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Abstract—The decomposition method (DM) is a nonnumerical method for
solving strongly nonlinear differential equations. In this paper, the DM is
used to solve the one-dimensional nonlinear Poisson’s equations governing the
linearly graded p-n junctions in semiconductor devices, and the error analy-
sts for the approximate analytic solutions obtained by the DM is carried out.
Also, the whole solution procedure has been realized by the mathematics-
mechanization (MM) with microcomputers. The simulated results are ac-
curate and reliable, and the quantitative analysis of the linearly graded p-n
junctions has been realized. This work indicates that the DM has some quite
significant advantages, and that it will open up a new way for the numerical
analysis of semiconductor devices.

Keywords—Decomposition method, One-dimensional nonlinear Poisson's
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1. Introduction

The numerical analysis for semiconductor devices consists of obtaining the solution of
a set of differential equations under appropriate boundary and initial conditions. The
equations are nonlinear, and the nonlinearity involved is of an exponential type, which

deviates strongly from a linear relation [1]. For the linearly graded p-n junction, when
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considered under a nonsignificant current, we only need to solve nonlinear Poisson’s equa-
tion of one-dimension [1]. Morgan and Smits [2] analyzed the linearly graded p-n junction
by the explicit numerical-integration method. However, the numerical integration tends
to diverge unless the electric-field magnitude at the junction point is given in an ex-
traordinary accuracy, for example, to thirty digits. Even then, the solution obtained is
restricted to a very small region around the junction point. Kurata [1] used the implicit
method, where the matrix equation resulting from the difference approximation must be
solved many times accoding to Newton’s iteration principle. The method is complicated
and time-consuming. It is obvious that both these methods are numerical methods. We
must assume the extent of the depletion layer of the junction before the application of
them, but the reasonable choice of this parameter in advance is very difficult.

Since the beginning of the 80%s, G. Adomian [3-5] has developed an original method,
named the decomposition method (DM), that has substantial advantages in solving non-
linear differential equations. It is. based on the decomposition of unknown function into
an infinite sum of functions defined by a recurrent relation. The nonlinearity is also ex-
pressed in terms of an infinite sum of special polynomials called Adomian’s polynomials.
The method is well-suited to physical problems since it needs neither the linearization and
perturbation nor other restrictive assumptions which may change, sometimes seriously,
the problem being solved. In this paper, the one-dimensional nonlinear Poisson’s equation
is solved by the DM, and the error analysis for the approximate solutions obtained by
the DM is carried out. The whole solution procedure has been realized by the MM with
microcomputers. Also, some simulated results are given, which are in good agreement
with the qualitative conclusions in {1,2]. The error analysis results indicate that the ap-
proximate analytic solution determined by the DM is accurate and reliable and that it

can be used to analyze quantitatively the linearly graded p-n junctions.

2. Basic Equations and the Boundary Conditions

According to the semiconductor device principle, the basic equation for every semicon-
ductor device is a set of nonlinear differential equations with appropriate boundary and

initial conditions. However, under the nonsignificant-current assumption, the basic equa-



tion for the linearly graded p-n junction in the one-dimensional case can be expressed as
nonlinear Poisson’s equation, with appropriate boundary conditions. Poisson’s equation

in the one-dimensional case is written as [1]
—E=-2N@+p-n, 1

where 1 stands for the potential, x the distance, N(z) the net impurity concentration,
g the electronic charge, € the dielectric constant, p the hole density, and n the electron

density. For the linearly graded junction,
N{z) = mz. (2)

The nonsignificant-current assumption allows the free carrier densities p and n to be
written approximately as functions of a single-variable, namely 1. The electron and hole

densities in the depletion layer are written as [1]
n = nie®, p = ni®¥), (3)

where § = ¢/ KT, K stands for the Boltzmann constant, T' the temperature, n; the intrin-
sic free-electron density, v the applied voltage. The quotient # is called the Boltzmann

factor. Substituting (2)(3) into (1) yields
2
?’g— = —-g-[ma: + 12 =¥) — ;e8] (4)
z

Boundary conditions for 9 can be expressed as [1]

(—a) = FInf /(F2)2 + 1 - £2] 4 v,
y(a) = § 1ol /(B2 + 1+ 5,

where a is & parameter concerning the extent of the depletion layer. Outside the deple-

(5)

tion layer, the space-charge neutrality holds. In view of the structural symmetry of the
junction, the extent of the depletion layer of the junction is 2a. Notice that the applied
voltage v should not take the positive value, since in that case a significant current flows,
making the solution physically meaningless. Therefore, » must be nonpositive.

In the two-point boundary-value problem (4)(5), ¢, g, ¢ and n; are all physical con-

stants, m and v are parameters given in advance, while a is an unknown quantity. The



condition for determining e value is that the electric-field values in positions *a are 0,
which can be written as
dyp

d—$|w=:|:a =0. (6)

Until now, we have establishea the analysis model (4)-(6). In the next section, we
first solve problem (4)(5) by the DM to obtain the analytic approximate solution with a
as a parameter, then we solve equation (6) to find a value. The accurate determination
of the extent of the depletion layer by this technique is one of the great advantages of our

method, which other numerical methods are difficult to accomplish.

3. The Computational Procedure

The DM is a general method for solving nonlinear problems. For its general principle,
refer to [3-5]. Here, we take the boundary-value problem (4)(5) as an example to illustrate
the solution procedure of the DM and our improvement on the iteration scheme of the
method.

Let L= -j—:g, f) = %[eg(”_“’) — ¢%%], then the equation (4) can be written

m
Ip = ~L2a — f). (1)

Solving for I+ and operating with L™1, the two-fold indefinite integral operator, we have
¥ =0 - L(T0) - 17N (W), (®)

where ® satisfles L® = 0. ® = cg + c1%, co and ¢ are integration constants. By using

the double decomposition strategy [6], we now decompose the solution % as well as the

(=] [+2]
integration constant term ®. Let ¥ = Y %n,® = Y (com + ¢1,m2). The nonlinear
m=0 m=0

(=]

term f() will be equated to ¥ A, where A, are polynomials of 49, %1,...,%¥m called
m={

Adomian’s polynomials and are calculated by the formulae

1 d™ ,— : :

m=;n_!m.f['l}b(A)]IA:Oam=0:112:"' (9)

_ o0
where ¥(\) = Y ¥mA™. Putting these relations into (8) gives
m=0

o0 ==} (==
> = > (com + €1,mT) — %—Tws . Z Ap. (10)

m=0 m=0 m=0
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The basic iteration scheme of the DM can be expressed as

Yo = cop + c1,0 — L,

(11)

Pm = Co,m + Clm& — L—lAm—ls m21.
In order to avoid the difficult integrations and to express the integration results with
elementary functions, we improve the iteration scheme of the method. From (10), the

m’s can be determined by the recurrent relation

Yo = co,0 + €1,0%,
P =cp1+ 112~ 96%2:3 — L1 4,, (12)

Ym = Coym + CLm® — L1 Am_1, m>2.
Let
Tm =1%o +¥1+ -+ Pm_1, (13)

then ¢ m and ¢}, are determined by satisfying the boundary conditions (5) with rm41.

Bi(e) = pIn[/(E2)2 +1- B2l +o,
Ba(a) = S1nf, [(EE? + 1+ 22,

then the boundary conditions (5) become

¥(—a) = f1(a),¥(a) = fz(a). (15)

Matching r1 = 1/ to the boundary conditions (15), cgo and c; g are determined by two

cop = ﬂl(al-!-ﬁz!a!,

Denote

(14)

linear equations, and

(16)
o = Bala)B@)
So we get r1 = 1pp. From (9), we have Ag = f(%o). Then
P =co1 + 118 — %ms — L1 4. (17

Matching re = 9g -+ 41 to the boundary conditions (15), we require ¥ (—a) = 91 (a) = C.
By solving two linear equations, we have
L~} Ag(=a)+ L~ Ao (a)

] )

0,1 =
(18)

-1 _r-1 —
o1 = §a? 4+ Eelapl el
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So we get 11 and 7o = g +11. From (9), 41 can be determined by g and ;. Generally,
if 10,01, . + ., ¥m—1 have been found for m>2, A;,_1 can be determined by o, ¥1,. . ., ¥m-1
and (9). Matching rme1 = %o + -+ + ¥Ym—1 + Y to the boundary conditions (15), we

require ¥, {—a) = ¥m(a) = 0. By solving two linear equations, we have

L Apy(—a)+L " Apmy(a)
Cm = ] s

7

(19)

L Amoa1(a)—L 1 Am_1(~a)
€l,m = Za ‘

So we get ¥m and rpp1 =Po + P+ + Y.
From the above-mentioned procedure, we will arrive at an approximate analytic solu-
tion r(z,a) for the boundary-value problem (4)(5). By solving equation

dr(z,a)

iz |w=ze = 0, (20)

we can obtain the value ¢ and the extent of the depletion layer 2a.

4. The MM with Computers and the Error Analysis

Although the DM is a general method that is well-suited to solving many nonlinear prob-
lems, the artificial derivation of its computational procedure for the solution of complex
nonlinear equations is cumbersome as well as time-consuming, and the complex approx-
imate solutions with high accuracy are hard to calculate, Computers and new softwares
can be of a great help for the computations. It is necessary to realize the DM for the
solution of complex nonlinear equations by the MM with computers and the symbolic
software such as Maple and Mathematica. Now we state the concrete steps of the MM

briefly.
¢ Compute ¢ and ¢) g with boundary conditions, then obtain 1.

¢ According to the recurrent scheme, derive Am—1,¢0.m,C1,m, and Pm(m = 1,2,...)

successively.

o Adding these 1,’s, obtain the approximate analytic solution r(z,e). By solving
equation (20), find the parameter a. Simplify the approximant r(z, a).

6



e Carry out the error analysis for the approximate solution obtained by the DM, by

using the technique described below.

¢ Quantitatively analyze the potential r and the electric field —3:,7, and reveal the

objective laws governing the linearly graded p-n junctions.

‘With the computational procedure and the MM method, we have studied the boundary-
value problem (4)(5) carefully. Considering the concise expression of the approximate
solution and the limited microcomputer memory, the two-term approximation to the so-

lution is given by

r(e,0) = gyt = 2EAEAD
2qa’n; ¢ 6 _ flo—Bi(@)] _ flo—Ba(a)]
{eﬁl(a) + eP2(a)8 _ Blv—=Pi(a)] _ Blv—p2(a }
[B2(a) — B1(a)]?eb?
+ . 2q;n(;a)]2682 (P18 _ a(@)0 _ flv—pr(@)] . oflv—Ba(e))}
2(a) — B
Bo(a) = fi(a) | gma®  gm 4 4qa’n;
+ 2a Tt e Tt T [Ba(a) — B1(a)]262
618) (a)+83(a)) , 618 (a) =83 ()] _ 88y () +82(a)] ;o 8182 (a) =8y (a)]
+ T +-uf z
{e ) Za —e z Za }

The parameter a can be determined easily by solving equation %lz=ia = 0 with a
symbolic program such as Mathematica.

The method’s convergence has been studied by Y. Cherruault [7,8] by using the fixed
point theorems [7] and the properties of the substituted series [8}, but problems still remain
with differential equations. P. Nelson [9] proposed a counterexample to the convergence
assertion of the DM. Because there is no theoretical proof that is entirely satisfactory, we
must verify the validity of the approximate solution obtained with a symbolic program
such as Mathematica.

It is obvious that ry satisfies the boundary conditions (5). We need to verify that ra

satisfies the equation (4). For this purpose, we define the following absolute error and



relative error functions

27‘
AB() = 22 + Lfma + f(ro), )
2
RB(s) = 2x AB@){ 5% - Lima + £, 2

and the criterion whether these two functions are close to 0 in [—a, a] can be used to test

the degree of accuracy of the approximate solution rs.

5. Simulated Results

Let us now discuss some examples. At this stage, the following numerical data are given
for physical constants: ¢ = 1.6x10719 Coul, € = 1.064x10716 F/um, § = 38.5 V71,
n; = 1.4x1072 (uym)~?. By using the MM method, four cases with v = 0 V, m = 10*
(pm)~% v = =5V, m = 10* (pm)™% v = =10 V, m = 10* (um)~* and v = -100 V,
m = 10° (um)~* are simulated, and the corresponding @ values are 0.4377 pm, 0.8355
pm, 1.026 pum and 4.65 um, respectively. The potential, electric field, absolute error and
relative error distributions in the depletion layers for these four cases are shown in Figure
1 to Figure 16. The computational results are in good agreement with the qualitative
conclusions given in [1,2]. The error analysis results show that the approximate analytic
solutions obtained are accurate and reliable, especially when the absolute values of v’s are
large. Also, our technique can be used to find the accurate extent of the depletion layer
for the linearly graded p-n junctions and to analyze quantitatively their various electric

performance indices, such as the potential distribution and the electric field distribution.

6. Conclusions

The application of the DM to the solution of the one-dimensional Poisson’s equation has
been studied, and the approximate analytic solution for this strongly nonlinear equation
has been found, depending on the MM method with microcomputer. Also, the technique
for determining the extent of the depletion layer has been presented, and the error analysis
for the obtained approximate solutions has been carried out. Qur research work indicates
that the approximate analytic solution determined by the DM is accurate and reliable,

and that it can be used to analyze quantitatively the linearly graded p-n junctions.



The DM is an efficient method that can solve many nonlinear equations. For the
first time, its efficiency has been proved with the quantitative analysis of the linearly
graded p-n junctions. The method has some quite significant advantages over numerical
methods such as finite element method a.pd finite difference method, and it gives much
more information. Although the linearly graded p-n junction just has been analyzed
quantitatively, maybe the DM will open up a new way for the numerical analysis of
semiconductor devices. The approximate solution determined by the DM can be viewed
as usual functions. It can be used to solve very interesting problems such as quantitative

analysis and optimization design.
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Figure 1: Potential distribution with v = 0 V and m = 10* (pm)~*

0 H
a=0.4377 (xm)
m=10* (um™)
0.325 v=0 (V)

E (V/um)

-0.85 | \
\ /

T

-1.3 -
0.4377 021885 0 0.21885 0.4377

Distance x (sm)

Figure 2: Electric field distribution with v =0 V and m = 10* (pm)~*
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Figure 3: Absolute error distribution with v =0 V and m = 10* (pum)~*
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Figure 4: Relative error distribution with v =0 V and m = 10* (ppm)~*
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Figure 6: Electric field distribution with v = =5 V and m = 10* (gm)~*

05

[2=0.8355 (um)
Al m=10* (um™® ‘

<25
-4 /
-5.5
-0,8355 -0.41775 0 0.41775 0.8355

Distance x (sm)

Potential distribution with v = —5 V and m = 10* (gm)~*

0 |
2=0.8355 (um) {
m=10* (um™) |

-1.5 v=-5 (V) :

5 ' - :
-0.8355 041775 0 0.41778 0.8355
Distance x {sm)

13



13

2=0.8355 (1)
m=10* (um™)

< 65|
5 v=-5 (V)
2‘ J
g o
i (
D
3
2
< 65
-13 .
-0,8355 0.41775 0 0.41775 0.8355

Distance x (am)

Figure 7: Absolute error distribution with v = =5 V and m = 10* (um)~*
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Figure 8: Relative error distribution with v = —5 V and m = 10* (pm)~*
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Figure 9: Potential distribution with v = —10 V and m = 10* (pm)™*
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Figure 10: Electric field distribution with v = ~10V and m = 10* (pm)™*
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Figure 11: Absolute error distribution with v = —10 V and m = 10* (pm)~* |
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Figure 12: Relative error distribution with v = —10 V and m = 10* (pm)~*
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Figure 13: Potential distribution with v = —100 V and m = 10% (ysm)™*
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Figure 14: Electric field distribution with v = —100 V and m = 10% (pm)™*
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Figure 15: Absolute error distribution with v = ~100 V and m = 10° (um)™* |
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Figure 16: Relative error distribution with v = —-100 V and m = 108 (,um)_‘lr ‘
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