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Abstract

We propose an efficient algorithm for solving strictly convex quadratic programs
with box constraints (i.e., lower and upper bounds on each variable). Our algorithm
is based on the active set and the Newton method. We repeatedly compute relevant
inverse matrices efficiently and, starting from an initial feasible point, we find an

optimal solution of the problem in finitely many steps.

Key words: Quadratic programming, algorithm, active set method, Newton method,

box constraints.

1. Introduction

We consider a strictly convex (i.e., positive definite) quadratic programming problem

subject to box constraints:

(QP) Minimize - f(z)= %xTA:c +b'z
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subject to ¢ <z <d. (1.1)

where A = [a;;] is an n X n symmetric positive definite matrix, and b, c and d are
n-vectors. Let g(z) be the gradient, Az +b, of f(z) at z. Without loss of generality
we assume ¢; < d; for each ¢ with 1 < < n. _

Applications of the above-mentioned Problem (QP) w1th box constraints include
large linear least squares problem with bounded variables;linear complementarity
problems, and dual problems arising in a sequential quadratic programming algo-
rithm. This last application [4] motivated the present work. Other applications can
be found in [5].

Yang and Tolle [2] presented conjugate gradient-type algorithms for (QP). Our
algriothm is based on the idea of the active set method and we keep the active (and
nonactive) set and compute related matrices efficiently.

In Section 2 we give some definitions and notations to be used later and describe
the optimality condition for (QP), based on which an algorithm will be constructed.
We propose an algorithm for solving (QP) in Section 3. The proof of the validity
of the proposed algorithm is provided in Section 4. Repeated updating of inverse
matrices is required in the algorithm. We give an efficient procedure o_f‘ updating
relevant matrices in Section 3.

2. Definitions and the Optimality Condition

We denote by K the set {1,2,---,n} of the subscript indices of the variable z ap- '
pearing in (1.1).

Definition: Denote by =) the current solution obtained at the Ith iteration in
the algorithm to be given in Section 3. For the current z) with ¢ < z < d
(1=0,1,--) we define the nonactive set

NAD = {ije; <2’ < d; 1 < i< m} (2.1)

and n; = VAW,

For the nonactive set AW, also define the n X n; matrix
P = [pij]nxm (22)
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with the row index set K and the column index set NA® such that p; = 1 if
i € NAY and pij = 0 otherwise. Two related matrices are defined as follows:

H = PITAP;, B = H(_l. (2.3)

Note that the row and column index sets of H; and B, are both N, AW
.- The Karush-Kuhn-Tucker optimality-condition for (QP}-is given as follows.

Theorem 2.1: A feasible point x* is an optimal solution of Problem (QP) if and
only if for7=1,2,---,n

gi(z") = 0, when 2} =y¢;, | (2.4)
gi(z”) £ 0, when 7} =d;, (2.5)
gi{z*) = 0, when ¢; <z} <d;. (2.6)

ad

We derive an algorithm for solving (QP), based on Theorem 2.1.

3. An Algorithm

We give an algorithm for solving Problem (QP} as follows.

Step 1: Choose an initial feasible point 2© with ¢; < 3:50) < d; (i € K) such that
for some ig € K we have ¢;, < .'L'SS) < di,. Compute N A Py Hy, ng, By, and set
[=0.

Step 2: Compute

O = Az +p, (3.1)

70 = PT40, (3.2)
s¥ = —B,;", (3.3)
()] M
C: — ) d. —_—T
ol = min{l, min -—JT;U, min J—m——’—}, (3.4)
jenam, feo 537 jeNAD, S50 s
0D = 20 4 OO, (3.5)



. (Here, note that the index set of vector s) should be regarded as AV, AD )
Step 3: If o) < 1 and n; > 1, choose some v € N AW such that

or

set

¢, — 2
o =& 7 g Sg) <0, : (3.6)
Sy
d,— o
o0 =T 5 0y, (3.7)
8
NA(H-I) — NA(I) \ {rr}, Npey =N — 1, (38)
H0+) = gD (3.9)

and go to Step 5; otherwise go to Step 4.

Step 4: Compute

gt = Az 4o, . (3.10)
& = {i] 3%V = ¢, " < 0}, (3.11)
Op = {i| 5D =g, gD > 01, (3.12)
@ = P U Bpa. (3.13)

If & = @, STOP and the current % is an optimal solution; otherwise compute

for each ¢ € @

¥ = arg max{

VPR
' (di — Ci)aii’
(g2
ﬁ.——- withi € &, and — A < 1;
1 :
—§(d5 - c,-)za,-i d g,UH)(d,- - Ci) with ¢ e ‘11)[1 and ad )\,' Z 1;
e
(5: a__) withi € &, andX; < I;

1
~5(di - &)as + 6 "(di - &) withi € B, and ) > 1}
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There are four cases (a)~(d) with respect to ¥ as follows:

(a) If ¥ € &1 and —A5 < 1, set

L0+ =

NAED = N AD U {7},
my1 =+ 1,

and go to Step 6.

(b) If ¥ € ®;; and —A5 > 1, set

~(I+1 . —
Lo B i#
FH) —

and go to the beginning of Step 4.

(¢) If ¥ € &1z and A5 < 1, set

SU(H-]') =
I+1 .-
di—gi ' )/_ai:', =7,
NAWD = N AD U {7},
N1 =Ny + 1,

and go to Step 6.
(d) If ¥ € &, Aq > 1, set

~(141) . _
I s 1 ‘-I'é 7

FUELD) —
Ci, i = )

and go to the beginning of Step 4.

(3.14)

(3.15)
(3.16)

(3.17)

(3.18)

(3.19)
(3.20)

(3.21)

Step 5: Form Py, by deleting column v from P, B; by deleting row -y and column
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v from B; and a vector h by deleting component -y from column + of B;. Compute

Hi = PL APy,

t = [Bilyy,
By = B - hhT/t, (3.22)

set [ =1+ 1, and go to Step 2.
Step 6: Compute P,y and H;,; corresponding to N AU Form a vector h by
deleting component ¥ from column ¥ in Hiq, set ¢ = [Hi11]55, compute

1
*TI=RTBR
h = —aB;h,
B+ FL?LT/CI Fb
Bua=| , (3.23)
hT o
set [ =1+ 1, and go to Step 2.
4. Validity of the Algorithm
We show the following.
Lemma 4.1: Foralll >0, 0 < o <1,
(Proof) For all j € NAD we have ¢; < mg-l) < d; by definition. Hence,
0
min i >0 (4.1)
jeN A, P05}
and o
d. — z\
mn 20 >0, (4.2)
jenA®, sP>0 sy
O
Lemma 4.2: In Step 4 we have
FEH) < f@EHD) or f(ELD) < £(EHD), (4.3)



where FD is the new point obtained from F+1) in Cases (b) and (d) in Step 4.
(Proof) We only consider Cases (a) and (b) here; Cases (c) and (d) can be proved
in the same way.

In Case (a), since gf—,“’l) < 0, we have

_g(_1+1)
0< =As = —L— < 1, 4.4
T {dy — exdags (4.4)
that is,
gD
Cy < Cy — 7 < d‘_l‘" (45)
Gy

Therefore,

Cy < .'BE—:-[-I) < dﬁf. (46)

We thus have

FEGDY Z f(gtD) = %(5;(1+1))TA5:(1+1) 4 pTED %(x(m))TAxaH) BT D)
_ %(j(m) _ YT AGGHRD g g 04D) g T (504 _ 0D
_ __%(_%(l-l-l) — 2T (504D _ 5040

+(Aff:(l+1) + b)T(i(H'l) - m(H-l))

_ L@ @y
ST
= %(—laﬂ—) > 0. (4.7)
In Case (b), we also have
FEED) - fEAD) = (B - D) A - 202))
+HAFHD 4 5)T(EHD — 50EY)
= ’“%(d’r — ¢3)%a55 — g5V (ds — c3)
= ;12'(63& — &) ey — g4 (d5 — &) — (d5 — &) amy
= %(037 — ¢5)%a5y + (d5 — ¢5)* a5 (—Ay — 1)
> %(d.—f — ¢3)%as5 > 0. (4.8)



Theorem 4.3: The proposed algorithm strictly decreases the value of the objective
function in each iteration.
(Proof) Since we have in Step 2

FHD = 20 4 o0 p O
= 20— oOPBF", (4.9)

we have
F®) = FEO) = %(a;(’))T Az L pT20 _ _;_(:E(IH))T AFIHD) _ pT 041
_ %(m“))TAm(‘) T (a0 — gD
_%(zu) — oOPBFNT A — oD P,B")

= a0 ARBGO - 5(a0) (PBG") A(PBI®)
+a(')bTP; B@(l)
= a®(4s +8) BB — (@) (50) B

1 2 T —
_ Cu(l)[.PIT(A-T(l) +b)]TBl§(l) _ E(Q(D) (g(l)) Blg(l)

T 1 2 T
_ a(')(ﬁ(”) Blg(l)_'z"(a(l)) (") B;g"

Il

a®[1 — %a(r)](g(z)f Bg®.

We consider the following two cases : -
Case 1: g¥) = 0. We have s¢) = 0 and hence 3+1 = 2. Since o{¥ = 1, we obtain
a new zU*tD in Step 4 where we go when @; # 0. From Lemma 4.2, we have

a4y < £(3H) = f(2O). (4.10)
Case 2: ) # 0. We have
£(z0) = F(E9) = aOf1 — 2005 Bg, (411)

0 < o <1 from Lemma 4.1 and B; is a positive definite matrix. Hence, we have
Fz®) — F(&0HDY > 0, that is, ‘

FED) < £(0). (119)

8



If a® < 1 and oy > 1, then zU+D = 41D and we have
Fa09) = (E) < f(0). (413
If o =1 or n; = 1, we have from Lemma 4.2

F) < £(38Y) < f(D). (4.14)

Lemma 4.4: For two iteration numbers I, and Iy (I} < lp) with al) =1 or
ny, =1, and ol2) = 1 or ny, = 1, respectively, if we have

NAW = p AW (4.15)
then there exists at least one jo € K \ NAM such that
| a5, £ 25,02, (4.16)
(Proof) If we have z;() = z;( for all j € K \ NAW(= K\ NA®), then
78— p P, T2 =z _ p P, Txl2), (4.17)

since N AU = N A" and n;, = ny,. We consider the following two cases:
Case 1: o) = o) = 1. Since NAM = NA®), we have

P, =Py, Hy, = H,,, B, = B,. (418)
In Step 2,

g+ = g 4 o) p )
= W4 p, [—leﬁ(!l)]
= 20~ P By [H, P, T2 + P, b+ P, TA(I — P, P, " )=™)]
= 2 — PP, Ta® ~ P,TBy P,Tb ~ P, B, P, Als™) — PP, 2]
= [I-P,B,B, Az - B, P, Tz - P, B, P, 0. (4.19)

In the same way, we have
gl = [I - Bzsz'PlzTA][x(lz) - PlzPlsz(lz)] - PlszPlsz' (4'20)
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. From (4.17)~(4.20), we have
Flitl) = glatl), (4.21)

Case 2: ny, = my, = 1, o) < 1 or &) < 1. In this case, there is only one element
in NAYW and A A"Y) respectively. Suppose that NAM = N A" = {k} for some
kwith1 < k < n. From (417), 2 = 2 (i # k, 1 < i < n) and from the

. definition of P, we have
.Pll=.P(2=(0,"',0,1,0,"',0)T, (422)

where the kth component is one. Then H;, = Hy, = [ax], By, = Bi, = [a;] and we
also have 5:551*1) = "Ejz“’. In fact,

sh) = —-By, g(fi)
= —B,[H,P,Tz" + P, "o+ P, TA(I — P, P, ")a™)]
= 2 —aplh, — aptfama™ + - 4 Gz 4 Gzi + oo+ aea(D]
n
= -z ol —agt 3wt (4.23)
i=1,i#k
Since off) < 1, we have
(1)
(h) Gk — Tk
57 <0 and ey <1 (4.24)
or .
dp — z},"
() Sk Tk
>0 and Ht- <l (4.25)
When s < 0 and (¢ — z47)/s0) < 1, ie.,
2 — ¢ < —s), (4.26)

we have from (4.23)

n
s — ¢ < a:g‘) + a,:klbk + a,;kl Z ak,-x?‘),

1=1,i¢k
n
~cx < agebe +ag D 0. (4.27)
i=1izk
In the same way, we have
’ k13
@) = ) _oilh —ait Y apal. (4.28)
i=1,ik
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Since 2 = z{®) (i £ k, 1 < i < n), we have from (4.27)

n
gli) — -—xgz) — agklbk - ai:kl Z ak,-:c,(-ll) <cp— Igz) < 0, (429)
i=Ligk
(I2)
Cr — Ty )
2 <L (4.30)
- ‘Hence, 5,(:2""1) = :'f:gl"'l) = Cp.
When s > 0 and (dy ~— z{)/s®) < 1, we can also prove that
gt = g0 — g (4.31)

Therefore, for Case 2 we also have
Flhtt) = gllFD), (4.32)

Since I; < I, this is a contradiction to Theorem 4.3. ‘ O

Theorem 4.5: The proposed algorithm solves Problem (QP) in finitely many steps.
(Proof) Since the number of possible nonactive sets (and active sets) is finite, the
finiteness of the proposed algorithm follows from Lemma 4.4. O

5. Computing Relevant Matrices

In the algorithm proposed in Section 3 the nonactive set A AW is repeatedly changed
by adding or removing a nonactive or active constraint and the relevant matrices
are updated accordingly. In this section we describe an efficient way of updating
relevant matrices. Before we get into the detail, we first describe how to initiate the
data for the a.lgorithm. We choose an initial point given as follows: Choose an index
ip € K and t with ¢;, <t < d;, and put
oo{, b, iz
¢ or di, t#ip. .

Then we can start the algorithm with very simple parameters:

NA® = [} (5.1)
PO =(01"':O:1,0}'”:0)T: (52)
Hy =P APy=laii}, Bo=Hy' = [1/ai} (5.3)

Notice that 1 appearing in Py is the ¢{yth component.
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5.1. Removing a nonactive constraint

In this case, [N AYP| = |NAYD| = 1, then the number of columns in P, is one less
than that in P_;. Without loss of generality we assume that P,y = [P, p1]. Then
H;_, and H; have the following relationship:

H BAp
H_|= .

pT AP plAp

Also, we have

Bl—l hy .
B = )

Rl

and
B = Ht_l = Bl—l - hlh-lr/tl.

5.2. Adding a nonactive constraint

In this case, [N AY| = N AYD| + 1, then the number of columns in P, is one more
than that in P_,. We also assume that P, = [P—1,p2]. Then,

Hi_y Pl Aps
H = (5.4)

ps APy p3Ap:

Letting
ho = Pl Apy, ta=ps Aps, o =1/(ts — hg Bi_1ha), h=—aBi_1hs, (5.5)

we have

B=H7'l= (5.6)

~

B{_1 + iIFLT/Of i?, ]
hT o

In this way we can efficiently compute H; .
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