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Abstract: In the present paper, we discuss the measure of the point pairs whose
distance are less than a distance r at all floor points in a building. By differentiating
this measure with respect to », we get the function f(r) which is called by distance
distribution. Using this distance distribution we make a comparison between low and
high buildings with respect to travel distance under the condition that the total floor
area of a building is constant.

1. Introduction

In the present paper, regarding to space utilization we discuss the difference between low
and high buildings under the condition that the total floor area of a building is constant.
Between low and high buildings there are differences about structure, building site, unit price
of construction, and so on. But we analyze various buildings from a point of movement in
each building.

At first we define a function F(r) which is the measure of the point pairs whose distance
are less than a distance » at all floor points in a building. By differentiating this measure
with respect to r, we get the function f(r) which is called by “ distance distribution ”. This
function f(r) indicates as a density the amount of two points whose distance is r in a given
building.

Strictly we have to discuss the measure F(r) and distance distribution f(r) in four di-
mensional space, but we can not draw and recognize some figures in four dimensional space.
Therefore we begin the discussion about “ distance distribution ” in two dimensional space in
which we can easily illustrate the figures concerning this distance distribution.
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Fig.1 Two points in one dimensional space



Let us consider a segment of length ¢ in which two points are distributed as shown in
Fig.1. The two points mean that one point is a origin and the other is a destination of one
trip which is a movement of a person or some goods.

When we consider the situation two points in one dimensional apace as shown in Fig.1, we
translate the situation to one point in two dimensional space. Consider that z; and z, denote
the distances from the origin O in Fig.1, we can illustrate the situation with one point (z;, z5)
in two dimensional space as shown in Fig.2.

Now we define that the measure F(r) by

F(r)= //Im—mkr dz;dzo, (1)

namely the measure of two points whose distance is less than a distance r, when the points
T, £ are uniformly distributed in the region 0 < z; < ¢ and 0 < z < a shown as Fig.2.
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Fig.2  One point in two dimensional space

We can easily calculate integration (1) to get the area of the hexagonal region E drawn by
thick line in Fig.2. Therefore '

F(ry=d*—(a—r) (2)

is obtained. Differentiating F(r) with respect to r, we obtain the function f(r) which we call
“ distance distribution ”. This is because f(r)Ar is almost equal to the measure of the point
pairs whose distance is just r. In this case, differentiating equation (2) with respect to r, we
get the distance distribution

f)=2e-r) (3

Consequently using distance distribution (3), the mean value of the distance 7 is obtained as
follows:

F=T——'=—G. (4)



Distance distribution (3} in one dimensional space is expressed simply in linear form of the
distance r, but distance distributions in two dimensional space are complicated as discussed
later.

By the way when we get the distance distribution, we assume that the points z; and z,
are uniformly distributed on the segment of distance a. In real world, origins and destinations
of movements are not distributed uniformly. Thus the assumption of uniform distribution is
often condemned to be too simple. However main subject of the present paper is to discuss not
the real activity but the property of physical spaces in which various activities are distributed.
- Based on the distance between two points distributed uniformly, the distance distribution can
show the characteristics of physical spaces composed of many floors( planes ).

For example, given a region for planning, we will begin to measure the area of the region.
The planned people or the number of facilities of this region does not necessarily depend on
the area, because we can vary the density of the people or the facilities in this region. But it
is unquestionable that the area is the most fundamental measure of this region. And the area
is the measure of the set of points distributed uniformly in this region. In the same sense, we
discuss the distance distribution based on uniformity. We do not try some simulations which
express real world activities.

The integral from 0 to a of f(z), namely F(a) of equation (2) is equal to a® which shows
the total measure of point pairs. We do not normalize the distance distribution in such a way
that the total measure of point pairs is equal to 1 just like probability density function. This
is because we can easily add or subtract distance distributions- when we add or subtract the
spaces in which z,, 2, origins and destinations are distributed. Hence, the mean distance 7 is
given by equation (4}.

2. Distance distribution in two dimensional space
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Fig.3  Rectilinear distance in a rectangle

In a building, if it is a office building or a department store, we move from a point to
another point by grid system shown as Fig.1 rather than by straight line. The distance by
grid system is called rectilinear distance. Let us consider a rectangle which have a long edge of
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length a and a short edge of length b, and = axis along the long edge and y axis along the short
edge as shown in Fig.3. Then arbitrary two points which mean a origin and a destination are
expressed by Cartesian coordinates as (z1,y:) and (z2,y2). In this case the measure of point
pairs whose rectilinear distance [z, — 22| + |41 — vz is less than a distance r is

P(r) = ] f f f|z1-m=|+;y1—y=:<r dzdy:dzdys. (5)

This formulation is an extension of the two dimensional case as Fig. 2 into four dimensional
space. The above measure F(r) means the volume of the region which satisfies the inequalities
0<2:1<¢0<y; <b,0<2,<a,0<y; <band [2;— 29|+ |y1 —¥2] < r in four dimensional
space. Those inequalities are hyperplanes, so that the region of measure F(r) is surrounded by
these hyperplanes in four dimensional space and is the extension of the hexagonal space in two
dimensional space illustrated by the thick line in Fig.2. But we can not recognize accurately
the region of four dimensional space. For this reason, using equation (3) we can reduce the
integral dimensionality from 4 to 2.

From equation (3), the measure of the point pair (2, z2) whose distance |z; — 25| = X is
2(a — X)AX and in the same manner the measure of the point pair (v;,y;) whose distance
lya — y2l =Y is 2(b — Y)AY. Accordingly integral (5) can be transformed to

P(r) = f fX 1y, 2a=X) 20 - Y)dxdY (6)

where the domain of definitionis0 < X < aand 0 <Y < b.
Figure 4 illustrates that the region of integral (6) varies with respect to the distance r. If
0 < 7 < b, the region is expressed by the shaded domain, then integral (6) is obtained by

r p=X+4r .
)= [ [T 4a = X)6 - V)d¥ax = ot = 2t 5 4 2002

Consequently differentiating this #'(r) with respect to r, we get the distance distribution

flr) = %rs — 2(a + b)r® + 4abr, (7}
where 0 < 7 < b. In the same manner, paying attention to the domain of integral as shown
in Fig.4, we can calculate the measure F(r) and the distance distribution f(r) relating to the
range of the distance r.

But our main concern is on the distance distribution f(r) rather than the measure F(r).
Here we discuss a method of direct calculation for the function f(r). In Fig.5 the shaded strip
is apparently the difference of the measure F(r + Ar) — F(r). Substituting ¥ — r into =X
from X +Y =r, therefore we get

F(r+ Ar) = F(r) = Ar fo Aa+Y —r)(b—Y)dY.
Dividing the both side of the above formula by Ar, we get the equation
flr) = fo 4a+Y —r)(b—Y)dY, (8)
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when Ar — 0. Calculating the above integral, the result is coincide to equation (7). In

Fig.4  The region of integral (6) Fig.5 Differential of the measure F(r)

the same manner as this, keeping the integral domain in mind as shown Fig.4, we obtain the
integrals:

when b<r<a flr) = £b4(a+ Y —r)(b—-Y)dY,
when a<r<a+b f(:r')mfb 4d(a+Y —r)(b-Y)dY.

We can calcilated easily the above integratl; and get the rectilinear distance distribution in

the rectangle of edges @ and b (a > b) as follows:

if 0<r<b f(r) =—§-r3 — 2(a + b)r? + 4abr,
if b<r<a f(r) = =202 + 2ab% + %bs,
2
if a<r<a+b f(r)=§{(a+b)—r}3 (9)

The function f(r) is smooth (¢! class) at 7 = b and r = @ and is illustrated in Fig.10 later.

3. Distance distribution between different floors

In the previous chapter we discussed the rectilinear distance distribution within a plane (
floor ). In this chapter we focus our discussion on the distance distribution between different
planes ( floors ). .

Let us consider two rectangles which mean one floor and another floor in one building and
the rectangles have the same form which has a long edge of length a and a short edge of length
b. Suppose that the vertical distance between these two floors ( rectangles ) is A shown as (1)
of Fig.6. From now on, we transfer the vertical distance h to ah, because the velocity of a
vertical movement is usually different from that of a horizontal movement. Taking time into
account, the coefficient o changes the vertical distance to the horizontal distance.
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We can derive the distance distribution between the different floors wherever the point of
vertical movement is in the rectangle ( floor ). For the simplicity, we assume that the vertical
movement is possible only at the center of the rectangle ( floor } shown as (1) of Fig. 6.

When we calculate the distance distribution, without loss of generality, we can put A = 0.
Because after the derivation of the distance distribution under the condition A = 0, we can
get the distance distribution in the case of vertical distance h, substituting r — ah into r of
the function f(r) which is the distance distribution.

v
/

1 af2 /
/ a. b </_ /b/O a/2 >$2

n

(1) (2)

Fig.6  Distance between different floors

Because the point of vertical movement is the center, we can put a point ( origin or
destination ) to the symmetrical point in a rectangle of long edge length a/2 and short edge
length b/2, namely the quarter of the original rectangle { floor ) with regard to calculating the
distance distribution between different floor as shown in (2) of Fig.6. Thus in this case the
distance r is equal to 1 + y1 + 22 + y2, where 0 < z; < a/2,0 < y; < b/2,0 < 23 < a/2,0 <
U2 < b / 2.

For the simplicity we divided the distance r into X = 21 + 25 and ¥ = y; + y2 so as to
calculate the distribution of distance X and Y. In order to obtain the distance distribution
of X, we use almost the same method as the derivation of equation (3). The measure of point
pairs z,, T, whose sum z; + z, is less than X is

0= ], e

where 0 < 27 < /2 and 0 < z; < a/2. Paying attention to the region of the above integral
in Fig.7, we get if 0 < X < a/2, F(X) = X?/2andifa/2 < X < qa FX) =
X?2/2 — (X — a/2)?. Hence differentiating F(X) with respect to X, we obtain the distance
distribution of X as follows:

if 0< X <a/2 f(X)=X, :

if af2<X<a f(X)=a—-X. (10.1)



In the same way for the distance distribution of ¥, we get

if 0<Y <b/2 f(Y) =Y,
if 8/2<Y <b fY)y=b6-Y. (10.2)
)
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Fig.7  Region of integral F(X)

The measure of the point pairs (X,Y) satisfying the condition X +Y < r is

Fry = [[, fO0f(v)axey,

where two dimensional function f(X)f(Y) can be shown as Fig.8 from (10.1) and (10.2). As
discussed at Fig.5, we need f(r) the differential of F(r). For this reason, we adopt the direct
method discussed at the deviation of equation (8).

At first, if 0 < r < 8/2, two dimensional function f(X)f(Y) = XY and substituting r—Y
into X because X +Y =7, f(X)f(Y) = (r—=Y)Y. Therefore for the distribution of r we
get

]_ T
=)= [ -V)Y,

where 1/16 means that we discussed the distance distribution in the quarter region of the
original rectangle, as a result we have to multiply by 42 the measure obtained in the region of
Fig.8 and Fig.9. Calculating above integral, if 0 < r < b/2 we get

8 ..
fr) =37 (11.1)
Next, if 8/2 < r < a/2, the region of the integral contains two domains in which the

function f(X)f(Y) is equal to XY or X (b —Y). Thus we obtain

11-6_ ‘o) - fom (r— Y)YdY + b;z(r ~Y)(b—Y)dY,



and calculating the above integral, we get

F(r) = =37 o 8br% — 487 & %bf*. (11.2)
Y
Xt-v) |(@=X)b-Y)
b2
XY (a - X)Y
0 a./Z _ a X

Fig.8 Two dimensional function f(X)f(Y)
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Fig.9 Region of the integrals

In the same manner we obtain the distance distribution in each range of r. The results and
their basic integrals are enumerated below.

H af2<r<bh
-1% fo)= Y b a— vy + / i/:/z(r ~Y)Yay + | ;2(7« —Y)(b - Y)dY,
Flr) = —8r® + 8(a + b)r? — 4(a® + b%)r + %(a*" +b%). (11.3)
H b<r<(ath)/2
=f) = TP ra-nyay 4 [ 12,2(1' Y)Yy + ;(r _Y)(b- Y)Y,
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and calculating the above integral, we get

f(r) = —grs + 8br? — 4b%r %bs_ (11.2)
Y
Xb-Y) |(e=X)(b-Y)
b/2
XY (@ - X)Y
0 o/2 a X

Fig.8 Two dimensional function f{(X)f(Y)

ol ™ppare/2 b atb @ X

Fig.9 Region of the integrals

In the same manner we obtain the distance distribution in each range of r. The results and
their basic integrals are enumerated below.
If af2<r<b

1 r—af2 b2 T
—F(r) = fo (Y +a~r)YdY + / YAy jb = Y)-Y)a,

£) = =8 + 8(a-+ b = 4(a + B)r + (e + ). (11.3)
I b<r<(atd)/2

b/2

510 = [ ra-nyar+ [7 ovyar+ [ - v)e-vay,

-af2
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Flr) = =3 + 8ar — 4(a® ~ P)r + 2a® — 28" (11.4)

If (a+b)/2<r<a

r—af2

1

= (y+a—r)(b-Y)dY+/;/2(r—1f)(b—1f)dy,

b2

Lty = ];’2(1/ ta—r)YdYy +

6 2 10 '
flr) = %ﬁ — 8(a + 20)r® + 4(a® + 4ab + 3b%)r — (§a3 + 4ab + 4ab® + ?53) . (11.5)

If a<r<af2+b

r—af2

—f / Y +a- r)YdY + (Y +a—r)(b-Y)dY + f:alz(r —Y)(b-Y)dY,

f(r) =8r° — 16(a+ b)r? + 4(3a® + 4ab + 36%)r — (13—00:3 + 4a®b + 4ab® + %be‘) . (11.6)

If a/24+b<r<a+bd/2

iﬁf(ﬂ:fr c(Y-}-a—r)YdY-i—/ (Y +a—r)(b-Y)dy,

flr) = § — 8ar? + (8a® — 4b%)r gas + 4ab® 4 26°. (11.7)
U a+d/2<r<a+bd

0= [ (¥ +a=-r)E-V)Y,

fir) = %{(a +b) — 1. (11.8)

We call the eight equations from (11.1) to (11.8) together by equation (11). This function
(11) is smooth ( ¢® class ) at each point of r = b/2,a/2,b, (¢ + b)/2,a,a/2 + b,a + b/2. And
from Fig.8 and Fig.9 it is obvious that the function is symmetrical with respect to the line
of r = (a + b)/2. Function (11) is derived under the condition that b < a < 2b. If ¢/2 > b,
the region of the integral is different from the region shown as Fig.9. For this reason the
distance distribution is different from function (11). In the same way as the derivation of (11),
if a/2 > b we can obtain the distance distribution. But we omit this function for want of
space.

4. Distance distribution in a building

Using equations (9) and (11), we can derive the distance distribution in a building of any
number of stories when a floor of the building is the same form of rectangle. Now we calculate
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the distance distribution about a simple case. From now on suppose that the total floor area
100 x 100m? and the form of a floor is square.

At first we consider a building of one story. In this case we substitute ¢ = 100m and
b = 100m into equation (9) to calculate the distance distribution illustrated as #1 of Fig.10.

Next, we consider a building of two stories. Within one floor ( the first floor and the second
floor ), substituting a = 100/v/2m and b = 100/v/2m into equation (9), we get the distance
distribution. From the first floor to the second floor and from the second floor to the first
floor, we can obtain the distance distribution from equation (11), where A = 4.0m and ¢ = 5
because the velocity of horizontal movement ( on foot } is 5 times as the velocity of vertical
movement ( stairs on foot or escalator ). Consequently we add the distance distributions in
the first floor and in the second floor, and the distance distributions between the first floor
and second floor ( from the first to the second and from the second to the first ) to compute
the distance distribution in the two story building shown as #2 of Fig.10.

In the same way, we can compute the distance distribution in a n-story building. But it
needs too large space to list the distance distribution function of n-story building. For this
reason, we compute the distance distributions from one story to six stories to illustrate in
Fig.10, under the condition that the total floor area is 100 x 100m?and form of a floor is
square.

c 3 1: one story  100mx100m
f(r0°m] 2: two stories  7lmx 71lm
- 3 : three stories 58mx 58m
1 4 : four stories 50mx 50m
1. 0— 5: five storles  45mx 45m
6 : six stories 4lmx 41m
0. 5J
6
Hit
Al I HiT i | i I |
0 7 100 200 r[m)]

Fig.10  Distance distributions from one story building to six story building

From Fig.10, in the range of small » (0 < r < 20m) there are almost no difference in the
six buildings from one story to six stories. As the increase of r, the distance distribution of
low buildings are larger than that of high buildings. At the range of a little larger than the
mean values of the distance r there are the peaks of the distance distribution of three and
four story buildings. Finally in the range of large » (around 150m) the distance distributions
of one story and six story buildings are larger than that of the others.

We denote that 7, is the mean value of the distance r in a n-story building whose floor is
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rectangle of edge a and & (@ > b ). From equation (4) in the case of one story building, we
obtain

1
= E(a + b)

For distance distribution (11), from r = z; + z3 + y1 + y2 we can easily calculate the mean
value of r = z1 + 23 + ¥1 + 32 to get 7 the mean value of r by

F=ath)

Taking into account that the combination number of & flights up and downis2{n—% )ina
n-story building, the mean value of distance is

3n—1

-1 1 |
o = (at+oys ZDHY (12)
3n
where one floor is rectangle of edge a and 6 (@ > b ).
Let us consider that the total floor area is constant and the floor in a n;-story building is
similar to that in a ny-story building. Suppose that the floor rectangle has long edge of length

a, and short edge of length b,. From the constant area condition, we get

a1by = nayby,

and from the similarity, we obtain

0 = 2L, b_.b_l
RV R " Jn

From the above equations and equation {12), the mean value of distance r in a n-story building
is

__— 3n—1(a1+bl)+(n—1)(n+1)a

6n/n n

h, (13)

under the condition that the total floor area is equal to a1b; ( constant ). Computing equation
(13) , strictly the mean value 7, increases slightly with n, but the values are almost the same
from the one story building to the six story building in Fig.10.

5. Distance in horizontal space

In the previous chapter, from the one story building to the six story building there are
almost no difference in the mean value of the distances. But when the number of stories n
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is larger than 6, the mean value 7, increases with n and we must use elevators for vertical
movement. If we use elevators, the distance distribution is different from equation (11) which
is derived in the situation that the vertical movement is done by escalator or by stairs on foot.

As mentioned previously for the mean distance there are almost no differences from one
story to six stories. But there are remarkable differences in the distance of horizontal move-
ment. The first term of the right hand side of equation (13) shows the mean distance of
horizontal movements and the second term is related to the vertical movements. Let denote
that R, is the ratio of mean distance about horizontal movements in n-story building to that
in one story building. From equation (13}, we get

3n—

W}:(Gl + by) _ 3n — 1‘
%(al -+ bl) 2?’1\/5

Substituting n = 6 into equation (14), we compute R, = 0.58 which means that the mean
distance of horizontal movement in a six story building is 58% of that in a one story building.
If the number of stories n is large, from (14) we get approximately

Rn = (14)

R, ~ 3/(2/7), (15)

which shows that the ratio R, is proportional to 1/+/n.

6. Conclusion

If buildings are department stores, the probability of an expected shopping will be pro-
portional to the mean distance of horizontal movements. Formulae (14) and (15) suggest us
that the probability decreases with increase of the number of stories n. For example, in a six
story department store the probability is 58 percent of the probability in one story department
store. Generally in a city man meets many people the number of which will be proportional
to the mean distance of horizontal movements. In a high building the number of stories n is
large, and the ratio of the mean distance to that in one story is expressed by equation (15).
Thus the high buildings lose the function of urbanized area in which man has the possibility
to meet many people accidentally.

From the point of the distance distribution, we express the differences between high and
low buildings under the condition that the total floor area is constant. In the present paper
we consider only escalator and stairs on foot as vertical movement. If the number of stories
is large, we have to use elevators in buildings. But in the case of using elevators we must
consider waiting times and delays caused by congestions which are difficult to solve as simply
as derivation (11). o '

Therefore these are problems which must be solved in the future.
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