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Abstract—Adomian’s decomposition method (ADM) is a nonnumerical method
which can be used for solving nonlinear ordinary differential equations. In this paper,
first the principle of the decomposition method is described, and its advantages as
well as drawbacks are discussed. Then an aftertreatment technique (AT) is proposed,
which yields the analytic approximate solution with fast convergence rate and high
accuracy by applying Padé approximation to the series solution derived from ADM.
Also, some concrete examples are studied to illustrate with numerical results how the
AT works efficiently. Finally, the general remarks conclude this study.
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1. Introduction

Mathematical modelling of many fronfier physical systems leads to nonlinear ordinary

differential equations, e.g. Duffing equation. An effective method is required to analyze
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the mathematical model which provides solutions conforming to physical reality, i.e. the
real world of physics. Therefore we must be able to solve nonlinear ordinary differential
equations, in space and time, which may be strongly nonlinear. Usual analytic procedures
linearize the system or assume nonlinearities are relatively insignificant. Such procedures
change the actual problem to make it tractable by the conventional methods. In short
the physical problem is transformed to a purely ma.themétical one for which the solu-
tion is readily available. This changes, sometimes seriously, the solution. Generally, the
numerical methods such as Runge Kutta method are based on the discretization tech-
niques, and they only permit us to calculate the approximated solutions for some values
of time and space variables, which cause us to overlook some important phenomena such
as chaos and bifurcations, because generally nonlinear dynamic systems exhibit some del-
icate structures in very small time amd space intervals. Also, the numerical methods
require computer-intensive calculations. The ability to solve nonlinear equations by an
analytic method is important because linearization changes the problem being analyzed
to a different problem, perturbation is only reasonable when nonlinear effects are very
small, and the nurherical methods need substantial amount of computation but only get
limited informations.

Since the beginning of the 80’s, G. Adomian [1-5] has presented and developed a so-
called decomposition method for solving linear or nonlinear problems such as ordinary
differential equations. Adomian’s decomposition method consists of splitting the given
equation into linear and nonlinear parts, inverting the highest order derivative operator
contained in the linear operator on both sides, identifying the initial and/or boundary
conditions and the terms involving the independent variable alone as initial approxi-
mation, decomposing the unknown function into & series whose components are to be
determined, decomposing the nonlinear function in terms of special polynomials called
Adomian’s polynomials, and finding the successive terms of the series solution by recur-
rent relation using Adomian’s polynomials. ADM is quantitative rather than qualitative,
analytic, requiring neither linearization nor perturbation, and continuous with no resort
to discretization and consequent computer-intensive calculations. Some applications [6,7)

of the method show its advantages.



Howéver, ADM has some drawbacks. By using ADM, we get a series solution, in
practice a truncated series solution. The series often coincides with the Taylor expansion
of the true solution at point = 0, in the initial value case. Although the series can
be rapidly convergent in a very small region, it has very slow convergence rate in the
wider region we concern, and the truncated series solution is a inaccurate solution in that
region, which will greatly restrict the application area of the method. Many examples
given in [8,9] can be used to support this assertion.

We have proposed an extension of ADM [9], which can improve the convergence rate
of the series solution. Because the series solution obtained from the generalized decom-
position method is still a Maclaurin series, the method also has the limited accuracy,
although it is superior to the ADM. The limitation of the methods available motivated
this work.

Venkatarangan and Rajalakshmi [10] presented an alternative technique, which mod-
ifies Adomian’s series solution and makes it periodic for nonlinear oscillatory systems.
They used Laplace transform and Padé approximant to deal with the truncated series.
Some examples show that their method yields a more convenient form of the solution
compare to the Adomian’s series solution for a class of nonlinear oscillatory problems.
But their method usually does not work for general ordinary differential equations, be-
cause getting the inverse Laplace transform of the complex Padé approximant is not easy,
and often fails. In this paper, we will explain why their method works.

Padé approximant [11,12} approximates a function by the ratio of two polynomials.
The coeflicients of the powers occuring in the polynomials are determined by the coeffi-
cients in the Taylor series expansion of the function. Generally the Padé approximant can
extend the convergence domain of the truncated Taylor series, and can improve greatly
the convergence rate of the truncated Maclaurin series.

In order to improve the accuracy of ADM, we propose a so-called aftertreatment tech-
nique (AT) to modify Adomian’s series solution for general ordinary differential equations
with initial conditions by using the Padé approximant. Generally ADM yields the Taylor
series of the true solution. By using the AT, we get the true solution in some cases.

Usually the AT can be used to get an analytic approximate solution which will greatly



improve the convergence rate and accuracy of Adomian’s series. For the oscillatory sys-
tems, we use Laplace transformation and Padé approximant, and explain in which cases
the AT leads to the true solution and why the technique works. "Also, eleven examples
are studied carefully, and the numerical results show that the AT enjoys the high preci-
sion and is superior to the original ADM and the generalizedldecomposition method [9].

Finally, the general remarks are given.

2. The Principle of ADM
Consider the equation
Fy(z) = g(z), (1)

where F represents a general nonlinear ordinary diferential operator involving both linear
and nonlinear parts, and g{z) is a given function. The linear terms in Fy are dgcomposed
into Ly + Ry, where L is an easily invertible operator, which is taken as the highest
order derivative generally for avoiding the difficult integrations when complicated Green’s
functions are involved, and R is the remainder of the linear operator. Thus the equation
(1) is written as

Ly+Ry+Ny=y, (2)

where Ny represents the nonlinear terms in 'y, Solving for Ly,
Ly=yg— Ry — Ny. (3)
Because L is invertible, operating with its inverse L™1 yields
L“lL;;; =g- L 'Ry— L 'Ny. (4)
An equivalent expression is
y=®+g— L 'Ry— LNy, : (5)

where ® is the integration constant and satisfles L® = 0. If this corresponds to an initial-

value problem, the operator L~ may be regarded as definite integrations from 0 to z. If



L is a second-order operator, L™! is a two-fold integration, and & = y(0) + ¢/ (0)z. Due
to Adomian [1,4], the solution y is represented as the infinite sum of series

o0

Y= yn, (6)

n=0
and the nonlinear term Ny, assumed to be an analytic function f(z), is decomposed as

follows -
Ny=f(z) =) An, (7)
n=0

where the A,’s are Adomian’s polynomials of yg,41,...,yn and are calculated by the

formula,
1d &
An = ;Jmf(g’\ yi)|A=01n=0:1>23“° (8)
Putting (6) and (7) into (5) gives
e 0] o0 =]
D=8+ g=LTRY yn — L' ) An. 9)
n=0 n=0 n=0

Each term of the series (6) is given by the recurrent relation

yo=P+y,
(10)
yn=—L 'Rys_1 — L7 Ap_y,n>1.
However, in practice all the terms of the series (6) cannot be determined, and the solution
will be approximated by a truncated series g} Yn-

By using ADM described above, we Obfg;i[ll series solutions for ordinary differential
equations. The method reduces significantly the massive computation which may arise
in the use of discretization methods for the solution of nonlinear problems. Neither
linearization nor perturbation is required. Although the series solutions converge rapidly
only in a small region, in the wide region we concern, they have very slow convergence
rates, and then their truncations yield inaccurate results. Some examples discussed in [8,9]
can be used to support this observation. Here we take the example of Duffing equation
given in [5].

Consider the Duffing equation

2

d
E:«;% + 3y — 2¢° = g(x) = cos z sin 2z (11)



with initial conditions

y(0) =0,4/(0) = 1. (12)

The analytic solution of this equation is
y*(z) = sinz.

o0

The Taylor expansion of g(z) at point zg = 0 is represented as g(z) = 3}, g,z". By the
n=0

same way as given in [5], we use an approximation of each term in g up to order z3, which

provides an approximation to y of order z®. In this case,

2

=] = —
COsS T 2 3
. 83
sin2z = 2z — '-'g‘-

The equation (11) is expressed as
Ly =g —3y+ 2%

o0 o0
Let y = 3 yn and ° = 3 A,, where the A,’s are Adomian’s polynomials for this
n=0 n=() .
nonlinearity, and identifying yo = y(0) + z3'(0) + L~1g, we find
$3
3 )
3.73
y1 = =307 yo + 207Ny = —=

Yo =73+

to order %, thus the two-term approximation to ¥ is given by

3
z
fa(e) = — 3.
Also, the three-term approximation to y is
3 5
z T
¢3(:c)—m—-§+§.

If an approximation of terms in g to higher order is adopted, then the higher-order-term
approximations to y can be obtained. The error function of the truncated series ¢3(z) for

the solution sinz is denoted by

Ea(z) = sinz — ¢a(e),



which is a strictly decreasing function for z > 0, and F3(0) = 0, E3(0.5) = —1.5447x 1076,
E;3(1) = -0.0001957, E3(1.5) = —0.003286, F3(2) = —0.02404, E3(2.5) = —0.1112,
F3(3) = —0.3839, E3(3.5) = —1.0818, F3(4) = —2.6235, E3(4.5) = —5.6674, E3(5) =
—11.1673. These results show that ¢3(z) converges rapidly when =z € [0,1.5]. In the
region (1.5,2.5], ¢3(z) yields reasonable solution. When = > 3.5, ¢3(z) leads to a wrong
solution. That means ¢3(z) converges in a small region but yields a wrong solution in a

wider region. All the truncated series solutions have the same problem.

3. The Aftertreatment Technique

If we expand the excitation term g in (1) into Taylor series at point g = 0, ADM leads to
the Maclaurin series solution, which is equal to a generalized Taylor series about function
yo(z) rather than a point, as claimed in [5,13]. Generally, the truncations of the series
solution are the partial sums of the Taylor expansion series of the true solution function

at point £y = 0. For the differential equation in the form

W s+, (13)
y(O) = Cp, (14)

where f is the nonlinear term, g is given, and ¢p is a constant, Abbaoui and Cherruault
[14] observed the following.

THEOREM. In the differential system (13)(14), we suppose that f(y) is infinitely differen-
tiable and that g is expandable in Taylor series in the neighborhood of zg = 0, the series

oo
solution Yy, of (13) (14) given by the recurrent scheme
n=0

Yo = €,
(15)

Ynt+1 = LI1A, + L_l(a'nmn)s On = QE%@")' n20
is the Taylor series of its ture solution at point zg = 0, where the A, ’s are calculated by
formula (8).

Adomian’s recurrent scheme for (13)(14) can be expressed as

yo=co+L7'g,
(16)
Yna1 = L7 AL, n>0.



The two schemes (15)(16) in general give different series, but they are identical if g = 0.
We will use the scheme (15) to serve our purpose.

A Padé approximant [11,12] is the ratio of two polynomials constructed from the
coefficients of the Taylor series expansion of a function. The [L/M] Padé approximant to

o0 .
a formal power series B(z) = ¥ bja? is given by
~

(L/M] = gf;(“j),

where Pr(z) is a polynomial of degree at most L and Qas(z) is a polynomial of degree
at most M. Without loss of generality, assume Qpr(0) = 1. Further, P; and Qs have
no common factors. This means that the formal power series B(z) equals the [L/M]
approximant through L 4+ M + 1 terms. In this case, by using the conclusion given in
Theorem 1.4.3 [12], we know that the Padé approximant [L/M] is uniquely determined.
Suppose f(z) is the ratio of two polynomials
z
flo) = % )
where p(z) = pg +p17 + - +prat, qlz) = 1 +qa + -+ auz, p(e) and g(z) have no
| common factors, and the truncated sum Z aiwt of the Taylor expansion f(z) = anl

i=0
is given. Let us denote

Fr(z) = Eaz ; ' (18)
1=()
then clearly

flz) = Zcziac —Ea,m + z a;x’

1"0 i=K+1

= Fr(z)+ Z a;z"
fe= K41

= Fy(z)+0@=™).
If we recall that f(z) = p(z)/q(z), this implies that

PE) _po(n SR

that is

Fg(z) = ==+ O(a"+). (19)

()
q(a)

8



YKE+1>L+M+1,ie K> L+ M, (19) is the definition that f(z) = p(z)/q(z) is a
Padé approximant of Fy(z). Because g(0) = 1 # 0, the Padé approximant is unique for
given L and M. So, (19) means that for a function equals to the ratio of two polynomials
such as (17), the Padé approximant of its truncated Taylor series Fy (), which is uniquely
determined for given L and M, gives the original function p(z)/q(z) = f(z) when K >
L+ M.

Suppose ADM yields a truncated Taylor series of the true solution with enough terms,
and the solution can be written as the ratio of two polynomials with no common factors.
Then the above argument shows the Padé approximant for the truncated series provides
the true solution.

Even when the solution cannot be expressed as the ratio of two polynomials, the Padé
approximant for the truncated series given by ADM yields a good approximation to the
true solution, which usually improves greatly the truncated series in the convergence rate
and the accuracy.

When ADM yields a truncated Maclaurin series, which cannot be eﬁ:pressed as the
partial sum of the Taylor series of the true solution, the Padé approximant can be used.
It yields an approximation to the true solution, which generally has faster convergence
rate and higher accuracy than the fruncated series has.

For the oscillatory systems of form .

d%y dy
d_.'l;é- + w2y = f(y, E;)v (20)

where w is a constant, and f is a linear or nonlinear function, their solutions usually can
be written as or can be approximated by the algebraic combination of sin z, cos z, *, poly-
nomials and other functions. Let T'(s) = £[f(z)] stands for the Laplace transformation

of function f(z), then we have

Llo" = —gn=0,1,2,...
n, or n!
JC[Q.?C ]=m,n=0,1,2,...
. o
Llsin(az)] = Tl
s
Llcos(az)] = pomE

9



Le* sin(fz)] = 4

o+ p
£le cos(fs)] = o=

where both o and 3 are constants. Thus Laplace transformation of algebraic combinations
of sinz, cosz, ¢* and polynomial functions can be written as the ratio of two polynomi-
als. Therefor, for many oscillatory systems such as Duffing equation, we apply Laplace
transformation to the truncated series obtained by ADM, then convert the transformed
series into a meromorphic function by forming its Padé approximant, and finally adopt
inverse Laplace transformation to get an analytic solution, which may be the true solution
or a better approximate solution than Adomian’s truncated series solution, owing to the
advantages of the Padé approximant described above. The obtained analytic solution
may be periodic, however Adomian’s truncated series does not exhibit periodicity. That
is why the modification of ADM given in [10] works. Surely, for some osillatory systems,
Adomian’s truncated series .is not the partial sum of the Taylor series of the true solution
at point zg = 0, and it is very difficult to calculate the inverse Laplace transformation
of the meromorphic function. In this case, generally part of Adomian’s truncated series
is the partial sum of the Taylor series of the true solution ( see Examples 6 and 10 of
Section 4 ), and the lower order Padé approximant is used to get the ture solution or an

approximate é,na.lytic solution which improves the accuracy of ADM.

4. Examples

Here we demonstrate how the AT works with eleven numerical examples. All the results
are calculated by using the symbolic calculus software Mathematica.

EXAMPLE 1. Consider the equation
— =y : (21)

with the initial condition

The analytic solution of this equation is

1
* = < .
v (x) 1~_.m,[)___:x:<1

10



oo
We solve this equation by ADM. Writing y = ¥ y,, and 3°

[e, =]
= ¥ A,{y*}, we express the
n=0 n=0
recurrent scheme of ADM as
Yo = 1:

(22)
Ynl = fff Apdz,n>0.

The A,’s are calculated by the formula (8), so the partial sum ¢, = i Ym can be
m=
determined by (22). Simple calculations lead to

bn =L+ 2+ 2%+ 427,020,

which is the partial sum of the Taylor series of the solution y*(z) at point zp = 0. We

use the Padé approximant to handle ¢,. By using Mathematica, we see that the [L/M]
Padé approximant of the series ¢, with .

3, nis even,
n—1 is odd
' nis o y

2, mniseven,
M=

2l nisodd,

leads to the true solution y*(xz) when n > 2.

EXAMPLE 2. Consider the equation

dz? (23)
with initial conditions
y(0) =0,4'(0) = 1.
The analytic solution of this equation is
y*(z) = sinz.

==
Writing ¥ = Y, ¥n, the recurrent scheme of ADM can be expressed as
n=0

(24)



where L1 stands for the two-fold definite integration from 0 to z. From (24), we get the
T
partial sum ¢, = X Ym
m=0
$3 $5 nel m21*1-%-1
= _—— — —.as -_— B >
which is the partial sum of the Taylor series of the solution y*(z) at point £g = 0. Because

(23) is an oscillatory system, here we apply Laplace transformation to ¢, which yields

1 1 1 1
E[qbn]:8—2“"3—4"]"3—6—'”4‘(“1)”32—7”3,7120.

For the sake of simplicity, let s = 1/t, then
Llpa] =12 =2+ — o 4 (=) 2 n > 0.

Its [n + 1/n + 1] Padé approximant with n > 1 yields

2

n+1/n+1]= T

Recalling ¢t = 1/s, we obtain [n+ 1/n + 1] in terms of s

1
1+ 52

[R+1l/n+1]=

By using the inverse Laplace transformation to [n+ 1/n 4+ 1], we obtain the true solution

y*(z).
EXAMPLE 3. Consider the equation
dy -
e e ¥ (25)
with the initial condition
y(0) =0.

The analytic solution of this equation is
¥y (z) =In(l+2z),z > -1
- o0 [o4]
Writing y = Y yn and e™¥ = 3 An{e ¥}, the recurrent scheme of ADM is
n=0 n=0

Yo =0,
(26)
Ynt1 = Jy Andz,n>0.

12



The A,’s are calculated by the formula (8), so the partial sum ¢, = Zn) Ym can be
=(
determined by (26) as "

¢0 =0,
(27)

bn=2= G+ % =k ()T 021,

which is the partial sum of the Taylor series of the solution y*(z) at point zg = 0. By

using Mathematica, we find the [5/5] Padé approximant of the truncated series ¢19

5/5] = —=F 22% + 47/362° + 11/362" + 137/7560z°
T 1+ 5/2a 4+ 20/922 + 5/623 + 5/422% + 1/25225

Let

Ei(z) =In(1 + z) — d10(z), Ba(z) = In(1 + =) — [5/5](z}, ¢ > —1,
which stands for the error functions deterrhined by ADM and the AT, respectively. The er-
ror curves obtained by ADM and the AT are shown in Figure 1 and Figure 2, respectively.
Also, Eo(200) = 1.01016, E5(500) = 1.76545, E5(1000) = 2.40094, F2(10000) = 4.64976.
From these results, we can see that the AT improves greatly Adomian’s truncated series

in the convergence rate and the accuracy.

Discussion. We hope to make use of the special structures of the Adomian's series.

From (27), we have
$n(z)=1-z+ 22— (1) e >l (28)

Then by using Mathematica, we see that the [L/M] Padé approximant of the series ¢/, (x)

with
2=l nisodd,
L=
% —1, niseven,
22l nis odd,
M=
%, nis even,
andn >3 is
1
L = .
L/ M) 14z

13



By solving a simple equation

dy 1
& = =
3(0) =0,

we obtain the true solution y*(z) of the original equation.
EXAMPLE 4. Consider the equation

d2 .
Ec%"'y:U (29)

with initial conditions

y(0) =1,4'(0) = 1.

The analytic solution of this equation is
y*(z) = €.
w 3 w a
Writing ¥y = 3 9, the recurrent scheme of ADM is
n=0

Yo = 1+ z, ’
(30)
Yntl = _L—lyn:n207

where L~! stands for the two-fold definite integration from 0 to z. From (30), we have
]
the partial sum ¢, = Y, ym

m=(

2 3 an 2n+41

X T T T

— - + r’nzo,

bn=ltatortg e T e T D

which is the partial sums of the Taylor series of the solution y*(z) at point zg = 0.
Because equation (23) is an oscillatory system, here we apply Laplace transformation to

¢n, which yields

1 1 1 1 1
L{gn] = 5

- 1
+;§+;§+?+"'+m+m)n20-

For simplicity, let s = 1/¢, then
Llgn] =t + 2+ 3+t 4o 20 2042 5 > 0, (31)

The [n+ 1/n + 1] Padé approximant of (31) with n > 2 yields

i
1 ] = ——.
[n+1/n+1] T3

14



Recalling ¢ = 1/s, we obtain [+ 1/n + 1] in terms of s:
n+1/n+1]= L
_ T s—1"
By using the inverse Laplace transformation to [n+1/n+ 1], we obtain the true solution
y*(@).
EXAMPLE 5. Consider the equation

P .
ﬁ-}-y:e"’ (32)

with the initial condition

y(0)=1.

The analytic solution of this equation is
s
y*(z) = coshz.

In order to get the Taylor series of the true solution, we apply Theorem. Writing y =

o0 o0
13 .
yy, and e* = £, we have the recurrent relation
n Tl
n=0 n=0

y0=l,
(33)

Ynt1 = fo [27/0) — ya)dz, n20,
1
and the partial sum ¢, = ¥ yn is given by (33)
m=0

2 4 2n
T T T
s+ = n 20,

¢2n = ¢2n+1 =1+ Y 4] (2?’1’.)

which is the partial sum of the Taylor series of the solution y*(z) at point zp = 0. We
make tse of the special structures of the ¢,. Here we apply Laplace transformation to

¢oy, which leads to

1 1 1 1
£[¢2n]=;+§+gg+"'+m,ﬂ20.

Let s =1/1, then
Ligon] =t + £ +15+---+ £ n > 0. (34)

15



The [n/n + 1] Padé approximant of (34} with n > 1 yields

?

[n/n+1]= L

Recalling ¢ = 1/s, we obtain [n/n + 1] in terms of s:

S

[n/n+ 1] = RREE

By using the inverse Laplace transformation to [n/n 4- 1], we obtain the true solution
y* ().
EXAMPLE 6. Consider the Duffing equation (11) with initial conditions (12). The

analytic solution of this equation is
y*(z) = sinz.

Since the complicated excitation term g(xz) can cause difficult integrations and prolifera-
tion of terms, we can express g{(x) in Taylor series at point o = 0, which is truncated for

simplification. Suppose we replace g(z) by

§(:c)=2;v—z:c +ﬂ5 547 7

3 60 2520 (35)
then the equation (11) becomes
d2
proluk i 2¢° = §(z) | (36)
with initial conditions (12). Let L = g, then equation (36) becomes

Ly =73+ 2y° ~ 3.
oo o0
Writing y = Y. yn and 42 = Y A,{y*}, the recurrent scheme of ADM is written as
n=0 =0}

Y=+ L"I.?fs
(37)
Ynt1 = 2L_1An - 3L_lyn:n20:
where L~! stands for the two-fold definite integration from 0 to z. The A,’s are calculated
by the formula (8), so the partial sum ¢, = E Ym is determined by (37). The calculation

of ¢n(n>1) becomes complex rapidly. By usmg Mathematica software, ¢5 is calculated.

16



Because of the truncation of the excitation term g(z), we get a truncated series 55(m) to

order z°

5 7 9

3
~ T €T T T
bl =z-grg-Ttw

which coincides with the first five terms in ¢5(z), and is a partial sum of the Taylor series

._l..

of the solution 3*(z) at point zp = 0. Because (11}(12) is an oscillatory system, we apply

Laplace transformation to 55(3:), which yields

~ 1 1 1 1 1
Ll = -+t 5~ %+ 50

For simplicity, let s = 1/¢, then
Lis(z)) =12 — t1 + 40 — 48 4410, (38)

All the [L/M] Padé approximant of (38) with L > 2, M > 2 and L + M < 10 yields

+2
LIM]|=——=3.
[L/M] 14+¢2
Recalling t = 1/s, we obtain [L/M] in terms of s:

1
1+ 52

(L/M] =

By using the inverse Laplace transformation to [L/M], we obtain the true solution y*(z).

EXAMPLE 7. Consider the equation

dy 2
S 0 39
P (39)

with the initial condition

y(0) = 2.

The analytic solution of this equation is

vy (z) = 2—-2——— z<In2.

._.ef,

== o0
Writing y = ¥ yn and 42 = 3 An{y?}, the recurrent scheme of ADM is written as
n=0

n=0

Yo = 23
{40)

Un41 = fox[An - yn] dm,ﬂZO-

17



The A,’s are calculated by the formula (8), so the partial sum ¢, = Zn) Ym can be
=0
determined by (40) as "

¢o =2,
1 =2+ 2z,
$2 =2+ 2z 4 322,

b3 =2+2m+3$2+1—3—$3,

3
ba =2+22:+3:1:2+}3Em3+%m4,

As can be seen, the ¢,(x)’s detexrmined by ADM are the partial sums of the Taylor series
of the solution y*(z) at point zp = 0. By using Mathematica, we get ¢o1(z) from (40)
and its [10/10] Padé approximant. Let

Bi(2) = —2— — ¢n1(z), Bafz) =

e —{16/11](z),z < In2,

2—¢"
which stands for the error functions determined by ADM and the AT, respectively. The
error curves obtained by ADM and the AT are shown in Figure 3 and Figure 4, re-
spectively. Also, E9(~200) = 0.732312, E5(—500) = 0.933523, E»(—1000) = 0.97277,
E(—10000) = 0.997751. From these results, we can see that the AT leads to accurate
results in wide region and that it improves greatly Adomian’s series in the cbnvergence
rate.
EXAMPLE 8. Consider the equation

j_"; — e (41)

with the inifial condition

y(0) =1.

The analytic solution of this equation is

| 1
y*(z) =1~ In(l —ez),z < -
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o0 o]
Writing ¥y = 3 yn and e¥ = 3 A,{e¥}, the recurrent scheme of ADM is
n=0

n=0

Yo =1,
(42)
Yntl = fg Andz,n>0.

The A,’s are calculated by the formula (8), so the partial sum ¢, = i Ym can be
m=0
determined by (42) as
$o =1,
. i (43)
n = 1+em+'£%)—+---+£%L,n21,
which is the partial sum of the Taylor series of the solution y*(z) at point zg = 0. By

using Mathematica, we find the [5/5] Padé approximant of the truncated series ¢1q

[5/5] = —7560 + 11340ex — 1680(ez)? — 3570(ex)? + 1410(ex)? — 107(ez)3
T30 x [—252 + 830ex — 560(ex)? + 210(ez)3 — 30(ex)* + (ex)9]

Let
Bi(z) =1-In(1 + ezx) — ¢d1o(z), B2z} =1 — In(1l + ex) — [5/5](z),z < é,

which stands for the error functions determined by ADM and the AT, respectively. The
error curves obtained by ADM and the AT are shown in Figure 5 and Figure 6, re-
spectively. Also, Ea(—200) = —1.84004, F»(—500) = —2.6922, F2(—1000) = —3.36337,
E»(—10000) = —5.64592. From these results, we see that the AT improves greatly Ado-
mian’s truncated series in the convergence rate and that it yields accurate results in wide
range.

Discussion. We could make use of the special structures of the Adomian’s series ¢,

in the following way. From (43), we have

#h(z) = e[l +ex + (ex)2 + -+ + (ex)* 1], n>1.
Then by using Mathematica, we see that the [L/M] Padé approximant of the series ¢! (z)
with

2=l p 5 0dd,

7 —1, niseven,



"2;1, n is odd,

n .
3, nis even,

and n >3 is

By solving a simple equation
dy _
szi - l-fe:c’

y(O) =1,
we obtain the true solution y*(z) of the original equation.

EXAMPLE 9. Consider the equation

dy

o +z™ 1y =0 (44)

with the initial condition

y(0) =m,

where m is a given positive integer. The énalytic solution of this equation is

m
V@) = e

>0 (=}
Writingy = 3. vn and 42 = Y A, {y?}, the recurrent scheme of ADM is written as
n=0 n==(

Yo =m,

(45)

Ynt1 = fo " 1A, dz, n>0.

The A,’s are calculated by the formula (8), so the partial sum ¢, = i y; is determined
i=0
by (45) as
$n =m[l — g™ + 22 — -« + (=1)"2™"],n20,

which is a partial sum of the Taylor series of the solution y*(z) at point zg = 0. We use
the Padé approximant to handle ¢,. By using Mathematica, we see that the [L/M] Padé
approximant of the ¢, with

B, mnis even,

=, nis odd,



TR, mnis even,

”‘7""11, mn is odd,

leads to the true solution y*(z) when n > 2.

EXAMPLE 10. Consider the equation

M=

d*y dy
) + 2y = —2a (46)

with initial conditions
¥(0) =0,5'(0) = 1.

The analytic solution of this equation is
y*(z) = e *sinz.

- .
Writing ¥ = 3. yn, the recurrent scheme of ADM can be expressed as
n=_()

Yo =17,
. (47)
Yn+1 = =L 2y + 20/,),n>0, ‘

where L~! stands for the two-fold definite integration from 0 to z. From (47), we have
the partial sum ¢, = f} Ym. By using Mathematica, ¢1g is calculated. Notice that ¢ is
not the partial sum o;n tTle Taylor series of the solution ¥*(z) at point £y = 0. We analyze
this series and see that a truncated series 519(3:) to order 19, which is the first fifteen

terms in ¢yg, i a partial sum of the Taylor series of the solution y*(z) at point 25 = 0.

$10(z) is expressed as

2 4z% 848 827 162% 32210

.

— T i S TSt Tt
bo(2) = 2+ -t oty 101
32211 64213 12821 128215 256217 512218 519210
+ - + - + - + X
11! 13! 14! 15! 17! 18! 19!

Because equation (46) is an oscillatory system, here we apply Laplace transformation to
$19(z) and obtain

~ 1 2 2 4 8 8 16 32
Lol = g-gta-gtg gt o
32 _ 64 128 128 256 512 512

5
+ S-mtrm-wmt -t =
PSS ULEN TSR 1. LS SN | B
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For simplicity, let s = 1/t, then

Llpo(z)] = 12— 265 + 2t — 265 + 87 — 8% + 1610 — 324!
+ 32412 — g4l + 128435 — 128¢16 + 256418 — 512419 4 512420,

All the [L/M] Padé approximant of the $19(z) with L > 2, M > 2 and L+ M < 20 yields

t2
[L/M]_1+2t+2t2'

Substituting ¢t = 1/s, we obtain [L/M] in terms of s:

1

[L/M] = §24-2542°

By using the inverse Laplace transformation to [L/M], we obtain the true solution y*(z).

EXAMPLE 11. Consider the equﬁtion

(48)

with the initial condition

The analytic solution of this equation is

T

* - —
V(=) 2241

In order to get the Taylor series of the’true solution, we apply the Theorem. Writing

= o] oQ o0
y= ZU Un, ¥° = EO An{y®}, and - 1+1 = EU(—l)"a:Z”, we have the recurrent relation
n= n= . n=

Yo — 13
(49)
Yni1 = [T[~24, + (-1) 7 E L en 4z n>0.

om
The A,’s are calculated by the formula (8), so the partial sum ¢, = 3 ym is given by

m=0
(49)
¢0 =0,

¢2n—1 — ¢2n - 933 +$5 —_ (_1)n—1$2n—1’n 2 1,
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which is the partial sum of the Taylor series of the solution y*(z) at point zp = 0. By
using Mathematica, we see that [n — 1/n] Padé approximant of ¢a,_; with 7 > 2 yields
the true solution y*(z).

All the numerical results given in this section indicate that the AT improves greatly
Adomian’s truncated series in the convergence rate, and that it often yields the true
analytic solution. They support that the AT is powerful and superidr to ADM as well as

the generalized decomposition method {9].

5. Conclusions

In this paper, we have presented an aftertreatment technique for ADM. Generally ADM
yields the Taylor series of the exact solution. Because the Padé approximant usually
improves greatly the Maclaurin series in the convergence region and the convergence rate,
the AT leads to a better analytic approximate solution from Adomian’s truncated series.
For the oscillatory systems, Laplace transformation of Adomian’s series solution has some
specific properties, so we use Laplace transformation and Padé approximant to obtain an
analytic solution and to improve fhe accuracy of ADM. Eleven examples are studied
carefully, and the resulfs obtained indicate that the AT is efficient. It really improves the
accuracy of ADM. The reason for the powerful aftertreatment is that the AT makes full of
the advantages of the Padé approximant. Also, symbolic calculus software Mathematica
makes programming the schemes of ADM and the AT very simple and fast. All the
figures are drawn by the same software. The AT is appliable to the system of initial-value
ordinary differential equations.

In order to obtain more accurate solutions, we suggest first analyzing Adomian’s trun-
cated series carefully, then applying some reasonable operations such as Laplace transfor-
mation or derivative to the truncated series with some specific structures and making the
Padé approximant more efficient, as shown in Examples 3, 5 and 8 of Section 4. Also, for
general ordinary differential equations with initial conditions, we suggest calculating Ado-
mian’s series solution as well as the AT solution and comparing them to obtain a more
accurate analytic solution. The further study of the AT for solving some well-known

nonlinear differential equations such as Duffing equation and for discovering some new

23



phenomena such as chaos as well as bifurcations could be an interesting and promising

subject.
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Figure 1: The error function By (%) with Ey(~0.99) = —1.77399, and F(2) = 65.924.
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Figure 2: The error function Ep(z) with E3(—0.99) = —0.546023, and E»(1060) = 0.551705.
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Figure 3: The error function By (z) with F;(0.668) = 17.6373, and E;(—0.9) = 196.299.
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Figure 4: The error function Ez(z) with F2(0.69) = —5.68434 x 10~, and
E»(—100) = 0.294194.
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error curve obtained by ADM
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Figure 5: The error function B (z) with F,({0.36) = 1.11878, and E;(—0.65) = —18.2359.
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Figure 6: The error function Ep(Z) with E3{0.36) = 0.20534, and F2(—100) = —1.2482,
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