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In this paper we deal with an optimal stopping problem without recall where an offer once inspected and
passed up becomes available if a reserving cost is paid. One of the most distinctive results is that the
accepting of the reserved offer should occur only at the end of the process.

1. Introduction

Suppose we have an asset, say a house, a lot of land, or some such item that must be
sold by a certain day in the future (deadline). The price offered by each potential buyer will
be a random variable with known distribution and some cost must be paid to find a buyer.
Now postulate that none of the prices offered by the buyers appearing before the deadline
are high enough to be acceptable and the deadline has arrived without the asset being sold.
In such a case, if we cannot go back and sell to any of the past buyers, then we will have
to sell to any buyer who appears at the deadline, no matter how low the price offered by
him may be. In this situation we have left ourselves open to a risk. This type of decision
problem is usually called an optimal stopping problem [1-17]. Here consider what should
have been the case if we had paid a certain reserving cost to favored buyers. We would have
pended the decision as to whether to sell to him or not and at the same time avoided the
risky situation.

In this paper, we pose a general model for the class of decision process called the optimal
stopping problem with controlled recall, and examine some of the properties of the optimal
decision rule.

2. Model

To begin with, let us explain the standard model for the discrete-time optimal stopping
problem without recall and with a finite planning horizon. Here, for convenience, let points in
time be numbered backward from the deadline as 0,1,: - -, equally spaced, where the interval
between two successive points in time, say time ¢ and ¢—1, is called period .

Paying some fixed cost s > 0, called search cost, at any time except on the deadline, we
can obtain an offer at the next time. In our discussion from now on, an offer of value w
will simply be called offer w. Subsequent offers w, w', --- are assumed to be stochastically
independent random samples from a known distribution function F(w) with a finite mean
p where, for given numbers @ and b such as 0 < a2 < b < o0, let F(w) = 0 for w < a,
0< Fw) <lfora<w<b,and F(w) =1 for b £ w. Here let us postulate that one of
the offers received during the given planning horizon will have to be accepted. Of course,
we can terminate the process at any time by accepting any offer. Once an offer is passed
up however, it becomes henceforth unavailable. Furthermore, a per-period discount factor g
(0 < 8 < 1) should be considered, that is, a monetary value of one unit obtained a period
after is regarded as # at the present time.

In addition to these requirements, we here assume that, at any time except on the
deadline, if we pay some fixed cost d > 0, called reserving cost, for an offer obtained at that
time, we can make the offer forever available, that is, it is reserved.

For convenience, we use the two terms “current offer” and “leading offer”. The former
means an offer appearing at the present time ¢ and the latter is the best of the offers reserved



so far. Where it is taken that there are no reserved offers before the start of the process.

Now, let an offer be obtained at a time except on the deadline. We have the following
four possible decisions to make: accept the current offer (A), reserve the current offer (R),
pass up the current offer and accept the leading offer (PS), or pass up the current offer
and continue the search (PC). Here the notations A, R, P, S, and C designate, respectively,
Accept, Reserve, Pass up, Stop, and Continue. By definition of the model, available decisions
at the deadline are only A and PS.

The objective here is to find the optimal decision rule to maximize the expected present
discounted net value, that is, the expectation of the present discounted value of an accepted
.offer minus-that of the total present-discounted-value-of the search-costs-and-reserving costs
paid up to the termination of the search with its acceptance.

If d = 0, or reserving an offer costs us no money, then our model is virtually reduced fo
a conventional model with recall. On the other extreme, if d = oo, that is, we must pay a
huge amount to reserve an offer. Obviously we will not reserve in this case. This implies
that our model is eventually identical to a conventional model without recall[15].

3. Preliminaries

For convenience in later discussion, we shall define the following two functions: For any
real number z, let

T(z) = f: max{w—z,0}dF(w), (3.1)

K(z) =[3_/:ma.x{w,a:}dF(w)—m—s = BT(z)+(B—-1)z—s (3.2)

where 8 and s are certain given numbers such as 0 < 8 < 1 and s > 0. Let the maximum
solution of the equation K(z) = 0, if it exists, be denoted by z°.

Lemma 3.1
(a) T(z) and K(z) are continuous and nonincreasing in © and strictly decreasing in x < b.
(b) T(z)+x is continuous, convez, and nondecreasing in  and strictly increasing in x 2> a.
(c) T(z) = p~z for z < a and T(z) = 0 for z > b.
(d) z° is continuous and nondecreasing in B.

Proof: See [5] for the proofs of (a) to (c). The assertion (d) is clear from the fact that K(z)
is continuous and strictly increasing in 3 for any z. 1

4. Functional Equation

Let u;(z,w) denote the maximum expected present discounted net value starting from
time ¢ with a leading offer z and a current offer w, and v,(z) the expectation of u;(z,w) in
terms of w, that is,

v(x) = jb us(z, w)dF(w), t>0. (4.1)
We can then express u(z, w) as follgws:
A : w,
ug{z, w) = max ]EI’QLS ;d—s—i—ﬁvt_l(ma}é{m,w}), , t>1, (4.2)
PC { —s+fvq(z)
up(z, w) = ma.x{ IJ}S ?:' } ' (4.3)



Each of the four expressions in Eq.(4.2) represents the maximum expected present discounted
net value for, respectively, decisions A, R, PS, and PC.

The reason why u:(z,w) can be expressed as Eq.(4.2) is as follows. When the decision R
is taken as an example, we must pay the search cost s and the reserving cost d. In addition, '
because the leading offer the next time t—1 becomes max{z,w} due to reserving the offer
w at time £, the maximum expected present discounted net value starting from time ¢—1 is
expressed as v;_;(max{z,w}). Similar reasoning holds for the other expressions.

Lemma 4.1
. (a) v(=)-is-continuous,-conver,-and -nondecreasing in-x_for-any t. .
(b) vi(z) is nondecreasing in t for any z.

Proof: (a) For t = 0, from Eqs.(4.1) and (4.3), we get
vo(z) = f: max{w, z}dF(w) = T(z)+z. (4.4)

Hence, from Lemma 3.1(b), the statement (a) holds true at ¢ = 0. Assume (a) holds for ¢—1.
Then clearly it also does for .

(b) It is clear from Eqgs.(4.2) and (4.3) that ue(z,w)
Now, assuming that u,—(z, w) < w(z,w), thus v,1(z) <
we obtain the inequality below for any z and any w.

< w(z,w) for any = and any w.
vs(z) holds for any =z and any w,

w(z, w) = max{w, —d—s+pfv;_y(max{z,w}), ¢, —s+Pve1(z)}
< max{w, —d_3+ﬁvt(max{$:'w})a z, —s+Pfv(z)}
= w1 (2, w), {(4.5)

hence, vy(z) < vgy1(z) for any z. 1

Lemma 4.2 Foranyt > 1,

w, )
max —d—s+pv_1(max{z,w}), | _ max gd—s-l-ﬁ'vg_l(w), (4.6)
—’S'JFIB'Ut—l (z) —,8 +ﬁvt—1(33.)
Proof: Suppose that the left hand side of Eq.(4.6) is equal to w, that is,
max{—d—s+pv;(max{z,w}), ¢, —s+Bvi—1(z)} < w. (4.7)

Noting v;—1{w) < v;—;(max{z,w}) from Lemma 4.1(a), we find from Eq.(4.7) that max{—d—

s+pvi_1(w), z, —s+Pv;_1(x)} < w, hence the right hand side of Eq.(4.6) is equal to w.
Similarly, the assumption that the left hand side of Eq.(4.6) is equal to z or —s+fv;_s(z)

produces the fact that the right hand side is equal to = or —s+fv;_1(x), respectively.

Suppose that the left hand side of Eq.(4.6) is equal to —d—s+Fv;—; (max{z, w}), that is,

max{w, z, —s+Pv-1(z)} £ —d—s+pv;_;(max{z,w}). (4.8)



Here if & > w, then —s+fv;_1(z) £ —~d—s+Fv;1(z). This contradicts d > 0. Hence z < w
must hold, and it follows from Eq.(4.8) that max{w, z, —s+Bvi—1(2)} < —d—s+Bvi—1(w).
This implies that the both sides of Eq.(4.6) become equal to —d—s+8v;_,(w). 1

According to Lemma 4.2, Eq.(4.2) can be expressed as

A ow,
R : —d—s+pv(w),
PS : =z,
PC : —s+Pv(z)

us(z, w) = max , t>1 (4.9)

Note the following two points: One is that the expression corresponding to.R of Eq.(4.9)
differs from that of Eq.(4.2), and the other is that, as seen in the proof of Lemma 4.2, decision
R becomes by no means optimal when the current offer is inferior to the leading offer.

Lemma 4.3 For any t,
(a) vi(z) = v4(a) for z < a.
(b) vi(z) > = for x < b.
(c) v(z) ==z forb < =.
(d) ve(z) 2 p for all z.

Proof: (a) We have v(z) = w(a) for z < a from Eq.(4.4) and Lemma 3.1(c). Assume
v—1{z) = vs-1(a) for < a. Then it holds that u(z, w) = max{w, —d—s+Bv;—1(w), =, —s+ -
Bu—1(a)} for z < a. Hence if a < w < b and z < @, then

us(z, w) = max{w, —d—s+Bv_1{w), a, —s+Bvi1(a)} = us(a, w). (4.10)

Consequently we get v;(z) = v(a) for z < a and any ¢.

(b) For z < b, from Lemma 3.1(a,c), clearly we get 0 < T'(z), thus z < T{z)+2z = vo(x)
from Eq.(4.4). From this and Lemma 4.1(b), we have z < v;(z) for any « < b and any ¢.

(c) Clearly vo(z) = = for b < z from Eq.(4.4) and Lemma 3.1(c). Assume v;_y(z) = z for
b < z. Then for a < w < b, if ¢ > b, the following three things are all true: (1) w < =z, (2)
V1 (w) < vea(z), and (3) —s+Bvp1(z) < vi—1(z) = =, from which we have 4(w,z) = =z,
thus v,(z) = =.

(d) The fact that us(z,w) > w from Eq.(4.9) becomes clear. X

Lemma 4.4 For any t, fv,(z)—2 is nonincreasing in ¢ and strictly decreasing in ¢ < b.

Proof: As a preliminary to the proof, let us prove that v;(z)—z is nonincreasing in = and
strictly decreasing in z < b. Owing to Lemma 4.3(a}, v;(z)—xz is strictly decreasing in z < a.
In order to prove that v:(z)—= is strictly decreasing in z on [a, b}, it suffices to show that the
inequality vy(z2) — v4(21) < 22 — 2, holds for any z; and any z, such that e < z; < zy < b.
Since v(z) is convex in x, we obtain

’Ut(-'Bz) - ?Jt(ﬂ’l) < 'Ut(b) — 'Ut(xl) )

4.11
Tg — Iy - b— I ( )

Noting that z; < vy(z;) and v,(b) = b from Lemma 4.3(b,c}, we have
. 'vt(b) - ’Ug(xl) . b - ’Ut(ﬂ?l) < b — I =1 (412)

b—ﬁ)']_ - b—El b—:L'l
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Applying Egs.(4.11) and (4.12) will complete the proof of v, () —v;(21) < £3—2;. Therefore
vy(z) — = is strictly decreasing in @ < b. Furthermore, we get v;(z)—2 = 0 for z > b from
Lemma 4.3(c), thus, v;(x)—x is nonincreasing in 2. Consequently, the assertion becomes
true because of fvi(z)—z = B(vy(z)—z)+(B-1)z. 1

Here, we introduce the following two functions:

Z(z) = max{z, —d—s+Pvei(z)}, 21, (4.13)

z(z) = max{z, —s+Puv1(z}}, t>1 (4.14)
where we let 23(z) = z and 2§(z) = z. Note that z{{z) is composed of the first and second
expressions of Eq.(4.9) and 2{(z) the third and fourth. By using z{(x) and 2{(x), we can
rewrite us(z, w) as follows.

uy(z, w) = max{z{(w), #{(z)}, t>0. (4.15)

The following lemmas are immediate from Lemmas 4.1 and 4.3.

- Lemma 4.5

(a) 22(z) and zZ(z) are continuous, convez, and nondecreasing in = for any t.
- (b) 22(x) and 23(z) are nondecreasing in t for any z.

Lemma 4.6 For any t, 2f(z) < 28(z) for any z and z{(z) = 22(z) = = for any x > b.

5. Optimal Decision Rule
Let us define the following two functions:

gi(z) = —d—s+Pv 4 (z)—2 =0, t>1, (5.1)
gi(z) = —s+Bvey(x)—z =0, 121, (5.2)

which are the differences of the two terms inside the braces of Eqs.(4.13) and (4.14), respec-
tively. Let ¢, t > 1, be a value of z such as g¢(z) = 0 and a2, t > 1, be an z such as in
g¢(z) = 0. Furthermore, let w;(z) = max{w | z}(w) = z)(z)}, t 2 0.

Lemma 5.1
(a) z¢ uniquely exists on [—-d—s+fp,b).
(b) ¥ uniquely exists on [—s+0u,b) and satisfies ¢ < xi+d < z°.
(c) wi(z) exists for any = and satisfies ¢ < wy(z). In particular, wi(z) =z for & > zf.

Proof: (a) We get gf(—d—s+0u) > 0 because gi(z) > —d—s+Bu—c for any z from
Lemma 4.3(d). We also get g¢(h) = ~d—s+(8—1)b < 0 from Lemma 4.3(c). Hence, since
g2(z) is continuous and strictly decreasing in z < b from Lemmas 4.1(a) and 4.4. From these,
it follows that there exists an unique solution x¢ of the equation g¢(z) = 0 on [—~d—s+8u, b).

(b) Since viy (xf+d) > v,—1(2f) from Lemma 4.1(a), we obtain
9 (@{+d) = —s+Pusa (2} +d) - (af+d) > ~s+fvi1(f)—2f—d = g{(zf) =0.  (5.3)

Furthermore, similarly to (a), it can be shown that gf(b) < 0 and that gf(z) is continuous
and strictly decreasing in z < b. Thus the solution of the equation ¢?(x) = 0, or ¢, uniquely -



exists on [z¢+d,b). From this.and (a), we get f > zf+d > —s+pSu. Consequently,
z¢ < z¢+d < z2 holds because of d > 0.

(c) If z > z¢, then gf(z) < 0, that is, —d—s+Bvs_1(z) < z, from which we have for
z > z¢ that

2Hz) = 2. - (5.4)
Similarly, it follows for z > 22 (> z2) that
2 (z) == - (5.5)

Let us prove (c) by first showing wy(z) = = for z > «f, then confirming the existence of
wy(z) for < «f, and finally verifying = < w(z) for any . '

First, we shall show w;(x) = z for > z¢ (> z¥). For any fixed z* > z2, we have z{(z*) =
z* = z2(z*) from Eqs.(5.4) and (5.5). Hence, the z* satisfies the equation z{(w) = z£(z*).
Furthermore, no w' > «* satisfies z{(w') = 2{(z*) because such w' satisfies 2{(w') = w' >
z* = 22(z*). As a result, the maximum solution of the equation is z*, that is, w(z*) = z*,
hence wy(z) = z holds for any = > «}.

Next, let -us show the existence of w;(z) for ¢ < z?. For any fixed z* < 2, consider
the sets Wy = {w | 28(w) = 20(z*), 20 < w}, Wy = {w | 2{(w) = 20(z*), w < 2{}, and
W = {w | 2{(w) = 22(z*)} = W, UW,. For any w' > z¢, it holds from Eqgs.(5.4), (5.5), and
Lemma 4.5(a) that 22(z*) < 22(z¢) = 29 < w' = z¢(w'). This means that such a w' does
not satisfy the equation z¢(w) = z¢(x*), that is, W, is empty. Hence, we have W = W,. By
virtue of Lemma 4.3(a), we know that z¢(w) takes the minimum value —d—s+0v;:_1(a) at a
certain w. Moreover, Eq.(5.4) implies z{(z2) = z¢, thus —d—s+8v;-1(a) < 2 (w) < ¢ for
w < z2 from Lemma 4.5(a). In the same way, we get —s+0vi—1(a) < 2¢(z) < 2? for z < af,
hence, —d—s+Pv_;1(a) < 2{(z*} £ z7. Therefore, there exists the maximum element of W,
from Lemma 8.1. Hence, W also has the maximum element, which is w;(z*) by definition.
Consequently, there exists w;(z) for any z < zj.

Finally, we shall show that z < w,(z) holds for any z. Assuming that w;(z*) < z* for any
given z*, we get zf(wy(z*)) < 2¢(z*) from Lemma 4.5(a). Furthermore, since 2 (w,(z*)) =
 22(z*) by definition of wy(x*), the inequality zf{w;(z*)) < 2¢(z*) is equivalent to z{{z*) <
~2¢(z*). From this and Lemma 4.6, immediately we have z3(z*) = 2¢(z*), that is, the z*
satisfies the equation zZ(w) = 2¢(z*). This contradicts the definition of w;(x*). Therefore,
z* < wy(z*), thus z < wy(z) for any z. N

The following two lemmas are immediate from the definitions of zZ, 22, and wy(z).

Lemma 5.2
(a) zH(x?) = af = —d—s+vy(2f) fort > 1.

(b} 22(z3) = &f = —s+vy_1(z}) fort > 1.
(c) 2 (wi{z)) = 28(z) fort > 0.

Lemma 5.3

—d—s+pv_(z) if x < ad,
(a) zf(m):{m ifmfgjz, for t > 1.
. —_ _ 'f < 0
(b) 22(2) = { #Hhva(2) DEST fort > 1.
z if 27 < =z,



zo(z)  if w < welz),

(c) w(z,w) ={ zH{w) if wy(z) < w,

From Lemma 5.3, the optimal decision rule for any time ¢ can be expressed as follows,

for t > 0.

Optimal Decision Rule Assume that the process starts from time ¢ with a current offer
w and a leading offer z. In the case of w:(z) < w, if z§ < w, then accept the w, or else
reserve the w. In the case of w;(z) > w, if 2§ < z, then accept the z, or else continue the
search.

We shall reveal some properties of w;(z), z¢, and z¢ characterizing the optimal decision
rule. Let #; be the minimum solution of the equation 22(z) = zd, if it exists, that is,

#; = min{z | 2{(z) = 27}, t>1. (5.6)

If —s+pvi1(a), the minimum value of 2(z), is greater than z¥, then there exists &; from
Lemma 8.2, hence 22(%,) = z%. Let #; = —oo if the equation 2?(z) = z?¢ does not have the
minimum solution.

Lemma 5.4 % < a? < a? < b holds for any t.
Proof: We have from Lemma 5.2(a),

z; (2f) = max{af, ~s+Bve-1(af)}
= max{zf—d, —d—s-+Buv_1(z?)} +d
= max{z{—d, zf} +d
= zf+d. (5.7

Assuming ¢ < &, we have z{(z¢) < 2{(#;) from Lemma 4.5(a). From this, Eq.(5.7), and
22(%;) = ¢, we get z9+d < z¢, which contradicts d > 0. Hence #, < % must hold. The
other inequalities have already been shown in Lemma 5.1(b). A

Lemma 5.5 wy(z) < 2! if and only if 22(x) < ¢ for any t and any z.

Proof: Suppose z(z) <zg, which is equivalent to z¢(w;(z )) < z3(z?) from Lemma 5.2(a,c).
Furthermore from Lemma 4.5(a), we get w,(z) < when 2Z(w,(z)) < z3(z%).

If wy(z) < zf, then we have zf(wt(:z)) < Z¢(z}) from Lemma 4.5(a). Here, assuming
2w (z)) ———zf(mf), we obtain z{(z) = z (a:t) from Lemma 5.2(c), implying that z satisfies
the equa.tion 2 (w) -—zt( ). This contradicts the definition of w;(z). Therefore it must be
that zf(w;(z)) < z¢(x}), that is, 20 (z) <=zf. N

Suppose that ; is finite. Then 2} (a:t) = z{ holds. From this and Lemma 5.3(a), we have -

2 (xf) = 2f = 22(%,) and all w > z¥ satisfy z2(w) = w > o = 20(%;). Hence, z{ is the
maximum solution of the equation zf(w) = 2{(&;), that is, wy(#) = z¢. Furthermore by
definition of Z; and Lemma 4.5(a), we have z{(z) < =¥ for any = < #;, hence wy(z) < zf
holds for any = < #; from Lemma 5.5. For the reasons stated above, if Z; is finite, then it
is the minimum solution of the equation w;(x) = z¢. Consequently, i;, defined by Eq (5.6),

can be expressed as follows.

#, = min{z | wy(z) = 2%}, t>1. (5.8)



Lemma 5.6 Foranyt > 1,
(a) 22(z) < z¢ and wy(x) < 3¢ for z < 4,
(b) 2 < 22{(z) and z? < wy(x) for & < z.

Proof: Easy from z2(#,) = z¢, w,(%) = =¥, and Lemma 5.5. 1

According to the optimal decision rule, when the leading offer is «, a current offer w to
reserve must satisfy w;(z) < w < zf. Hence, such w does not exist if z¢ < wy(z). Therefore,
Lemma 5.6 means that if # < Z;, there then exists an offer w that should be reserved, or
else it does not exist.

- From the above and the fact that any actual offer is in a sample space [a,b] of the
distribution F, we obtain the following corollary.

Corollary 5.7 For anyt, if and only if Z; < a, there exists no current offer w to be reserved
for any leading offer x.

Theorem 5.8
(a) z? is @ constant, which is equal to z°, the mazimum solution of the equation K(z) = 0.
b} =& is nondecreasing in t with =& < b for all £,
¢ g ¢

Proof: (a) First of all, we shall show that z§ = 22, | if v,_1(z}) = v(2}). I vy_1 () = ve(x?),
then clearly g7, ,(zf) = gf(z?) = 0. Since the equation g?,,(x) = 0 has an unique solution
2., from Lemma 5.1(b), we get = .. Thus, in order to prove that =7 is a constant, it
suffices to show that v,y (zf) = v4(zf) for any .

(i) Assume a < z{ (< b due to Lemma 5.1(b})). Then, we can rewrite vy(2$) and v,(z9)
as follows, respectively,

w(af) = [ max{w,af}dF (u)
= /a e dF(w) + f ;w_ dF(w), (5.9)
(o) = [ max{=(w), #()}F@)

_fa‘”‘( Da(@)F@) + [ Aw)dF(w)

w1(z°)
= [ dr)+ [ wyarw
=/a m{ dF(w)+/=;;'w dF(w), (5.10) -

in which we applied Lemmas 5.3(a,c), 5.2(b), and ¢ < wy(z$) = 2§ < b from Lemma 5.1(b,c).
Therefore, it follows that vo(z§) = vi(29), thus we get a < 28 = 3.

Next, assume v;_1(z7) = v(2f) and a < a3, so that, a < #f = zf,,. Then, in the same
way as in Eq.(5.10), we have

w(ofr) = [ max{zf(w), ()} dF ()
= [ max{z#(w), #(z)}dF(w)
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= f"”( ")zt (20)dF(w) + fw i(zo)zf(w)dF(w)
5 t
_—_fa zy dF(w)+L°w dF(w), (5.11)
wia(ot) = [ max{a(w), (et 4P ()

we1 (xS, ) b
=_[ ™ Zt+1(mt+1)dF( w) + zt,,_l(w)dF( w)

w¢+1(a’¢+1)
LT b
= [, dPw) + [ —w-dF(w)
Tig1

a

= [TapdF(w)+ [ w dP(w). (5.12)

Therefore, it follows that v(%f,;) = ve (2., ), thus we have a < zf,; = z7,,.

(ii) Even if 2¢ < a, in the same way as (i), we can show v,_;(2§) = v,(z}) for all £ .

Consequently, v;_1(z) = ve(x?), hence 2§ = 7, for any ¢. Furthermore, since g3(z) =
—s+Pvo(z)—z = K(z) from Eq.(4.4), z? is equal to z°. Therefore, we conclude that =7 is a
constant which is equal to z°

(b) For any ¢, we get gH_l(b) < 0 (see the proof of Lemma 5.1(a)) and 0 = gf(zf) <
9.1 (zf) from Lemma 4.1(b), In addltlon to these, smce g.1(z) is continuous and strictly
decreasing in = < b, there exists ¢, on [z%,b), hence zf < zf ;. I

From now on, we use z° instead of zj.
Theorem 5.9 w(z) is nondecreasing in = for any t.

Proof: If z; < w3, then we have z{(z;) < zf(zp) from Lemma 4.5(a). Suppose w;(z;) >
wy(we). Then 28(x1) < 22(z2) = 28 (wy(z2)) < zH(wi(21)) = 2¢(21) from Lemma 5.2(c), from
which we get zf(w;(z;)) = 2f(x2). This means that w;(z;) satisfies the equation 2f(w) =
#(23), which contradicts the definition of w,(x;). Hence, if z; < xj, then w,(z1) < we(zs)
must hold, that is, w:(z) is nondecreasing in z. 1§ :

Lemma 5.10 Foragnyt > 1,
(I) ifa <y, then
(a) for a £ £ < &, Egs.(5.13) and (5.16) hold,
(b) for &, < « < 2°, Egs.(5.14) and (5.17) hold,
(¢) for z° <z < b, Egs.(5.15) and (5.18) hold,
(II) ¢ % < a and furthermore,
(i) ifa <z, then
(a) fora < z < 2°, Egs.(5.14) and (5.17) hold,
(b) for z° < z < b, Egs.(5.15) and (5.18) hold,
(il) if 2° <a, then
(a) for a < £ b, Egs.(5.15) and (5.18) hold
where

'Ut(:c)=f‘1we(z?[_s+ﬁut_1(m)}dF(w)-I-j:i;:—d—s+ﬁ'vt_1(w)}dF(w) +L;w dF(w),(5.13)

'vg(:c)=[th(z?{_s+ﬁvt_1(m)}dF(w)—i—./:l(z)'l.v dF{w), (5.14)
w(z)=T(z)+=z, (5.15)



—d—s+Bvs—y (we(z)) = —s+Pvi—1(2), (5.16)
wi(z) = —s+Pvi1(z), (5.17)
wi(z) = z. (5.18)

Proof: (I) In the case of @ < %, it follows that @ < & < z¢ < z° < b from Lemma 5.4 and
that a < wy{z) < b for a < z < b from Lemma 5.1(c) and Theorem 5.9.

(a) Suppose a < z < #,. Note that w,(z) < z{ in this case from Lemma 5.6(a). First,
we have z{(z) = —s+pBv;_1(z) from Lemma 5.3(b). This and Lemma 5.3(c) implies that
uy(z,w) = —s+Pv1(z) for w < wy(z). Secondly, assuming wy(z) < w < z¥ produces
by Lemma 5.3(a,c) that u(z,w) = —d—s+Pv_1(w). Finally, we get w(z,w) = w for
z? < w from Lemma 5.3(a,c). Consequexitly,"Eq(E;‘l?)) holds for @ < o < #;. As stated
above, zf(z) = —s+pv;1(z) for e < x < &, and we have 2§ (w:(x)) = —d—s+Bvi—1 (we(z))
from Lemma 5.3(a) due to wy(z) < mf Eventually Eq.(5.16) holds for a < z < #, from
Lemma 5.2(c).

(b) In the case of &; < & < z°, since z¢ < wy(x), it suffices to consider the two regions,
w < wi{z) and wi(z) € w. The remaining discussions are almost the same as (a).

(c) Suppose z° < z < b, so that Eq.(5.18) holds from Lemma 5.1(c). In the same way as
(a), we get for z° < z < b,

we(z) b

vi(z) = j = dF(w) + f o ), (5.19)
. a wy(z

which can be rearranged as follows by use of Eq.(5.18).

(@) = f T dP(w) + f, w dF(w)

- f = o max{z, w}dF(w)
= T(z)+=. (5.20)

(II) If £, < a, we must consider the two additional cases: ¢ < z° and z° < a. The
remaining arguments are almost the same as (I). 1

Lemma 5.11 ve(z) —vi-1(z) is nonincreasing in ¢ for any t > 1.

Proof: For convenience, let &(z;, z3) = v;(zs)—vi(z1). Then, any z,, 73, and z., cleazly
6g($a, $c) = 5;(1120, .’Bb) + 6t($b, .’Bc). (521)

To prove this lemma, it suffices to show that 8;(z1,22) < 8;—1(x1,z2) holds for any x; and
any z, such as z; < z, where note w;(z;) < wy(z,) for all ¢ from Theorem 5.9.

(i) In the case of &; < z3 < q, it follows from Lemma 4.3(a) that v;(z;) = vy(z2) = v(a)
and v—1(21) = ve-1(T2) = v—1(a), hence, 6;(21, z2) = bp—1(z1, T2)-

(i) In the case of @ < 1 < 22 < E!g, from Lemma 5.10(I.a), we can express &;(z;,z;) as

wi(zy)

613(371,332) =£ ﬁét 1(231,$2)dF(’w) +/::21 {ﬂ'vg 1(932)+d B’Ut_.. (?.U)}dF( ) (5.22)

If wy(21) < w, then from Lemmas 5.10(I.a) and 4.1(a), we have —s+Bv;1(z1) = —d—s+
By (wi(z1)) < —d~-s+Pv;—1{w), from which we get d—fBv,_;(w) < —Pv_1(2;). Hence,

L Bucs(en) b= () (w) < [ Bures(oa) - Buims(on) i ()

wi(zy)
wi(zg)

= Bb_1(z1, z2)dF (w). (5.23)

wy(z1)
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From Eqs.(5.22) and (5.23), we have

6t($1,$2) _'f we(z 13@6}_ (3.'-1,332)dF(’W) +./1;¢ (21) ﬂ&t 1($1,$2)dF( )

./‘t( Z)ﬁtst... El,mg)dF(’LU)

= .35::—1(331, 972)F(’wt(932))
< 11(z1, z2). - (5.24)

(iii) In the case of & < z; < =z < 2°-by-applying -Lemma-510(Lb) instead of
Lemma 5.10(1.a), we can show 8;(21,22) < 6;—1(%1,22) in exactly the same fashion as (ii).

(iv) In the case of 2° < z; < %3, from Lemma 5.10(L.c), we get immediately v;(z:) =
,'ut_l(aa) = T(m1)+:1:1 and ’Ug(:vg) = 'Ut_.l(il‘iz) = T(.’I)z)-]—(vg, hence 6t($1, 332) = 6;._.1($1, Eg).
(v) In the case of x; < a < x5 < &, applying the above implies

65(.’.!21,.’32) = 6,3(271, (L) -+ 6t(a, mz) $ 6,3_.1(.’.!31, a) + 6;-1(0, 352) = 61_1(331,562). (525)

. Also in the other possible cases, that is, #; < a < & < T2 € 2% 2, < a < 2° < Ty,
a<x <& <2< 2% a<a <E <2’ <y and < 2 < 3° < Ty, We can similarly
prove 6t($1, Ez) S 6t_1($1,932). |

Theorem 5.12 w(z) s nondecreasing in t for any .

Proof: As a preliminary of the proof, we show that 27, ,(x)—z{(z) is nonincreasing in = for
any t. Clearly we have 28(z)—23(z) = max{z, —s+Puve(z)} — 2 = max{0, —s+Pvo(z)—2z},
which is nonincreasing in z from Lemma 4.4. For t > 1, it holds from Lemma 5.3(b) that

2001 (2)— 2] (z) = max{z, —s+Puv(z)} — max{z, —s+Pv,_1(z)}

| Bwiz)—vii(z)) if z <20
- { 0. if 2° < . (5.26)

Applying Eq.(5.26) and Lemma 5.11, we find that 2, ;(z)—2{(z) is nonincreasing in #. Thus
by induction, 2§,,(z)—2{(z) is nonincreasing in x for any ¢.
From the above and Lemma 5.1(c), we have
zp1 (we(z)) — 2 (wi(@)) < 241 () —2(2). (5.27)
By noting that Lemma 4.1(b) and d > 0, it follows from Lemma 8.3 that, for any z,
2 (@)~ 23(2) = max{z, —s+0v,1 ()} ~ max{z, —d—s+Bv,—y(z)}
< max{z, —s+Puvi(z)} — max{z, ~d—s+pv(z)}
= 281 (2) =2 (2), - (5.28)
hence, we have _
ziy1(we(2)) 2 (we(w)) < 241 (we(®)) 2 (wel())- (5:29)
From Eqs.(5.27) and (5.29), we get 2%, (wi(z)) —28(we(z)) < 2f,(z) — 22(z). Due to
Lemma 5.2(c), this inequality is equivalent to
20 (wi(@)) < 24 (2)- (5.30)
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Here, assume wi1(z) < wy(z). Then we obtain 2, (w1 () < 28, (we(z)) due to
Lemma 4.5(a). Consequently, it follows from Lemma 5.2(c) and Eq.(5.30) that 2§ +1( ) =
Zg (e () < 28 (we(z)) < % +1(m) from which we obtain 2{,, (wi(z)) = 22,,(x), in other
words, wy(z) satisfies the equation 2 ;(w) = 22, 1(:1:) This contradicts the definition of
Wi (). Therefore, wi(z) < wiyy(x) must hold, that is, w,(z) is nondecreasing in ¢. &

Theorems 5.9, 5.12, and 5.8 enable us to draw z°, ¢, and w,(z) on an (x,w)-plane as in
Figures 1 and 2 where x represents a leading offer and w a current offer. Meanwhile a and
b are, respectively, the lower and upper bounds of the sample space of distribution F, and
the curved bold line is wy(z). Figure 1 is the case of ¢ < &; and Figure 2 the case of % < a.
In either case, the optimal decision rule is described as follows. In the instance where the
pair (z,w) is in area A, then the current offer w (decision A) should be accepted. The same
interpretations are given for the other areas. Here, note that area R does not always exist.
This implies that there may be a case where no offer is reserved despite, however low the
leading offer may be.

The following theorem provides a necessary and sufficient condition for which there exlsts
an area R at ¢ = 1 (see Corollary 5.7).

- Theorem 5.13 a < 1 if and only if d < min{—s+Br—a, K(—s+8p)}.

Proof: If a < #;, then 22(a) < z‘l’(:cl) = z¢ from Lemma 4.5(a). If 2%(a ) = z¢, that is, a
satisfies the equa.tmn 22(z) = ¢, then thls contradicts the definition of #,. Hence it must
be 2(a) < 31 Conversely, if z{(a) < .’L‘l = 2{(%,), then a < Z; from Lemma 4. 5(&) As a
result, @ < Z; is equivalent to z(a) < z8.

Now, since 20(a) = max{ae,—s+ By} from Eq.(4.14) and vw(a) = p, it follows that
#(a) < z{ is equivalent to a < z¢ and —s+fBu < z%. Here, a < z? is equivalent to
K(a) > K(2%) from Lemma 3.1(a). Noting that K(a) = —s+Bu—a from Lemma 3.1(c) and
that K(z{) = d from 0 = g¥(29) = K(2¥)~d, we get that K(a) > K(«%) is equivalent to
—s+fp1—a > d. Similarly, we can show that —s+fu < z¢ is equivalent to K(—s+8x) > d.
Therefore, 2{{a) < 2, or a < #, is equivalent to the two inequalities, d < —s+8g—a and

d < K(—s+pp), that is, d < min{—s+Bu—a, K(—s+pBu)}.

This theorem states that if the reserving cost d satisfies d > min{—s+8p—a, K(—s+8u)},
then we should not reserve any offer however low the leading offer may be, and vice versa.

6. Infinite planning horizon
In this section, we examine the case of infinite planning horizon.
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Theorem 6.1 v,(z), wi(z), and ¢ converge to v(z), w(z), and z¢, respectively, where

_ [ (=°+8)/B ifz <2
v(e) = { T(z)+e ifz° <z,

if z < z°,

d o
. 2% =2°—d
if z° < z, ’

mo
a(e)={ °
and & = —oo.

Proof: First, clearly v(z) = T'(z)+z and w(z) = z for © > z° from Lemmas 5.10(L.c} and
5.1(c). Next, v(z) and w(z) for z < z° converge to certain functions v(z) < T(z°)+z°
and w(z) < z° from Lemma 4.1, Theorem 5.9, and Theorem 5.12. Hence, 2{(z), 2{(z}, and
u(z, w) converge to certain functions, respectively, 24(z), 2°(z), and u(z,w). By definitions
of vy(z), 2¥(z), 2{(x), and w(z), they can be expressed as

oa)= [ " max{z(w), 2°(x)}dF(w), (6.1)
2*(z) = max{z, —d~s+Pv(z)}, (6.2)
2°(z) = max{z, —s+pv(z)}, (6.3)
w(z) = max{w | z%(w) = 2°(z)}. (6.4)

Now, x¢ < 2°—d for any ¢ from Lemma 5.1(b), that is, z¢ is bounded from above. Because
of this and Theorem 5.8(b), z¢ converges to a certain 2% < z°—d as t — oo.

Here, note that, similarly to Lemma 5.3, we have

H(z) = { —d—s+pu(z) if z < z¢,

(6.5)

@ if ¢ < z,
#(z) ={ ;3+ﬁ v(@) ii zs; (6.6)
) — 2°(z) if w £ w(z),
wz,w) { 2 (w) if w(z) < w.. (6.7)

To begin with, we shall show that v;(z) for z < z° converges to (z°+s)/8.

(i) Assume 8 < 1. Then, it suffices to verify that the function v(z) = (2°+s)/8 with
z < z° is the unique solution of the Eq.(6.1). We shall show this by first revealing that the
right hand side of Eq.(6.1) becomes equal to (z°4-s)/8 if it is rearranged by substituting the
function and then confirming that Eq.(6.1) has an unique solution on z < 2°. Let the right
hand side be designated by R(z).

First, on substituting v(z) = (z°+s)/8 to Eq.(6.2), we obtain #z%(z) = max{z, z°—d},
implying that z¢ = 2°—d. Hence, Eq.(6.5) can be rewritten as follows.

(z) = { 2°—d if x < 29,

x if 2% < . (6:8)

Substitutiﬁg v(z) = (z°+5)/8 to Eq.(6.6) yields 2°(z) = 2° for z < z°. Thus we can rewrite

Eq.(6.6) as follows.
or.n ) 20 ifz <20
#(e) = { z ifz° <z (6.9)
By using Eqs.(6.8) and (6.9), we have z%(2°) = 2° = 2°(z) for any = < 2°. This means
that the equation z%(w) = 2°(z), given x < 2°, has a solution z°. Since all w' > z° satisfy
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Aw') = w' > 2° = 2°(z) if © < 2°, it follows that w(z) = 2° for any = < z°. From the
above, if @ < z°, hence a < w(z) for z < 2°, then it follows for z < z° that

R(z) = ja " (@) dF (w) + f ' =4(w)dF (w)
—j 2(z)dF(w +j w)dF(w)
= fa 20 dF () + ]z w dF(w)

b
= ] -max{z°;widF{w)
= T(z°)+a°
= (z°+s)/8 | (6.10)
where the last equation followed from T(z°)+x° = (z°+s)/8 from Eq.(3.2) and K(z°) =
In the case of z° < a, the same thing as above can also be shown. Hence, it follows that the

function v(z) = (2°+s)/8 for z < z° satisfies the Eq.(6.1) for any 8 < 1. Here, of course,
this result holds true even for 8 = 1.

Next, so as to verify the uniqueness of the solution for x < b 1nstea.d of z £ z° (note that
z° < b from Lemma 5.1(b)). We assume that there exists another finite solution %(z) such
that 5(z) # v(z) at an < b where

B(z) = /jmax{zd(w), #°(z) }dF (w), (6.11)

in which 7¥(z) = max{z, —d—s+p%(z)} and z°(z) = max{z, —s+pB5(x)}. Now, let
A = sup,¢ |[v(z) — ()| Hence clearly, 0 < A < co. Then using the general formula

|ma.x{a1, b]_]’ - ma.x{ag, bg}l S max{|a1 - Gzl, lbl - bzl}, (6.12)
we immediately get from Eqs.(6.1) and (6.11),

(@) - (2)] < [ max{lz*(w) - #@)), (@) ~ FENFw).  (613)

Furthermore, by use of Eq.(6.12), we can show |z%(w) — 24(w)| < Blv(w) — (w)| < BA for
a < w<band |2°(z) ~ 2°(z)| < BA for z < b. Consequently, it follows from Eq.(6.13) that
lo(z) — B(z)| < B4, yielding A < BA, so that 1 < 8. This contradicts § < 1. Eventually,
the Eq.(6.1) for z < b must have the unique solution v(z).

(ii) Assume B = 1. Here, for convenience, we express v{z) and z° as, respectively, v(z; 8)
and z°(8). From T(xz°)+z° = (2°+s)/B and what is stated in the beginning of the proof,
we have v(z; 1) < (z°(1)+5)/1 for any z < 2°(1). Furthermore, (z°(8)+3)/8 < v(z; B) for
any B < 1 and any z from proof (i). In addition, it can be easily verified by induction that
v{z; B) < v(x;1) for any 8 < 1 and any z. Hence, we have for < z°(1),

(z°(8)+3)/B < v(z; 1) < (z°(1)+s)/1. (6.14)
Noting that (z°(8)+s)/8 — (z°(1)+s)/las f — 1 since z°(8) — 2°(1) by Lemma 3.1(d),

we have v(z; 1) = (2°(1)+3)/1 from Eq.(6.14).
Accordingly, the assertion is verified that v(z) = (z°+s)/8 for z <z°andany < 1. It
is shown in the proof (i) that w(z) = z° for z < 2° and z¢ = 2°—d if the assertion is true.
Finally, since v(z) > (z°+s)/8, from Eq.(6.3), we have z°(z) < 2° = 2%+d > z?. Hence,
the equation z°(x) = #? has no solution. Thus, by definition, £ = —co. 1
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7. Numerical Examples

This section illustrates the properties of z¢, #;, and w,(z) by some numerical examples
where offers are uniformly distributed with ¢ = 0 and b = 1, thus g = 0.5 and where s and
d are such that a < —d—s+0p with 8 = 0.97. It can be shown from Lemma 5.1 that @ < z°
and a < :vf. All calculations are made by stepsizing to 0.0005.

e z¢ : Figures 3 and 4 depict the relationships of z¢ with ¢, d, and s. From the figures,
we can confirm that ¢ is nondecreasing in ¢ and converges to x°—d (Theorem 5.8(b) and
Theorem 6.1). Here, we notice that = decreases as s or d increases.

e 7, : Figures 5 and 6 show the influence of ¢, d, and s on Z; where #; < 0 is regarded as
#;-=-0. -From ‘the figures, we-find -that -Edecreases—as—s-ord-imcreases; however, it -has not
yet been proven whether this property holds generally. Figure 7 shows that #; is not always
decreasing in ¢ where 8 = 1.0, s = 0.005, and d = 0.005.

o w;(z) : Figure 8 illustrates the relationship of w;(z) (bold line) with ¢ where s = 0.005
and d = 0.04 (see Figures 1 and 2 for details of the figure). We can confirm that w,(z) is
nondecreasing in = and ¢ and converges to z° for < 2° (Theorems 5.9, 5.12 and 6.1). It
was shown from other numerical examples that w;(z) becomes small as s becomes large or
d becomes small.

8. Conclusions
The main results of this paper are summarized as follows.

(a) A leading offer should not be accepted except on the deadline. This result can be
explained as follows. To accept a leading offer, its value is required to be at least x7. Since

d d
ft z° ?t
d =0.005
~ sl §= 0.005
o =]

d=0.1

0} 0 |
(=3 o
s=0.1
hu T T T T T T }t v- T T T T T T t
© 2 4 6 8 10 12 © 2 4 8 8 10 12
Figure 3. s = 0.005 Figure 4. d = 0.04
&
2]
5):-
(=]
[Ie]
8-
o
0y
2 ]
=)
T T T >t T T T T T T )t
8 10 12 2 4 6 8 10 12
Figure 5. s = 0.005 Figure 6. d = 0.04 Figure 7. &; incleases in ¢
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Figure 8. wy(z) (bold line) with s = 0.005 and d = 0.04

oo 02 04 08 08 10

z¢ is-independent of time ¢,-that is, { = z° {Theorem 5.-8(a})),~the-only-way-to-have.such
a leading offer is reduced to renewing the leading offer by reserving an offer w larger than
z°. However, even if such an offer appears, our decision is not to reserve it but to accept it
because of zZ < z°. Hence, since we never have an leading offer z larger than z° up to time 1,
no leading offer should be accepted except at time O (the deadline). However, from Eq.(4.3),
at time ‘0, if the value of a current offer is less than that of the leading offer, we make a
decision to accept it. From the above, it eventually follows that no leading offer should be
accepted except on the deadline. This appears counterintuitive to us because it seems not
so unreasonable to stop the search by accepting a leading offer before the deadline. We can
regard the reserving cost as a sort of insurance against the situation where no desirable offer
appears up to the deadline.

(b) Both the lowest value of offer to accept and the offer to reserve become small with
time elapse. This result implies that, as the deadline draws near, the searcher inclines to
more enthusiastically accept or reserve an offer that appears.

(¢c) Every time an offer is reserved, both the lowest value of the offer to accept and the
offer to reserve become larger. This result is easily explained in the light that the searcher
shifts to a favorable situation every time he reserves an offer.

(d) If an offer inferior to the leading offer is obtained, it should be automatically rejected.

(e) Given an infinite planning horizon, we should not reserve any offer over the whole
horizon. '

(f) At no time should we reserve any offer if the reserving cost is very high. Therefore,
it follows that there exists a lower bound d} of reserving cost d for which no offer should be
reserved. The lower bound of time 1 is given by d} = min{—s+8u—a, K(—s+8p)}. The
evaluation of Theorem 5.13 for ¢ > 2 is a subject that is yet to be investigated.
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Appendix

Lemma 8.1 Let f be a continuous function on (—oo, b] which takes minimum value m and
mazimum value M where b is a certain given finite number. Then for any ¢ € [m, M|, there
exists & mazimum element of a set S(c) = {w | f(w) =¢, w < b}.

Lemma 8.2 Let f be a continuous and nondecreasing function on (—oo,+-00) which takes

minimum value m and mazimum value M. Then for any ¢ € (m, M|, there exists a minimum
element of a set S{c) = {w | f(w) = ¢}.

Lemma 8.3 Ifd > 0 and fi{z) < faz) for any-m, then it follows that
max{z, fi(z)} — max{z, —d+ fi(2)} < max{z, f2(z)} — max{z, —d+ fo(x)}. (8.1)
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