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In queueing systems with feedback of output customers, the time spent by a customer in
the system from arrival to final departure (the sojourn time) is of a primary interest. The
first and second moments of the sojourn time in a first-come first-served M /G/1 queue with
Bernoulli feedback were given by Takics [1962]. By using the symbolic formula, manipulation
functions of Mathematica, we can calculate higher-order moments of the sojourn time for
Takacs’s model. We show a Mathematica program for this calculation as well as the explicit
result for the third moment. The moments of the sojourn time can also be obtained for the
exhaustive and gated service systems with multiple server vacations. An attempt shown in
this paper suggests a new technique for symbolic computational queueing theory.
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1. Introduction

In queueing systems with Bernoulli feedback of output customers, each customer whose
service is completed instantaneously joins the tail of the queue with probability 1 — v, or
leaves the system with probability v, where 0 < v < 1. Such systems can be used to model
a number of practical systems in which services may be repeated for some reason. Two
noteworthy application examples in communication networks are the packet transmission
in an error-prone channel or in a contention-based multiple access channel (where v is the
probability of successful transmission), and the segmented message transmission (where the
number of segments in a message is geometrically distributed with mean 1/v).

Takdcs [1963] first studies a first-come first-served (FCFS) M/G/1 system with Bernoulli
feedback, and derived the expressions for the mean and the second moment of the sojourn
time T of an arbitrary customer. The sojourn time is the time from the arrival to the final
departure of a customer, which is one of major performance measures of the system. Further
studies on the queue length, the sojourn time, and the waiting time are provided by Disney,
McNickle, and Simon [1980], Disney [1981], and Disney, Kénig, and Schmidt [1984]. Takics’s
model has been extended in several ways. Among them are systems with multiple classes
of customers. D’avignon and Disney [1977], Simon [1984], and Fontana and Berzosa (1984,
1985] consider priority queues. Takagi [1987], Boxma [1989], de Moraes [1990], Sidi, Levy,
and Fuhrmann {1992], and Takine, Takagi, and Hasegawa [1991] investigate cyclic-service
queues (polling systems). :

The purpose of this paper is to obtain higher-order moments of the customer sojourn time
based on Takdcs’s basic model. Since manual calculation is practically impossible due to the



complexity in symbolic manipulation of equations, we capitalize on the computer software
Mathematica for this calculation [Wolfram 1991]. A Mathematice program and the explicit
expression for the third moment of the sojourn time are shown. We also provide Mathematica
programs that calculate the moments of the sojourn time in exhaustive and gated service
systems with multiple server vacations. These systems are analyzed by Takine, Takagi, and
Hasegawa [1991], where only the mean sojourn time are given by manual calculation. We
now get higher-order moments of the sojourn time. The higher-order moments can be used
to characterize the shape of distribution, such as the coeflicients of variation, skewness, and
kurtosis.

In a previous work [Takagi and Samamaki 1994), we provided Mathematica programs that
calculate the moments of the waiting time, sojourn time, queue size, and busy period length,
and showed the results for up to the 10th order for an M/G/1 queue without feedback. This
method is in contrast with the numerical evaluation of higher-order moments for the length
of a busy period by Klimko and Neuts {1973]. Our symbolic moment calculation also com-
plements the use of Mathematica for the numerical evaluation of formulas and the discrete
event simulation for computer performance analysis shown by Allen [1990, 1994]. All the
programs in this paper are written and executed using Mathematzca Version 2.2 for SPARC
from Wolfram Research, Inc. [Wolfram 1991].

2. Notation and Previous Results

Let us introduce the notation for M/G/1 queueing systems with Bernoulli feedback stud-
ied in this paper. The customer arrival rate is denoted by A. The Laplace-Stieltjes transform
(LST) of the distribution function (DF), the mean, and the nth moment of the service time
are denoted by B*(s), b, and b™ (n = 2,3, .. .), respectively. The Bernoulli feedback mecha-
nism with parameter v is described at the beginning of Section 1. The traffic intensity is then
given by Ab/v, which is also the server utilization. We assume that Ab < » for the stability of
the system. The LST of the DF for the sojourn time 7' of a customer is denoted by T*(s). For
systems with multiple server vacations (the vacationing mechanism is described in Section
4), we denote the LST of the DF for the length V of each vacation by ¥*(s).

The results for the moments of the sojourn time 7' that were previously available are
summarized as follows. For a system without server vacation, we have [Takacs 1963]
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For an exhaustive service system with multiple server vacations, we have [Takine, Takagi,
Hasegawa 1991]
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For a gated service system with multiple server vacations, we have [Takine, Takagi, Hasegawa,
1991]
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In the present paper, the higher-order moments for 7" are given for these systems.

ET) = (2.4)

3. M/G/1 System without Server Vacations

We first consider an M/G/1 system without server vacations. According to Takécs [1963]
(see also Takagi [1991, Section 1.6]), the LST 7™(s) of the DF for the sojourn time 7' of an
arbitrary customer is given by

T*(s) = F*(1,9) (3.1}

where F*(z,s) satisfies the functional equation
F¥z,8) =vF{(2,8) + (1 = v)B*(s+ A = A2)F*([v + (1 - v)2]B*(s + A - Az),s)  (3.2)
Furthermore, Fy*(z,s) is explicitly given by
F(2,8) = A= A/V)B* (s + A= Az) + II*([v + (1 ~ 1)2]B*(s + X — Az), s + A — Az) (3.3)

where
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is the double transform of the joint distribution for the number L of customers in the system
and the remaining service time X at an arbitrary time (= at an arrival time) during a busy
period.
Therefore it is in principle straightforward to caleulate the nth moment
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of the sojourn time 7' from (3.2)-(3.4). The procedure is suggested by W. S. Brown in the
Appendix of Takacs [1963]. For n = 1, by differentiating both sides of {3.2) with respect to
z and then setting 2 = 1 and s = 0, we get
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By differentiating both sides of (3.2) with respect to s and then setting z = 1 and s = 0, we
get



Substituting (3.6) into (3.7), we obtain
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where [0FY (2, 5)/02]:=1,s=0 and [0F7(2,5)/85],=1,5=0 can be calculated from (3.3) and (3.4).
The result is given in (2.1). This result agrees with the evaluation of the mean sojourn time
from Little’s theorem and the mean queue size in the corresponding batch-arrival M/G/1
queue in which the batch size is geometrically distributed with mean 1/v.

For n = 2, the differentiation of both sides of (3.2) and evaluation of the derivatives at
z=1 and s = 0 yields three equations with respect to

?F*(z,s 8?F*(z,s 0?F*(z,s
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z=1,s=0 z=1,s=0 z=1,5=0

Solving these equations gives
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in terms of the derivatives [8%Fy (2, 5)/822),=1,5=0, (82 F7 (2, $)/8208]3=1,5=0, [0*Fy(2,8)/85%) =1 5=0,
[0FF(2,8)/82):=1,5=0, and [0Ff(2,5)/05),=1,s=0, Which are all known from (3.3) and (3.4).
We can continue this procedure recursively with respect to n. However, the complexity in
symbolic calculation grows rapidly as » increases. Brown spends six pages of Takdcs [1963]
in order to explain the procedure to calculate E[T?].

We present a Mathematica program that calculates E[1™] automatma,lly in Figure 1. The
first and second moment, E[T] and E[T?], obtained by this program agree with (2.1) and
(2.2), respectively. The third moment E[T®] is shown in the Appendix.

4. M/G/1 Systems with Multiple Server Vacations

We proceed to study exhaustive and gated service M/G/1 systems with multiple server
vacations. In an exhaustive service system with multiple server vacations, the server begins
a vacation each time the system becomes empty. If the server returns from a vacation to find
the system not empty, it starts to work immediately and continues until the system becomes
empty again (exhaustive service). If the server returns from a vacation to find no customers
waiting, it begins another vacation immediately, and repeats vacations until it finds at least
one customer waiting upon returning from a vacation (multiple vacations). The lengths of
successive vacations are independent and identically distributed, and also are independent of
the arrival and service processes. In a gated service system, when the server returns from
a vacation it accepts and serves continuously only those customers that are waiting at that
time, deferring the service to all the messages that arrive during the service period until after
the next vacation.



We first consider an exhaustive service system. Takine, Takagi, and Hasegawa [1991] show
that the LST T™(s) of the DF for the sojourn time 7' of an arbitrary customer in this system
is again given by (3.1} and (3.2). However, F{(z,s) is now given by

Fi(z,8) =B*(s+A-Az)Q*([v + (1 = v)2]B*(s + A ~ Az), 8+ A= Az)

(4.1)
+I([y + (1 - v)2]B*(s + A= Az),5 4+ A = A2)
where
. _ (z = AD)[VH(A = Az) — V*(s)]
W(z) = VE[V](s - X — Az) (42)
T*(z,8) = (v = Ab)2[B*(A — Az) — B*(s)][1 — V*(\ — Az)] (43)

vE[V](s = A+ Az){[v + (1 — v)2]B*(A — Az) — 2}

A Mathematica program that calculates E[T™] for an exhaustive service system with
multiple server vacation is shown in Figure 2. The mean sojourn time E[T] obtained by this
program agrees with (2.3). The second moment is given as follows:
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For a gated service system, Takine, Takagi, and Hasegawa, [1991] show that the LST T (s)
of the DF for the sojourn time T' of an arbitrary customer is given by (3.1), where F* (z,8)
now satisfies the functional equation

F*(z,8) = VFl*(z,s)-[—(l—V)B*(s-i-)\—/\z)V*(s-f-)\—Az)F*([V—i—(1—I/)z]B*(s-]—/\—)\z),.s) (4.6)

and
Fi(z,s) =B (s+ A=A (v + (1 - v)2]B*(s + A — Az),s + A — Az)
(4.7)
Vs + A= A (v + (1 - v)2]B (s + A~ A2),s + A — Az)
with
“(z.8) = W= A0)Q([Y + (1= »)2] B*(A - A)[V*(A = A2) = V*(s)]
W(z,9) = VE[V](s — A+ \z) (4.8)
(s, 5) = L2 M)A + (1 — 1)a)B*(A = A2)) ~ Q()}B*(A - Az) — B(s)] (4.9)
’ vE[VI(s — A4+ Az){[v + (1 — v)2|B*(A = X2) — 2} '
and
Q(2) = Q([v + (1 — v)2]B*(A ~ A2))V*(A - Az2) (4.10)



A Mathematica program that calculates E[T™] for a gated service system with multiple server
vacation is shown in Figure 3. The mean sojourn time E[T'] obtained by this program agrees
with (2.4). The second moment is given as follows:

(—2+vM{E[V]A+ E[V]?B + E[V3C + E[V3D + E[V|E[V|F + E[V®G}
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5. Concluding Remarks

We have shown Mathematica programs for the symbolic calculation of the moments for
the sojourn time in M/G/1 queues with Bernoulli feedback. These programs only simulate
manual calculation, which is rather straightforward. Much efforts are needed after the calcu-
lation in order to present the results in a form with simple appearance. It will be of interest
to explore the capability of Mathematica for the study of quenes and other performance eval-
uation models.
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Bfol] =1 ; t[ol=1 ; B’[0] =-b
Derivativefn_][B][0] = Derivativel[n][bl*(-1)"n
Tls]l = F[1,s] ; F{1,0] =1
Fi[z,s] = (1- lambda b /nu) B[s+ lambda - lambda z] +
Pai[(nu + (1-nu) z) B [s+ lambda - lambda z] , s+lambda - lambda z]
taylor = Series[Fi[=z,s],{z,1,3},{s,0,3}]
Pailz,s]:=( ( lambda ( 1 - lambda b / nu )z (1 - z )
( B [ lambda - lambda z ] - B [s] ) ) / ( ( s - lambda
+lambda z ) ( (nu+ (1 ~-nu)z)BI[ lambda - lambda z ] -z ) ) )
taylorPi = Series[Pailz,s],{z,1,3},{s,0,3}]
Derivative[n_,m_][Pai][1,0] := Simplify[Coefficient[Coefficient[taylorPi,s,m],
(~1+z),nlsnt*m! /. {z->1,s->0}]
Derivativeln_,m_]1[F1]1[1,0} := Simplify[Coefficient[Coefficient[taylor,s,m],
(-1+z) ,n]*nl*m! /, {z->1,s->0}]
(¥ the functional equation to be solved *)
eq = Flz,s] == nu Filz,s] + (1-nu) B[s+ lambda - lambda z] *
F[(nu + (1-nu) z) B[s+ lambda - lambda z],s]
(* the main part *)
getanswers[0] = {} :
equations[n.] := Table[D[Dfeq,{s,n-i}],{z,i}] /.{z->1,5->0},{i,0,n}]
answerg[n_] := Table[Derivative[n-i,i][F1[1,0],{i,0,n}]
getanswers[n_] :=getanswers[n] = Union[Solvelequations[n],answers{n]][[1]1]
/. getanswers[n-1],getanswers[n-1]]
Mom{n_] := Mom[n] = Simplify[Derivativel[0,n][F][1,0] /. getanswers[n] ]

Figure 1. Symbolic calculation of the moments of the sojoun time for an FCFS M/G/1
system with Bernoulli feedback without server vacations.




Blo] =1 ; Vv[ol=1 ; t[0l=1 ; VvI[0] =-E[V]

Derivative[n_J[V]I[0] = E[V'nl*(-1)"n

Derivative[n_][B][0] = Derivative[nl[b]*(-1)-n

T[s] = F[1,s]1 ; F[1,0] =1

Fi[z,s] = B[s+ lambda - lambda z] *
Omegal(nu+ (1-nu) z) B[s + lambda - lambda z], s+lambda - lambda =] +
Pail(nu+ (1-nu) z) B [s+ lambda - lambda z] , s+lambda - lambda =z]

taylor = Series{Fi[z,s],{z,1,3},{s,0,3}]

Pailz,s] = (nu - lambda b )/( nu E[V]) *
(z ( B[s] - Bllambda - lambda z])(1 -~ V[lambda - lambda z]))/
((z - (nu + ( 1-nu)z)B[lambda - lambda z])(s~ lambda + lambda z))

taylorPi = Series[Pailz,s]},{z,1,3},{s,0,3}]

Omegalz,s] = (nu - lambda b ) / (nu E[V]) =*
(V[lambda - lambda z ] - V[s])/(s -~ lambda + lambda z)

taylorOmega = Series{Omegalz,s],{z,1,3},{s,0,3}]

Derivative[n_,m_][Pail[1,0] := Simplify[Coefficient[Coefficient[taylorPi,s,n],
(-1+z) ,n]*n!*m!/. {z->1,s->0}]

Derivativel[n_,m_] [Omega] [1,0] :=
Simplify[Coefficient[Coefficient[taylorOmega,s,m],(~1+z),n] * n! * m!
/. fz->1,8->0} ]

Derivativeln.,m_J[F1][1,0] := Simplify[Coefficient[Coefficient[taylor,s,n],
(-1+z) ,n]*nlsm! /. {z->1,s5->0}] ’

Pai[1,0] = Coefficient[Coefficient[taylorPi,s,0],(-1+z),0]

Omegal[1,0] = Coefficient[Coefficient[taylorOmega,s,0],(-1+z),0]

(* the functional equation to be solved *)

eq = F[z;s8] == nu F1[z,s] + (i-nu) B[s+ lambda - lambda z] *
F[(nu + (1-nu) z) B[s + lambda - lambda z],s]

(* the main part *)

getanswers[0] = {}

equations[n_] := Table[D[D[eq,{s,n-i}],{z,i}] /.{z->1,s->0},{i,0,n}]

answers[n.] := Table[Derivative[n-i,i][F][1,0],{i,0,n}]

getanswers[n.] := getanswers[n] = Union[Solve[equations[n],answers[n]][[1]]
/. getamswers[n-1], getanswers[n-1]]

Mom[n_] := Mom[n] = Simplify[Derivative[0,n]([F]1[1,0] /. getanswersn]]

Figure 2. Symbolic calculation of the moments of the sojoun time for an exhaustive FCFS
M/G/1 system with Bernoulli feedback with multiple server vacations.




B{o] =1 ; viol =1 ; tlo]l =1 ; Q[1] =1 ; B[0] = -b ; V' [0] = -E[V]
Derivative[n_][VI[0] = E[V'nl*(-1)"n
Derivative[n_][B][0]l = Derivative[n] [b]*#(~1)"n
Tlsl = F[1,s] ; F[1,0] = 1
Fi[z,s] = B[s+ lambda - lambda z] #
Omegal{(nu+ (1-nu) z) B[s + lambda - lambda z], s+lambda - lambda =] +
Pail[(nu+ (i-nu) z) B [s+ lambda - lambda z] , s+lambda -~ lambda z] *
V{s + lambda - lambda z] ‘
taylor = Series[Fi{z,s],{z,1,4},{s,0,4}]
Pailz,s] = (nu - lambda b)/( nu E[V]) *
(z ( B[s] - B[lambda - lambda z]))/( s - lambda + lambda z)} *
(Ql(nu + (i-nu) z ) B[lambda - lambda z]]1-g{z])/
(z - ( nu + (1-nu) z) B[lambda - lambda z])
taylorPi = Series[Pailz,s],{z,1,4},{s,0,4}]
Omegalz,s] = (nu - lambda b) / (nu E[V]) =*
(V[lambda - lambda z ] - V[s])/(s - lambda + lambda z) *
QLG + (1-nu)z)B[lambda - lambda z]]
taylorOmega = Series[Omegal=z,s],{z,1,3},{s,0,3}]
eqq = Q[z] == Q[(nu + (1-nu) z) B[lambda - lambda z]] V[lambda - lambda z]
gl = Solve[ Dleqq,z] /. z->1 , Derivative[1][qQ][1]]
Derivative[1][Q]1[1] = Derivative[1I1[QI[1] /. q1 [[1]1]
q2 = Solvel D[eqq,{z,2}] /. 2z->1 , Derivative[2][Q][1]1]
Derivative[2] [Q][1] = Derivative[2][Q1{1] /. q2 [[1]]
q3 = Solve[ D[eqq,{z,3}] /. z->1 , Derivative[3][Q][1]1]
Derivative[3][Q] [1] = Derivative[3]1[Q]J[1] /. q3 [[1]]
Derivative[n_,m_][Pai] [1,0]} := Simplify[Coefficient[Coefficient[taylorPi,s,m],
(~1+z) ,n]*nlsmt/. {z->1,5->0}]
Derivative[n_,m_][Omega][1,0] :=
Simplify[Coefficient[Coefficient{taylorOmega,s,m],(~1+z),n] * n! * m!
/. {z->1,5->0} ]
Derivative[n_,m_J[F1][1,0] := Simplify[Coefficient[Coefficient[taylor,s,m],
{-1+z),nl*nt*m! /. {z->1,s->0}]
Pai[1,0] = Coefficient[Coefficient[taylorPi,s,0],(-1+z),0]
Omegall,0] = Coefficient[Coefficient{taylorOmega,s,0],(-1+2),0]
(* the functional equation to be solved *)
eq = F[z,s] == nu Fi[z,s] + (i-nu) Bls+ lambda - lambda z] *
F((nu + (1-nu) z) B[s + lambda - lambda z],s] * V[s + lambda - lambda z]
(* the main part *)
getanswers[0] = {}
equations[n_] := Table[D{Dleq,{s,n~i}],{z,i}] /.{z->1,s->0%},{i,0,n}]
answers[n_] := Table[Derivative[n-i,i][F]1[1,0],{i,0,n}]
getanswers[n_] := getanswers[n] = Union[Solvel[equations[n],answers[n]]L[[1]]
/. getanswers[n-1],getanswers[n-1]]
Mom[n_] := Mom{n] = Simplify[Derivative[0,n][F][1,0] /. getanswers[n] ]

Figure 3. Symbolic calculation of the moments of the sojoun time for a gated FCFS M/G/1
system with Bernoulli feedback with multiple server vacations.
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Appendix : Moments of the Sojourn Time in an FCFS M/G/1 System with
Bernoulli Feedback without Server Vacations

B
31
| Arl=3
where

A=a(br—vP (bA+2v4+brv—0?)?

X (~28A~B02A% 430 +4bAv+ 02220 — 302 — 26207 4+ 18),
and

Bz —96b° M2 p-4858 X3 44807 M y—48 b4 Av244320° A2 1216855 A3 2 —216 67 A\ 124
2885% 13 4+ 9661 X v® — 105655 A2 13 + 28855 X318 + 38457 A113 — 115263 04 L 16804 M vt +
1656 6% A% v —336 68 A3 11 = 33657 A4 4+ 1896 03 15 — 72051 X 1% —~ 1584 55 A2 5 1264 5% A3 5 +
14467 Xt p® — 1656 6% 15 4+ 93664 Ao® + 86455 X206 — 12088 X3 06 — 2457 A 16 4 81603 17 —
80062 ApT —24005 X207 4+ 2408 X207 —2166% 18+ 19254 A B+ 24 65 A2 18+ 24 83 12 — 24 b4 )\ 10

+(—486* A3 v—240% M v—120 6% A2 242285 A3 2416855 A 12496 6% A 31576 b3 A2 13—
46854 A3 3 - 396 0° A11® 1 288but — 564 0% Xt — 1284 03 X208 4+ 57601 X3 4 £ 42005 Mt —
864 br° + 123602 A r® + 1536 5% A% 5 — 44451 A3 15 — 20455 X405 4 1032506 — 138002 N6 —
98452 X208 + 19204 X306 4+ 3605 X108 — 624507 + 85282 Av7 + 31203 2207 — 3604 037 +
192518 — 27652 A% — 36 63 A2 w8 — 2451° 4+ 36 5% A vP) b(%)

+(=3002 Xy — 60T N v — 12822302 + 4208 A2 13001 A 02 — 306 A2 2 + 19262 238 +
3603 A1 02 —48 b A B4 180 A vt 4602 v —d74 b2 X3 4= 10263 A1 443081 NS vt~ 450 A i 4
T8OAZ LS 447462 N3 P 466 03 A1 —6 b4 A5 154456 Av®—108H A2 18 —216 02 A3 6—12 83 A1 16—
234 Av7 4 6067207 + 3602 X307 + 60 A% — 1260208 — 6 A% [pD)]2

F(=352 A+ 1202 XS w682 A6 w4501 23962 A5 12362 A8 u2 454 A3 1341320 M1 13+
B1BZAS LB — 11T A3t — 144 b At — 3082 AP L 1 9903 LS 1 69BN LS £ 6B2 A5 L5 ~ 3003 ,0 =
1202408 4 6 X3 7Y B3

F200 Ay + 408 X5 — 2453 A3 0% — 480 A1 L2 — 2008 A5 0% — 1202 N2 — 1288 033 ¢
5604 At 343265 A% 3 —32b At 415202 A2 413203 A3t —44 b N1 A — 2005 A5 pt 4B L5 —
33202 A2 15— 160863 X315 +2004 At 51405 A3 15— 9618 +880 ) 6 +30402 A2 647663 N3 15 —
404240 L7607 — 104027 12802 X207 — 1203 X307 — 2808 1 48 A LB 42002 A2 B £ 419 —
851 1?) 43

+(451 A6 -18 8% A% —8b% A8 460 62 A1 1245063 A5 244 b4 A8 12— 106 b A3 L3 —1785% A1 12—
56 6% A% 3460 A2 242620 2% 1420082 X2 4+306° A% 4—126 A2 152525 A3 1510062 M4 15—
663 A% 0% + 1042208 + 11052308 4 1852 X400 — 400217 — 185 A3 17 4 6 A2 18) H(Pp(3)

F(— A+ 5B A 4205 M6y — 1503 A 2 =120 A5 02 — b5 A8 L2 £ 3152 A3 134283 At 13-
1164053 — 325620201 — 8002 A3 0% — 4503 A — 5B XS LA 12 05 + 726 A2 15 48062 X3 15 4
225304 0° 4 bS5 — 24208 — 6402200 — 3602038 — 4B N8 1907 + 2600207 +
BH2XN3 T — TAY® —4b A28 4+ X 09)p(),
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