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In this paper, we consider the following discrete-time sequential allocation problein with a finite horizon ¢. Suppose
we have / units of material to manufacture certain products which are sold to successively appearing buyers. In
producing a product, we can complete it with probability ¢ where it is impossible to recycle unsuccessful units. A
distribution of the price offered by each appearing buyer and the probability of successful production are known. For
producing, we take a strategy of shooi-look-shoot sclieme, implying that if a production is unsucecessful, then we must
decide whether or not to consume an additional one. At the end of each period, we must further decide whether or
not to retire the production activity. In case of retirement, we immediately receive a termninal reward depending on
the remaining periods and the remaining units of material. The objective here is to examine the properties of the
optimal decision rules which maximize the total expected reward, the expected total sales plus the expected terminal
reward. We find two interesting features in the optimal decision rules: (1) the optimal decision rule for production
is not always monotone in the namber of units of material in hand, (2) the optimal decision rule for retirement may
become possibly the following form; if there remain few or too many units of material, then it is ()ptliulz\.l for us to

retire, or else to continue.

1. Introduction

In this paper, we discuss the following sequential allocation problem with a finite planning horizon.
Suppose we have ¢ units of material to manufacture certain products where a unit of material is
enough to make a product. In consuming a unit, the manufacturing is successful with probability
g and unsuccessful with 1 — ¢ where it is impossible to recycle unsuccessful units. OQur planning
horizon is ¢ periods. At the beginning of each period, we may find a buyer, assumed that every
buyer wants to buy ouly one product. Then, he immediately offers a buying price w, which is a
random sample from a known distribution and independent of prices offered by buyers so far. If his
offering price is attractive, we try to make a product inmediately. Completing the product, we sell
it for the price w, and of course an additional production is unnecessary. If we fail, the buyer may
disappear with probability r. We can try to make a product over and over while the buyer stands
still or the material remains. Repeated productions for the same buyer are assumed to waste 1o
time. Such a way of decision that it is decided whether or not to make an attempt every time we
confirm the result of the previous trial is called a shoot-look-shoot (for short, SLS) scheme. After
each failure, we can also refuse the proposal of the present buyer.

If we sell one unit, lose the present buyer or refuse him, then we have to make an additional

decision as to whether or not to retire the production activity. In case of retirement, we immediately
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receive a terminal reward depending on the remaining periods and the remaining units of material.
If the production activity will be continued, then a period proceeds and we will search for another
buyer. In this way, we will continue the production activity until arriving at the deadline or deciding
to retire. Assume it is impossible to make a product before a buyer offers a price. Our purpose is
to maximize the total expected reward, the expected total sales plus the expected terminal reward.

Many authors so far study sequential allocation problems, wlhich can be classified into two types,
shooting problems and economic ones. In the former, decision makers who have, for example, ¢
torpedoes must decide how many to allocate to the present target of value w, a random variable.
There exist the following two types of policies as to the allocation of torpedoes: SLS policy and
volley. Heve, by volley policy, we means that if the decision maker decides to shoot § torpedoes,
then he shoots them in salvo.

Mastran and Thomas [4] treat a military problem in which the computational method to obtain
the optimal decision rules for both policies are showed. Kisi [3] considers a imodel of SLS policy and
examines the relation between the approximate solution and the exact. Sakaguchi [9] investigates
the continuous-time version of Mastran and Thomas [4]. Namekata et al. [5] deal with a niodel
of volley policy where there cxist two kinds of targets inn a sense that tlie necessary munber of
torpedoes to sink them are different. Namekata et al. [7] also examine a problem of volley policy
with unknown number of periods. The author {10] discuss a problem of SLS policy, in which the
search cost must be payed to find a target, and it is derived that a critical value, at which firing or
not become indifferent in the optimal decision, is not always decreasing! in the number of remaining
bullets. Furthermore, the author [11] examine a problem in which it is possible to replenish some
bullets by paying a certain cost.

On the other hand, Derman et al, [2] deal with a problem of volley policy as an cconomic
investment problem. In their model, all investment opportuuitics have a common profit function
depending on the amount of resources allocated. Namekata et al. [6] also discuss an economic
problem of volley policy. They assume that a decision maker sells some of his goods to acquire
a reward which depends on both the number of goods sold and a class of appearing custower,
provided that unsold goods may possibly perish at the beginning of the next period. Prastacos [8]

also considers an investment problem of volley policy in which a profit function depends on both

tIn this paper, the words “increasing” and “decreasing” mean “nondecreasing™ and “nonincreasing”, respectively.



the quality of the present opportunity and the quantity of the resources invested.

In models such as stated above, the resources (or torpedoes, etc.) which remain at deadline
are assumed to be valuecless. In addition, except the author [11], if a decision maker consumes all
of resources before the deadline, he only wastes his remaining planniug horizon. However, he may
get some profit in exchange for remaining resources, and as the proverb “time is money” says, he
may be able to use the remaining periods for another purpose. For this reason, in this paper, we
employ a concept of terminal reward explained previously.

By the way, there exists a sequential assignment problem by Derman et al. [1]. Though it is
closely related to a sequential allocation problem of SLS policy, what differs from the other are the
following points. In a sequential allocation problem of SLS policy, resources are homogeneous and
it is possible to invest an additional unit just after observing the result of the previous investment.
In a sequential assignment problem, each resource has a certain kind of different value and an
additional investment is impossible.

In the next section, we define variables and parameters used in this model, give its optimality
equations and reveal fundamental properties of optimal decision rules. In Sections 3 and 4, two

special cases are discussed. Conclusions obtained are sununarized in Section 5,

2. Optimality Equations and Optimal Decision Rules

Let us define the following:

¢ number of remaining units of material, 120,

t : remaining planning horizon {point of tine), £>0,
w : price offered by the present buyer, w € [0,1].
g : probability of successful production, g € (0,1].
r : probability of losing the present buyer, r €[0,1],
p o p=010-g0-r) p €[0,1),
£ discount factor, B € (0,1].

Furthermore, let

uy(Z, w) ©  maximum of the total expected reward with ¢ periods and ¢ units of material remaining

when the present buyer offers w,

ve(2) ¢ expectation of u,(¢, w) in terms of w,



z(1) ©  maximum of the total expected reward starting from time £ with ¢ units of material

remaining when it is decided not to try to produce the product for the present buyer,
R(7) :  terminal reward when t periods remain and 2 units of material are available, increasing

in both f and ? and concave in .

We shall number points of time backward from the horizon point as 0, 1, and so on; the interval
between time ¢ and ¢ — 1 is called period ¢, as depicted in Figure 1.

A buyer appears with probability ¢ € (0, 1], assumed that morve than one buyer does not appear
at the same point of time. The price he will offer is a random variable having a known probability
distribution function Fy{w), continuous or discrete, where Fi(w) = 0 for w < 0, Fi{w) < 1 for
w < 1 and Fi(w) =1 for w > 1. The distribution does not concentrate on only a point, that is.
Pr(w} < 1 for any w. The prices offered at successive points of time are assimned to be stochastically
independent. Now let Fy(w) be a distribution function where Pr(w) = 0 for auy w 3 0. Theun,

using #, we can combined Fy{w) and Fy(w) into the following distribution function:
Flw) = (1 — 0)Fy(w) + 8 F (w). (2.1)
Then, we have the following recursive relations:

w{t, w) = max{z(s), glw+z(i - 1)) + (1 —¢)rz,{i — 1)+ (1 — r)u,(i — 1, w)}}

= max{z(z), pu(Ei - Lw)+qu+ (1 -pzn@E-1} t>0,12>1, (2.2)
where
Zt(‘l:) = lllax{Rf(i)a ﬂvl—-l(i)}: 4 2 la 1 2 0: (23)
t
) = [ w@OdFE), t20,i21, (2.4)
0
zo(¢) = Ro(i), 120, (2.5)
w(0,w) =1 (0) = z(0), ¢>0. (2.6)
t t—1 2 1 4] points of time
| I YA | |
| 7/ 1 ]
t 2 1 periods

Figure 1 Points of time and periods



Here, assume Rg{0) =0 and

R(i+1)- R()) <g, t20,i20, (2.7)

which implies that, provided that a buyer offering the maximmn price w = 1 appears fortunately
and we accept it, the increasing rate of terminal reward as to ¢ is always less than the expected
reward from the buyer, that is, g = 1 x ¢+ 0 x {1 — ¢). From (2.3), (2.5) and (2.6), immediately

we have for ¢t > 1

z(0) = max{R,(0), Bvi—1(0)}

= max{J(0), fmax{Re_1(0), fu—2(0)}}

= s =1 =
= 5151;{5!3 I (0) = R(0). (2.8)

Hence, we also get u,(0,w) = v,(0) = 1(0) from (2.6). Now we will show some properties of the
optimality equations.

Lemma 1.

(a) uy(i,w), v (i) end zt(i) are tnereasing mt for any 1 and w.

(b)Y w (i, w), v(i) and 2 (i) are increasing in ¢ for any t and w.

(c) w(i+1,w)—w(i,w) <q for any t, i and w where the equal sign holds only when ¢ = 0 and

w = 1. In addition, v,( + 1) — v,(1) < ¢ and 2z/(i + 1) — z,(1) < ¢ also hold for uny t and 1.

(d} (i, w) is increasing in w for anyt and ¢.

Proof: (a} From (2.3) and the definition of R(t), we get z;(i) > Ry(2) > Rpli) = zy(i). Now
assume z{i) > z—(¢) for any i. Then, easily we get w(0,w) = z/(0) > 2z-1(0) = w_(0,w).
Furthermore, supposing w(i — 1, w) > ;- (i — 1,w) as the second inductive assumption, we obtain
w (3, w} > w—1(2,w) from (2.2). Hence it follows that w;(i,w) > w_1(i,w) for any i and w.

Accordingly we have v (i) > v;— (i) for any ¢, which yields

zp1 (1) = max{Ri41(2), v (i)}

> max{R(), fvi—1(1)} = z /(%) (2.9)

for any i. By double induction, the statement is proven.



(b) By definition, Rg(), hence zg(z) is increasing in i. Now let z(z +1) 2 2z(2) for any z. It is

obvious that u,(1,w) > z/(1) > 2(0) = w,{0,w). In addition, assume u(z,w) > u,(¢ — 1,w) as the

second inductive assumption. Then we have

w(t 4+ 1, w) = max{z /(i + 1), pus{i,w) + quw + (1 — p)z(d)}

> max{z (i}, pu(i = Lw) + quw + (1 — p)z(i — 1}} = weld, w). {2.10)

From above, it follows that w,(z, w) is increasing in ¢ for any w. Therefore, we get v (1 + 1) 2 (1)

for any ¢ and w, which yiclds

ZH*[(i + 1) = 11’1&)({R;+1(?: + 1), ﬂ‘t};(i + l)}

> max{R41 (i), foi(d)} = z41 (i) (2.11)

for any ¢. By double induction, we obtain the statement.

(¢) From the definition, we have for any ¢
zo(i + 1} — 20(d) = Ro(e + 1) — Rolz) < ¢. (2.12)
Now suppose z/(i -+ 1} — 2z;(2) < ¢ for any ¢. Then , immediately we get.

(L, w) — wy(0,w) = max{z/(1), quw+ z{0)} — z(0)

=max{z/(1l) — 2(0), qw} < ¢ (2.13)

where the inequality sign < can be replaced with < when w < 1. Further, let w,(z, w) —u, (i —1,w} £

g. Then, using the general formule max; ¢; — max; b; < max;(a; — b;) we have

w{t + 1,w) — w (i, w) € max{z(t+1)==z/(2),

plug(t, w) — w(i—1,0)) -+ (1 — p)(z () — (i — 1))} < g. (2.14)

Hence it follows that w,(:+1, w) —u {7, w) < ¢ for any ¢ and w except ¢ = 0 and w = 1. Accordingly

we get v;(2 +1) — v (2) < ¢ and
211 (B + 1) — 2 (1) S max{Rpp1 (1 + 1) = Rep 1 (2), floi +1) —ve(3))} < ¢ (2.15)

for all <. Thus by double induction, the proof is complete.

(d) It is easily proven by induction. 1



Now, let %,(z) be the function of real number 7 € {0,00) defined by successively connecting two
points (Z,v:(t)} and (2 + 1,v(z + 1)), ¢ = 0,1,2,..., with a straight line, and so also be R,(%).
Furthermore, we shall define the following functions.

gt wy = pu(t — Lw) +qu+ (1 —pz(i — 1) ~ z{é), t>0,i>1, (2.16)
$i(®) = B () ~ Bi(@), t21,720. (2.17)
Then, by using ¢:{Z, w} and ,{7), optimal decision rules can be expressed as follows:
(a) If g (i, w) = 0, then product one unit, or else don’t product.

(b} If 4, (i) > 0, then continue the production activity, or else retire.
An w satisfying g, (i, w) = 0, if it exists, is called a production critical value h(3) for given t and
i, and an 7 satisfying 1,(7) = 0, also if it exists, is called a retérement critical value pe for a given t.

The above functions have the following properties,
Lemma 2.
(a) Fort>0 andt>1, g, w) =0 has o unigue solution h(z) € {0, 1).

(b) #u(0) <0 fort>1.
Proof: (a) It can be easily proven by induction that w,(z,0) = z,(0), hence we get

9(2,0) =pry(z — 1,0) + (1 = plz (2 — 1) — 2(3)
= 26 — 1) — 2,(i) < 0. (2.18)

On the other hand, it follows from Lemma 1(c) that

g2, 1) = pug(i — 1, 1) + g -+ (1 = plz(i — 1) — z(3)
2pz(i— 1 +q+ (1 —pla(i = 1) — z(z)
> g = (z(i) —z(i— 1)) > 0. (2.19)
Furthermore, since g;(i,w) is a continuous function of w on [0,1], it follows that g,(z,w) = 0 has
a solution w € [0,1). It is clear from (2.16) that g,(:, w) is strictly increasing in w for ¢+ > 0 and
t 2 1, hence the solution is unique.

(b) Since 'Ut(O) = RL(O), 80 ﬁ[(O) = R,g (0), we gcﬁ 'iﬁI(O) = ﬁR[_l(O) - Rf((]) < 0. |

Because A,(2) is unique and %, (Z) € [0,1) for given ¢ and ¢, we get the following optimal decision

rule: if w > hy(2), then make one unit, or clse don't make.
b ¥



Now suppose t = 0. Then, immediately we get from (2.5) and (2.16)

0 = go(1. 2o(1)) = qho(1) + Ro(0) — Ity(1), (2.20)

hence
ho(1} = (Ro(1) — Ro(0})/q. (2.21)

If hg(i) = (Ro(2) — Ro(i — 1))}/q, then it follows from the concavity of R{z) in i that
go(z + 1, ho(2)) = puo(, ho(2)) + ¢ho(d) + (1 — plzo(e) — 202 + 1)

= gqho(i) + zo(i) — 20(¢ + 1)

= (Rg(i) — Ro(i — 1)) — (Rt + 1) — fg(2)) 2 0. (2.22)
Therefore we obtain hg(z) > hg(Z + 1), whiclt yields
0 =golz +1,ho(z +1)) = pzole) + gholz + 1) 4 (1 = p)zy(i) ~ z0( -+ 1), (2.23)
hence
ho(i + 1) = (Ro(Z + 1) — Rol(z}}/4g. (2.24)

By induction, we have hg(z) = (Rp(2) — Ro(i — 1)) /¢ < ho{i — 1} for all ¢ > 1. Furthermore, the
following holds true in general:
0= gi(i, he(2)) = prg (i — 1, 2 (2)) + qhe (0) + (1 = plz (i — 1) — 2 ()
2 ¢hi () + zi(e — 1) — =z (3), ‘ (2.25)
which is rewritten
hi(i) < (D) —z(i—1)) /g, t20,i21. (2.26)

The lemma below tells us some more detailed properties of h(i).

Lemma 3.
(a) If p>0, then fort > 1 and i > 1,

hi(@) 2 () i +1) <= WE+1)= (<) (i + 1) — z(2))/q.
When p =0, it always holds true fort > 1 and ¢ > 1 that hy(i +1) = {z,(i + 1) — z,(z)) /q.

(b) Fort>1andi> 1, if h(i) 2 h(t +1), then 2z(i) —z{(i — 1) — z (i +1) > 0.
(¢) Fort>1landi>1,if 22,(i) — 2zt — 1) — 2+ 1) <0, then h(z) < hy(z + 1).
(d) Assume hy(z) = (z(t) — z (i = 1})/q for t > 1 and i > 1. Then

22(i) — (i — 1) — (i + 1) > 0 = hy(d) > hy(i + 1).



(e) For e givent and a given positive integer I, the eritical value hy (1) is decreasing int < I+ 1.

if and only if
20(8) =zt —1)—z(z+1) 20, 1<:< 1

{t} Foru qiven t and o given positive integer I, of Iy (2) is decreasing tn ¢ < I+ 1, then
2o(t) — (e — 1) — (i +1) >0, 1<i<]T.
Proof: (a) Supposep > 0 and I(2) 2 (<) (e + 1) for £ > 0 and ¢ > 0. Then, since g, (i.w) is
strictly increasing in w, we get
=g+ 100G+ =pr(a, e+ 1))+ ghe(t + 1)+ (1 — plale) ~ z (e -+ 1)
=(<) gl + 1) + z(2) — z (1 + 1), (2.27)

hence

ha(i + 1) =(<) (2t + 1) — 2,(0)) /g. (2.28)

To go the other way, if p > 0 and ly(i + 1) = (<) (2,(¢ + 1) — z,(2))/q for given t and ¢, then it

follows that

0=g(d + LA i+ 1)) = pu(i, (e + 1)) + ghy (0 + 1) + (1 — plagld) — z1(i + 1)

=(<) plueld, he(i 4 1)) — 2, (4)), (2.29)
hence
z(2) =(<Yaw (4, by (i + 1)) {2.30)
implying that
he(2) 2(<) (2 + 1), (2.31)

When p = 0, the statement is immediate from the fact that g (7 + 1,w) = qw + 2() — z(z + 1).

{(b) From the assumption and (2.26), we have

0<gi(@+ 1,0 (2) = qhy(2) + 2(8) — 202 + 1) £ 22(8) — 2(i ~ 1} — 2z, (i + 1). (2.32)
{c) The statement is the contraposition of (b).
(d) It follows from (2.26) that
0L 22(i) — i+ 1) —z{i—1)
= qh(t) + z/(i) — z (i + 1)
<qlhy(d) = by + 1)), t>1i> 1. (2.33)



(e) First, we have for all ¢

0= g:(3, he(1)} = pg(0, h(1)) + qhy{1) + (1 = p)z(0) — 2/(1)

= gh{1) + z(0) — z/(1). (2.34)
If Be(d) 2 hy(2 4+ 1) for « < I, then from Leinma 3(a) and {2.34), we have
(1) —z(—1) 2 z(i+1)—2li), 1Li< (2.33)

Conversely, assume 2z/(i) ~z{i~1)~z({E+1) 2 0 for 1 <2 < 1. It is clear Ay (1) = (2(1)—2,(0))/q.
Supposing f,(2) = (z(z) — z(i — 1)) /q, we get
fa(f)y 2 h(i + 1) (2.36)
from Lemma 3{d), which yields
i +1) = (20 + 1) — z(4)) /¢ (2.37)
owing to Lemma 3(a). By induction, we get t,(2) = (z/(2) — z((¢ — 1))/q and h, (i — 1) > h,(3) for
1<:<7T+1L

(f) Let X,(7,€) be such that

X(2,8) = 2max{z/(2) pui = L,E) + ¢ + (1 —plzy(z — 1) + z(8)}
—max{z(i — 1) pu(i = 2,&) + g€ + (1 — p)z(i — 2) + 2, (i ~ 1)}

—max{zi + 1) pug(i,6) + g€ + (L= plaii) + 2 i+ 1)}, i>1  (2.38)
Using (2.38), we obtain the following equation:
) ) 1
2i(i) — v (i — 1) — veli +1) =/ X,G,6)dF(E), i>1. (2.39)
0
From the assumption, it is trie that h,(i + 1) < hy{¢) for ¢ < I. Then, we get

Xi(3,€) =22(8) - (i —1) — z (i +1) > 0 (2.40)
for 0 < € < hy(i + 1) from Lemma 3(c),
Xi(6,€) =22,(1) — 2,6 — 1) = (par(d) + g€ + (1 — p)z (1))
=zi(1) —z(i— 1) — g€ = q(l(i) = £} =0 (2.41)

for hy(i + 1) < € < Iy (4} from Lenuna 3(a), and

10



Xi(3,8) = 2w, (8, &) — w8 — 1,8) — (pre(3, €) + ¢€ + (1 — p)zufd))
= 2-p)(pu(t—1,8) + g€ + (1~p)z(t=1])) — u(1—-1,€) — g€ — (1—p)z ()
= —(1—p)guf(i—l,E)-i—(l—p)qf (1=piz(2)+(2—p)(1—p)z(i~1) {2.42)
for h{i) <€ < 1.
Below, thie proof of X;(¢,£) > 0 for h(¢) < € £ 1 and 1 € ¢ < [ is made by induction. First.

for¢ =1 and k(1) € £ £ 1, we obtain

Xi(1,€) = —(1 = p)?u(0,£) + (1~ p)g€ — (1 — pa(l) + (2 — p)(1 ~ p)z(0)
= (1 =p)g€ = (1 = p)(z(1) — 21(0)) = ¢(1 — p}(€ = h(1)) = 0. (2.43)
Assuming X;(: —1,&) > 0 for hy(i — 1) €€ <1, we have for (i = 1) < £ <1
Xi(3,€) = —(1 = p)*(pwi(i = 2,6) + g€ + (1 — p)z (i — 2))
+(L = p)g€ — (1 — p)z:1(3) + (2 = p)(1 — plzgli ~ 1)
P(=(1=p) (i (i =2, )+ (1—p)g€ ~ (1= p)z, (i— 1)+ (2= p)(1—p)z(i~2))
F(1—p)(2z(i—1)—2(Z—2) — 2z {{))
=pXi(i = L&)+ (1 — )22, — 1) — z(i — 2) = z(:)) > 0. (2.44)
Further, for hy(i) < € < hy{i — 1), we get
Xi(h,6) = —(1 =)zl = 1) -+ (1 = p)g€ — (1 = p)zg(i) + (2 = p)(1 — )z (i ~ 1)

= (1 = p)g§ — z(1) + z,(i — 1)) = ¢(1 — p)(& — Iy(4)) 2 0. (2.43)
Therefore, it follows that
Xil6,6) 20, h(d) <€<1,1<0< ] (2.46)
Thus, it follows from (2.40), (2.41) and (2.46) that the statement holds true. #

In the following two sections, we cxamine two cases where the terninal veward R, (i) takes

concrete formns.

3. Casel: Ry(i) =M
In this section, let us assume
Riiy=10b, 0<b<q, t20,12>0, (3.1)

11



where 0 is a unit price of material, which is constant. Then, the following theorem holds.

Theorem 1. Suppose §=1. Then

(a) it is optimal to continue the production activity over the entire planning horizon, that is,
P(2) >0 fort>1 andi>0,

(b)  hy(2) is decreasing in t for any €,

{¢) he(d) is tncreasing in t for any 1.

Proof: (a) Because f=1,wepgetfort>1andi>0

1

1
uy(2) =](; we{t, E)dF (&) > ]U 2 ($)dF (&) = 2z (1) = max{bi. v,— (i)} > bi. (3.2)
In addition, vo(z) = [ ug(z, £)dF(£) > [ Ry(i)dF(€) = bi. Therefore, we obtain
Y@= (5 =bi>0, t>1,¢{>0. (3.3)

(b} We have hg(¢) = b/g from (2.24), so hg(é) is decreasing in 4. Accordiugly. it follows from

Lemuna 3{f) and Theorem 1(a) that
221(8) — 2zt — 1)~z (i + 1) =2ug(e) —wp{t — 1) — (i 4+ 1) >0, i>1 {3.4)

implying from Lemma 3{e) that /() is decreasing in 7. Repeating the similar procedure for
t=1,2,..., we get the conclusion that h,(z) is decreasing in 7 for any f. Here note that. in the

above proof, we also obtain
224(¢) — (i —1)—=z(i+1) 20, t>0,¢>1. (3.5)

This will be used in the proof of (¢).

(¢} Because w,(0,w) = z,(0) = It,{0}) =0, we Lave

1w (1, w) — wg (0, w) = w1, w) 2 2(1) = z(1) — 2,(0). (3.6)
Suppose wy (2, w) —w (t — 1L, w} > z(¢) — 2 (i — 1). Theu, we obtain for ¢ <w < hli +1)
St Lw) — w(d,w) = 208+ 1) — z(4), {3.7)
for hy(i 1) < w < hyli)
w(t + 1L,w) —w (i, w) =w (i + 1, w) — z() > z{t + 1) — z(1), (3.8)

and for A i) <w <1
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w4 Lw) — w(d, w) = plu(e, w) —w (i — Lw)) + (1 — p)z(2) = z(e — 1))

>z} —2(i ~ 1) 2 z(d + 1) — (1) (3.9)
from {3.5). Then, it follows that

1
vt + 1) — vy (%) =f0 (we(d 4+ 1,8} — 1w (3, ) dF(E) > 2t + 1) — z (1), (3.10)
which yields
Zip1(EF 1) — 2z 1) = (i 1) ~ v (3) > 2,8 + 1) — z{i). (3.11)
Therefore, we obtain Lyp1(Z) 2 1y (2) from Lemma 3(a,e). By induction, the statement is verified.

In case for § = 1, we arrive at the intuitive conclusion that £, (¢) is increasing in ¢ and decreasing
in ¢. However, the properties described in Theorem 1 are not always true if # < 1 aud & > 0.

Since ho(i) = (Ro(z) — Ro(t — 1})/¢ = b/g, we immediately get the following equation by

induction.
ug(t, w) = bi -+ 11—;?’); max{qw — b, 0}, > 0. (3.12)
Hence we have .
vold) = bi -+ 1__; fb/lq(qg —L)AF(E) = bi +all = pP), >0, (3.13)

where o is a positive number. Therefore, if § < 1 and b > 0, then clearly
$1(8) = fa(l - p') — (1 — B)bi — ~oo0 (i — ), (3.14)

that is, it becomes optimal to retire for sufficiently large 1.
Next, we shall show an example in which £,(2) is not decreasing in 4, that is, k(') < k(3" + 1)
for at least one i’ > 1. Suppose w follows a continuous uniform distribution on [0,1]. Then, (3.13)

can be rewritten

W 1=pt ! L 1—pi (g —b)?
vp(2) = bi 4 —— (g = D)dE =i+ —— . {3.15)
1—p Jbyy 1—p 2q
Furthermore, assuming p = ¢ =1/2 (r =0), b = 2/5(< ¢) aud 8 = 160/163, we get
PBup(l) = 328/815 > 2/5 = b, (3.16)
Puog(2) = 4/5 = 20, (3.17)
PBup(3) = 974/815 < 6/5 = 3b. (3.18)
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Accordingly, it follows that
2z(2) — 21 (1) — 21 {3) = 4b — Bup(l) - 3b = b — Fug(l) < 0. {3.19)

Thus from Lemma 3(c}, we obtain £;(2) < hi(3). However, it is possible that k,(i) is decreasing
in ¢ on a certain range of < even if # < 1 and b > 0. The next theorem states a sufficient condition
for fiy(¢) to be decreasing in <.

Theorem 2. Assume 8 <1 and 0 < b < Bq. Then, the equation 1) (T) = 0 has only two different
solutions p = 0 and p1 = p)(> 1). Furthermore, fort > 0 and: < o P(3) > 0 end the production,
eritical value Iy(z) is decreasing in 1.

Proof: From (3.13), ve(z) is strictly concave in 4, hence the difference 6y(z + 1) — 5p(7) is strictly
decreasing in 7. Therefore, the difference 9 (74-1) — 1 () is also strictly decreasing in 7. In addition,
we have 9, (0) =0, (1) = fup(1) — b > Bg — b > 0 from Lemma 1{c} and 4 (7) — —oc (T — oc)
awing to # < 1. Accordingly, we get pp = 0 and p} € (1, o0), which leads us to ¢ (i} > 0 for i < -

Thus, we obtain for ¢t > 1 and 7 < p}
i (8) = BB (5) — bi > BEg(i) = bi = 41 (4) 2 0 (3.20)
from Lemma 1(b}. Below, let us prove that X, (3) is decreasing in ¢ € [0, #1] for any t. It is obvious

that hp(d) (= b/¢) is decreasing in 4. Assume A, (i) is decreasing in ¢ < pj. Then, from Lemma 3(f),

we obtain

(1) —oi— ) —v(6+1) >0, 1<i<p)—1. (3.21)

From (3.20) and (3.21), we have for 1 <¢ < pj ~ 1
22p4108) — 21 (0 = 1) = zip g ( 4+ 1) = B(20 () —v{i — 1) — v (s + 1)) > 0. (3.22)

‘Phus, eventually it follows from Lemma 3{e) that /4.;(7) is decreasing in 2 < p)|. By induction. it

is proven that h(2) is decreasing in¢ < pf for all . 1

Now we shall state a practical implication of the opthual decision vule characterized by k()
when we take the SLS scheme. Assume hy(Z) is such as in Figure 2.

First, let w = w,. If we have more than twelve units, then we should continue to make a product
until at least one of the following three events occurs; we sell a complete product, the remaining

number of units of material becomes less than thirteen or the buyer disappears.
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It is mentioned in Section 1 that following SLS policy, we must inake a decision every time a
production is unsuccessful. However, eventually it follows from the above explanation that we need
not make a decision cvery after an unsuccessful result, but it suffices for us to decide up to how
many units to consume only when a buyer offers a price. On the other hand, starting with less
than thirteen units, we should reject the present buyer and search for the next.

Second, let w = wy. In this case, we should continue to make a product until we complete a
product, loses the present buyer or consume all units.

Last, let w = w,. If we have more than eight units, then it is optimal to try to make a product
until we complete one, the buyer disappears or the remnaining units becomne less than nine. If we
have more than four and less than nine, then we should refuse the price. Furthermore, if we have
less than five units, then we should try manufacturing until a product is sold, the buyer disappears
or all of units are spent. It goes without saying that such a case never occurs if k(%) is decreasing

in 2.

w
5
iy
/___.\I‘ry toi makeia groduct
We // \\
/ w (i)
/ Refusd thk offer \
W \\\
\\
\
— 7
0 5 10 15

Figure 2 The Sequence of /(i) for a given ¢ and certain parameters



4, Case 2: Ry(i) =bi+ &

Next, suppose

(i) =bi+ky t20,020. (4.1)

Here, b is a unit price of material and &, is a reward expected over the remaining periods ¢ where
ky is increasing in ¢ with kg = 0.

Now we consider the following example.

by = { te, g=1, (4.2)
(1-p)e/(1~FY. pB<1,

where ¢ (2 0) is a cost required to search for a buyer each period. That is, in this example, &, can
be looked upon as the total search budget under an assumption that we continue the production
activity over the whole planning horizon. If we decide to retive at time ¢ > 1, then we can receive,
as a terminal reward, the search budget appropriated for the remaining periods. Therefore, this
example is equivalent to a sequential allocation problem in which a search cost is payed each period
to find a new buyer. Hence this model can be regarded as a more general form of the author [10).

In the above example, &; is given from the view point of the search budget. In addition, it may
be also possible to consider the situation that we can gain owr reward by engaging on another work
for the remaining periods. Anyhow, Case 2 is more intricate than Case 1.

As one of the reflexes of the complexity, an optimal deeision rule for retivement can become the
following form. Now assume ¢ = 1/2, v = 0 {hence p = 1/2), 8 =5/6, b = 1/10, k) = 2/15 and

F(w) is a continuous uniform distribution function on [0,1]. Then, it follows that

Bug(l) = 13/60 < 7/30 = b + ky, (4.3)
Buo(2) = 11/30 > 1/3 = 2b + k. (4.4)

Furthermore, from (3.14), we get for sufficiently large I

Pupg(l) < bl + k. {4.5)

The above example means that if we appropriately take parameters ¢, r, 3, b and k|, then there may
exist p] > L and pf > pj+1 that are solutions of 4, (z) = B7(z) — (b7+k,) = 0, as drawn in Fipure 3.
Then, the optimal decision rule for retirement becomes the following manner; if p] < i < pY, then
continue the production activity, or else retive. This implies that if there remain few or too many

units, then it is optimal to retire, or else, that is, if moderate munber of units remain, then it is
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i+ ky
e

ki

Retire Continue Retire

I - . 1/ > ?
0 1 # P
Figure 3 The Existence of g} and pf
optimal to continue working. We cannot always assert that such phenomena are counterintuitive.

It may be possible that a more complex human belhavior is described by a certain kind of definition

of R,(5).

5. Conclusions

We considered a discrete-time finite horizon sequential allocation problem with a terminal reward
in which a SLS scheme is adopted. Introducing a concept of terminal reward, we can give certain
kinds of value to remaining periods and materials. This is an important concept in applying
the framework of this model to realistic problems. In Section 2, we describe some fundamental
properties of the optimal decision rules. In Sectioﬁs 3 and 4, we examine two special cases in terms
of R, (i) and find two characteristic rules: the production critical value A(z) is not always decreasing
in the number of units of material and the retirement critical value p; is not always unique for a

given 2.
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