° + 1167 + 80,8) AL
(L+0)" (1 —4p) (1 —p+4p2 ~5p%) (1 — p+ p? — 20%)
) (2) 2 (2)
y [5_+ Ab J +2(9+5p+4p ))\rzb
4r  1—-4p (14 p) (1 — 4p)
(20 +10p + 700% — 75p° — 83p* — 19705 + 500° + 10407 + 160%) 2
4(1+p) (1= 4p)* (1 — p+4p2 = 5p%) (1 — p+ p? — 2¢°)
(12 — 2p 4 90p% — 1215° + 51p* — 3550° + 138p% — 167 + 320p%) 62 (96¢)
4(1+p)(1-4p) (A~ p+402 — 5p%) (1 — p + p? — 2p%)




5 Numerical Results, Comparison, and Heavy Traffic Limits

Let us compare the waiting times in various symmetric systems with the same total load
p = Np. To avoid the effects from the variability in switchover times, we assume that all the
switchover times are deterministic, thus r(?) = r2, #3) = 3 and §2 = 0. In such a case, we
have the mean and the second moment of the waiting time in a continuous polling system,
that is a limiting form obtained by making N — oo with 7 = NAb and 7 = Nr held at fixed
values [5]:

ﬁb(2) 7
EW + - 27a
W= s T qi-p) (272)
2
~1(3) 7°(3 = p) |b) ~=b(2) e

32— - M6 3@-2)1-77%  1—7%  31-pP

Note that a continuous polling system has no distinction of exhaustive and gated service
because the load at each queue is infinitesimally small. The second moment of the waiting
time in single queue systems (/N = 1) without the assumption of deterministic switchover
times are given by [14]

1 [23)  2\p3) A6 [ @)

. . . 2 . = L

exhaustive service : E[W?*] = 3 [ el e + =) | 7 T (28a)

1 [»@) G A2 [p(2) 22

. . e b LA
gated service : E[W?*] = 3[7' +1—p =7 | 7 +_1—p

+(1 +p+ p)Arb2  p(1 4 2p)r®@
(1-p)(1-p?) 1—p?
2P37‘2

+(1 —p)(1 - p?) (26h)

In Figures 1 through 4, we plot E[W] and E[W?| against 5 with fixed b (=1 ) and 7 (
= 1lor = 100 ) for different number N of queues. The service times are either deterministic
or exponentially distributed. To compare, let us use E (W™en, E[W™], N, and E[W™] to
denote the nth moment of the waiting time in an exhaustive service system of N queues, in
a gated service system of N queues, and in a continuous polling system, respectively. We
observe in the figures monotone ordering for both the mean and the second moment of the
waiting time:

EW™en < E[W™)e < E[W"e3 < E[W"|o4 < E[W"e (29)
< E[Wn]g,q = E[Wn]g,g < E[W"]g,g < E[Wnlg,l n=1,2
The ordering in the mean waiting times is obvious from (14), (25) and (27a). We note that
the second moments are fairly tightly bounded by those for the continuous polling systems
(N = o0) and those for single queue systems (N = 1) if the switchover times are small.
This suggests possible use the formula (27b), (28a) and (28b) for approximating E (W?]in a
system of N queues where 2 < N < oo.
While it seems difficult to obtain the second moments of the waiting time for general
values of N at present, we may conjecture the limiting forms in the heavy traffic condition
p — 1. In (16a—c) and (26a—c), we see that the most significant contributions in this limit



come from terms of order O(1/(1 — 7)?). From the coefficients of these terms, we induce the
heavy traffic limits

2 [NAb(Z)r N(N - Dart? (N - 1)r)?
3(1— Np)? (1=Np* " 3(1-Np)?

AN+ N+ 1) [NO]° v 4 N+ 1)ans®
3(N +1)%(1 — Np)? (N +1)(1— Np)?
(N2 + N +1)r2
3(1— Np)?

(30a)

exhaustive service : E[W?] =~

gated service : E[W?) =~

(30b)

-+

We note that these agree as N — oo with the heavy traffic limit in a continuous polling
system which can be obtained from (27b) as

2] ae 7
-2 T =7 T3 ap

continuous polling system : E[W?] ~ (30c)
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Legend for the figures
exhaustive service systems
N =1, 2,3, and 4 from below
gated service systems
N =1,2, 3, and 4 from top
————— : continuous polling systems
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Figure 1. Mean waiting times in exhaustive and gated service systems (service times are
deterministic).
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Figure 2. Mean waiting times in exhaustive and gated service systems (service times are
exponentially distributed).
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Figure 3. Second moments of the waiting time in exhaustive and gated service systems
(service times are deterministic).
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Figure 4. Second moments of the waiting time in exhaustive and gated service systems
(service times are exponentially distributed).
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