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We consider a monotone optimal policy for a discreté time problem of
controlling the arriving customers. At each period one ;ustomer arrives
at a manufacturing factofy to order a job distinguished by the reward and
the service time with a constant delivery interval. The basic properties
of oprimal policies are Ebtaiﬁed. It is shown tha;, contrary to intuition,
from counterexamples an optimal policy cannot generally be monotone such
foliowing cases as finite-horizon problems with and without discounting

and an infinite-horizon problem without discounting, while there exists a

monotrone optimal policy for infinite-horizon problems without discounting.
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In this paper we study the monotonicity of optimal policy for the
following discrete time problem of controlling the arriva1‘Customers.
Suppose that in each period one customery arrives at a manufacturing
factory to order.a job distinguished by the reward and the sevice time
with the constant delivery interval. Let d be the delivery interval
between the acceptance time and the completion time of the job.

Let k be the random job length of unit time. Using queueing termi-

nology we say k as the service time. And let r be the random reward

received by the manufacturing factory if the customer is accepted.

.The joint distribution of (k, r) of successive customers are indepen-

dent and identically distributed as the joint random variable (X, R).

At the decision epoch each job is distinguished by (k, r). Let i be
the waiting time (not including the job seeking admittance). Simply

we say 1 as the state of the system. The decision maker of the factory
decides whether the arriving customer ié to be accepted or rejected from
i and (k, r). If the customer is accepted, then the next state is

i+ k-1 with reward r and if the customer is rejected, then the

next state is i -1 for 1i# 0 and 0 for i =0 . The customer

with the service time k > d ~ 1 + 1 has to be rejected.

The optimal control of queueing systems has been studied in the
last decade using semi~Markov decision processes. In our model the
decision maker distinguishes not only the reward but the service time
of arriving customers. Miller [4] obtained the monotoniciiy of sta-
tionary optimal policies for infinite-horizon problem witEOut discount-

ing in M/M/C finite capacity queue. Lippman [2] proved the monotonicity
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of optimal policies for finite-horizon problems with and;without discount—
ing allowing an infinite number of customer classes iteratively and
extended the monotonic property to the infinite-horizon problems. Lippman
and Stidham Jr. [3] considereq exponential congestion systems Including
M/M/1l system as a special case and Stidham Jr. -[8] considered GI/M/1
congestion systems with extensions of batch arﬁ?vals, Erlang service-time
distribution and others. The cost structure in these models consists

of the holding cost and the reward. They proved the monotonicity of

optimal policies and compared socially and individually optimal joining

-policies.

in section 1, we formulate our model as Markov decision processes
for finite-horizon problem. The basic properties of optimal policies
are obtained. Under the condition that the state of the system is i
and the service time of the arriving customer is k , eritical-numbers
Vn.a(i, k) of the reward are inductively éﬁtained_dn the horizon length
n and are nonnegative. An optimal policy is given by that if

(i, k} then the arriving customer is accepted and if r < v (i, k)

> Vv
= n.a n!a

then he is rejected. The plausible question is that for fixed « , n
and k, vn’a(i, k) is monotone nondecreéqiggfiﬁ i , in other words, the customer
who is accepted in the state 4 , would be accepted in the state 1i'(i' < i).
We will answer this question negatively by the first counterexample in
EXAMPLE 1. "
Tn section 2, we consider infinite~horizon problems. .;et the state

of the system be (i, k, r) and actions be acceptance and rejection.

Using this technique given by [2] , [3] and [6] the existence of a
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stationary optimal policy is proved and va(i, k) = %ig Vn;u(i’ k) is
nonnegative. We also obtain in EXAMPLE 2 an counterxample such that
va(i, k) is not nondecreasing for infinite-horizon problem with
discounting 0 < ¢ < 1 . These counterexamples come from the variable
service time k . 1In batch arrivals Ikuta [1] proved that va(i, k) dis
monotone nondecreasing in i if k 1is constant. The author seems
there is a relétion between our examples ard-unsuspected phenomena that

the optimal congestion tall cannot be monotoniec given in [3] and [6].

While the natural requirement that there exists -a monotone optimal

‘policy for infinite-horizon problem without discounting o =1 , is

proved in THEOREM 2.3 and 2.4. From this result-for a fixed k.
critical-number v{(i, k) is monotone nondecreasing in i and for a
fixed i critical-number per service time v(i, k)/k is monotone

nondecreasing in k given in COROLLARY 2.5.
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1. FINITE HORIZON

In this section we formulate the following discrete time problem
of controlling the arriving customers as Markov decision processes.
and obtain basic properties._ Suppdse that at eacﬂ period one customer
arrives at a manufacturing factoxry to order a job distinguiéhed by the
reward and the service time.‘ We also allow no arriving customer at
some pefiod. Assume that each customer has a constant delivery interval
d , which the job should be completed d units of time from his arriv-
ing time. Let %k be the random job length of unit time. We simply
say k as the service time. And let r be the random reward received
by the manufacturihg:factory if the customér is accepted but there is
no rejection cost. Let i be the waiting time not including the job
seeking admittance. Simply we say 1 as the state of the system.

The system is controllgd by accepting or rejecting arriving customers
observing the state 1 and (k, r). J

Let K and R be the random variables of the service time and

the reward respectively and K € {0, ..., d} where K = 0 implies

the event that no eustomer arrives. Let the probability of the event

K=5k be
. d :
p(k) =P{K=%k} , zpk) =1, pk)>0 (k=20, ...,d, (1)
. k=0

and right-continuous distribution functions of R under K = k be
() =P{R <r | K =g} if p(k) >0 . (2)
and to simplify the notation we put

. {0 r <0
Fk(r) =1 r >0 if p(k) =0 or k =0, (3>
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Assume that

o<mk=E{R+|‘K=k}=8 1 - F(r) dr < =
0 .
4. ¢ (4)
0 <m=g[R"] = & p(k) m < e,
‘ k=1

We summerize as follows:
(i) et I =4{i=20, ..., d ~ 1} be the state space and the state i
of the system be the waiting time just before a decision epoch.

(ii} Let (k, r) be the service time and the reward of the customer

sezking admittance. Random variables (K, R) of succesive customers

. is independent and identically distributed and its joint distribution

- is given by. (1)-(3). At a decision epoch the decision maker distiguishes

(k, r) of the arriving customer,.

(iii} Let Bi be the Borel set of accepting rewards r when the
>

k

state is i and the service time is k . From the constant delivery

interval d , B, , =¢ (kzd-1i+1). Thenput B =B

,k OlX...

>

X BO,d x Bl,l X ree X Bl,dvl X sae X Bd—l,l .

(iv) Let o0 < a < 1) be the discount factor of Markov decision
processes and o = 1 be no discount case.

Let Vn a(i) be the maximal expected a-discounted (0 < a < 1)
3

return with the initial state .i when the horizon length is n .

The Vn a(i) satisfy the following recursive equations:
3
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Vn,d(i) = SE; { £ pk) K r + avn—l,a(i + k - }) dFk(r)

k=1 Bk
d-i '
P o0 b, e e G- D)
=1 i,k ?
=V, (G -1 ' | ) (5)
\ d-i j ' :
+ kil p(k) gup { B r-a(V 3 -0 -V g k- 1)) AR,

i,k

whera Vn,a(—l) = Vn DL(O).

»

Let F(r) be a distribution function with finite mean, we have

(=)

max S r - x dF(x) = S r - x dF(r) = K 1 -F(r) dr .
B

B x X
Then there exists Bi " which attains the maximiam in~(5) such that
. , _
= . > §
Bi,k {r;r > Vn,q(l, k)}

where Vv (i, k) = a(V (i-1) -V (i +k-1)) dis the critical
n,a -1,

n-1l,0 n

number of rewards r under n , ¢ and (i, k).
We rewrite (5) as

d-1i ©
Vn,a(i) = aVﬁ_l,a(i -1y + 1 pk S ' 1- Fk(r) dr . (&)
. ' =], Vn’a(l, k)

Let put VO a(i) =0 (i=1, ..., d = 1) then from (6) we recursively
-]

obtain Vﬁ,u(i) with Vn,a(_l) = Vh’u(O) .

" THEOREM 1.1 -

(i) is non-increasing in i , so that v_ (i, k) is
n,q Nyc .
non-negative for i=0, ..., d-1, k=0, ..., d~-1.

Proof. The proof is given by induction on n . From the initial condition
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vy a(i’ k) = 0 . Suppse that Vn (i) 1is non-increasing in i then
3

-1,

Vn C£(i, k) > 0. Then from (6) we obtain
]

vn,a(i) - Vﬁ,a(i +1) = a(vn—l,a(i - 1) - Vn~l,a(i))

Cdeiol vn’a(i + 1, k) ) .
+ I pk : ' 1- Fk(r) dr . {7
k=1 v (i, k)
. n,o
+pld - 1) g 1 - F,_,(¥) dr

vn,a(l’ d - 1)

The third term of the fight hand side in (7) is nonnegative. Put the set
Ai = {k; vn’a(i, k) > Vn,u(i + l, k), k = 13 ey d = i}c
From 0 <1 - Fk(r) <1

and vn,a(l’ k) - vn,a(l + 1, k) = Vn,a(l’ 1) - v,

a(i + k, 1) we have

>

- V(1) - Vn’u(i +1) zv 1)

z P(k) (Vn Oﬂ(i’ k) - Vn a(i + 1, k))

ked; ? ?

Vn;a(l: l) - kEA P(k) (vn,cr.(i’ 1) - vn’&(i + ks 1))
5 .

nv

Q- pEDv (i, 1) 20.
- k.EAi n,o =

The proof is completed.

Vi a(i’ k) is the critical number of rewards r when the horizon
?

length is n , the state is 1 and the service time is k . From
THEOREM 1.1 negative reward customs are rejected in optimal policies.

‘ . -
The next plausible question is that for fixed ¢ , n and k» Vn a(l’ k)

is monotone nondecreasing in i , in other words, the customer who is



accepted in state 1 , would be accepted in state i'(i" < i). We will answer

this question negatively by the first counterexample.

EXAMPLE 1.
Put d =3, F(r) =F,()=1- e "(r>0), then m, =m, =1 .
And as the initial condition VO OL(i) =0 {i=0,1, 2).
>

From (56) we recursively obtain

Vl’ (0) = Vl,a(l) = p(l) + p(2), Vl’a(Z) = p(l) |

U, o0 = (L + (@) +p(2), V, (1) =aled) +p@) +p@) + pe PP
Vz OL(2) = a(p(l) + p(2)) + p(l)eqp(z). Then we have

v3,3(2, 1) - v3,a(1’ 1) = a{—Vz,a(2) + 2V2,a(;) - Vz’a(O)}

= alp@ 2P -y 4@ - e P10 0<as<D

" when p{2) is sufficiently close to 1 and p(l) is close to 0 . Then
in the case of n =3 and k =1 customers whose reward r is

v3’a(2, iy} <y < v3,a(1, 1) are rejected at the stéte i =1 and are

accepted at 1 = 2 ,

Tkuta [1l] proved that if k is constant the critical number of reward
v a(i’ k} 1is monotone nondecreasing in i by induction. The monotonicity
>

of (i, k) dimplies the monotonicity of v a(i’ k). In queueing

v
n-1l,a s

-

control problems monotone optimal poticies are proved inductively ([2],

[3] and [6]) and many ofher decision problems has this property (see, for

example, [1]). This counter example shows that we can notquse the induction

to prove the concavity of Vn a(i)
]
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2. INFINITE HORIZON

In this section we consider optimal policies for infinite—horizon
problems. We will prove there exists a monotone stationary optimal policy
without discounting (¢ = 1) - which maximize the long-run average expected
return per unit time. We, however, will obtain a counterexample in EXAMPLE
2 , in which phis monotonicity of a stationary optimal policy is not satisfied
for 2 discounting problem.

Our original model consists of the infinite action space. We reformulate

it to the model with finite actions using the technique (e.g., by Lippman [2],

‘ Lippman and Stidham Jr. {3] and Stidham Jr. [6]1). They proved the existence

of stationéry optimal policies for infinite-horizon controlled queueing
problems both with and without discounting. Let the state of the system be
(;, k, r) at the arriving time of customers where i is the waiting time

not including the work seeking admittance, k is the customer's service

time and r is the reward. There are two possible actions: accept (a = 1)
or reject {(a = 0). Let Vn,u(i’ k, r) be the maximal expected g-discounting

return for n length problem when the initial state is (i, k, r).

The functions Vn a(i’ k, r) satisfy the following recursive equations:
2

Vn+l,a(i’ k, ) =i{m§x {ar + aVﬁ’u(i +ak -~ 1)} k<d-4i @)
IaVn’u(i - 1) k>d -1
- d =
Vn,a(l) = 51 p(k)g N Vn,u(l’ k, ) dF, (x) (9
where vn,u{_l} = Vn,a(o) . . N

-10-
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It is trivial from meanings that Vn a(i) given in (9) is the same as (6).
3 H

From (8) and (9) we get

d-i @
Vn’a(l) = kil p(k).g-w max {ar + aVn’a(l +ak - 1)} dFk(r)
d - -
+ h p(k) oV (i - 1
k=d~i+l e
d-i =
= Iz p(k) X _ r + aVn_l a(i +k - 1) dFk(r)
k=1 oV 3 -1 -V 14k 1)) :
d-i ]
I opk) eV, a(i -0 - X : ' dFk(r))
k=1 - a(vn~l,a(l - 1) - Vﬁ—l,a(l +k - 1))
d-i
+ (- Z p(K)) av__, (i-1)
k=1 n~1l,o
' d-1i Rl ’
= avn—l,u(l - 1) + kgl p(k) 1 - Fk(r) dr .

vn,a(i’ k)

In the reformulated model the action space is finite and the expected
return at each peried is bounded above by ~~EI€3--'"= m < ® by assumption.
Using the same logic in Stidham Jr. [6] page 1605, there exists the station-

ary optimal policy for reformulated model and %ig vn,a(i’ k, r} = Va(l, k, ).

T .
i iy = 1 i { i} = i i optimal

And then %%g Vn’a(l) Va(l) , in which Va(l) sup Va(l) is the op
return function for our original infinite-horizon problem with discounting
(0 <o < 1). Since Vn a(i) is nonincreasing in i , then Vﬁ(i) is
3

noninereasing in i .

We have the following theorem:

-11-



L)

THEOREM 2.1
Va(i) is nonincreasing in i and satisfies the follbwing equation

. =
V(i) =V (i-1)+ £ p(k) S 1-F (x) dr
& o k=1 v (i, ©) k

h v - = . 7 = 2 - -— el - .
where a( 1) VG(O) and Va(l, k) G(Va(l 1) Va(l + k-1))
Moreover, the stationary ecritical-number policy that the acception region

of reward under (i, k) s {r: r > vd(i, k)} is optimal among all policies.

The monotonicity of va(i, k} din i is not satisfied, in general, by

showing a counterexample. Put d =3 and p(2) = 0, then Va(i) is given by

¥V (0) = oV (0) + p(i) S 1~ Fl(r)dr‘+ p(3) S 1 - F3(r)dr
@ @ 0 alV (0) - V (2))
o [+ ] o
Vv (1) = oV (0) + p(L) g i- Fl(r)dr (1)
* a(V_(0) -~V (1))
- o [+ N o
7,0 = @+ e | 1 -5 (0)dx

a(v_(1) - V_(2))
£ p(3) =1 amd p(1) =0, then V,(2) = azva(O) , V(1) = av_(0) ,
V(0) >0 and v (2, 1) - v (I, 1) =V (1) - V_(2)) - a(V_(0) - V_(1))

= - gl - a)z Va(O) <D for 0O <a=<l.

In this case, however, there exists an optimal monotone policy because of
p(l) = 0 . Let us choose p(l)' and p(3) sufficiently close to 0 and 1
respectively under 0 < p(1) + p(3) <1 . We can make a counterexample such
that the arriving customer of the service time k = 1 is accepted in the
s?ate i=2, but is r;jected in the state 1 =1 (va(z, 1) <r < va(l, i)

as follows: .

-12~
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-V0 5(i) is the unique solution of (10) for a

EXAMPLE 2.
Put @ =0.5,P(R=0.2 [K=1)=PR=1|K=3) =1, p(0) = 0.06 ,

p{l) = 0.04 and p(3) ‘0.9 . From the elementally culculation, the

following Vo 5(i) (i=0, 1, 2) satisfies (10) with
g ' 1 - Fl(r) dr = 0 : VO 5(0) = 10721.28/9876
0.5(V, £(0) = V5 (1)) . .

1l

= 3 . - - - .
= 1.0486 , VO.S(l) 0.5 VO.S(O) 0.543 and ‘VO.S(Z) 225.52/823 = 0.274 :

Thers are two customer classes: (k =1, r = 0.2) and. (k =3, r=1).

Using contraction mapping fixed point theorem (see Ross [5] Corollary 6.6),

i

0.5 .

We obtain vO.S(l’ 1) = 0.5(V0_5(0) - V0_5(l)) = 0.2715 amnd

0.1345 .

e[l

vg.5(2 1) = 0.5(7, (1) - Vg (@)

From 0.2715 > 0.2 > 0.1345 the customer of k = 1 is accepted at i = 2

but rejected at i =1 .

We now turn our attention to the infinite~horizon problem without discounting
¢ = 1 , in which the objective is to maximizée long-run average expected

return per unit time. For any bounded function h(i) ,

d-i d-i
sup { £ p(k) g r+ h(i+k-1) dFk(r) + (L - & p(k) S dFk(r)) h(i-~ 1)}
B : B )

k=1 ik =1 i,k

is attained by Bi 2 {r; r >h(i - 1) - h(i +k - 1)} as was shown in

o,k
(5} and (6). Then, to prove the existence of a stationary optimal policy
it is sufficient that | V (i = 1) =V (1) | is bounded f:r all o« and
i=1,...,d~1 using Theorem 6.17 and 6.18 in Ross [5] or Theorem 2.11 and
Corellary 2.13 in Stidham Jr. and Probhu [7]. We have

-13-
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d-i o
] VE-1)-v ) ] < (l-a) VE-1)+ £ pk) g 1 -7 () dr
¢ ¢ - @ k=1 v (i, ) k

Q-0 = r¥m=2m (=1, ..., 1)

where m = ER% . We have

THECREM 2.2.
There exist the nonincreasing bounded function V(i) and the constant
g such that for each i

V{d) = Lim_ (V_(i) - V_(0))
bf.+l- o o4

.is well defined and satisfies the functional equation

) d-i o
g+ V() =V(E -1)+ 35 pk) g 1~F()dr. (11)
k=1 v({i, k)

where g is the maximal long-run average expected return per unit time,
V(-1) = V(0) and v(i, k) = V(i - 1) - V(i + k - 1). Moreover, the
stationary critical-number policy that the acception region of reward under

(i, k) is {r: r > v, (4, k)} 1is optimal among all policies.

We are now in the positicn to prove the monotonicity eof the optimal

stationary policy for infinite-horizon problems without discounting (o = 1).

d-1

We first treat the case of 0 < I p(k) <1 becouse the case of
k=1

d-1 -

L p(k) =1 is complicate.

k=1 . ‘ i

14—



THEOREM 2.3.
d-1 P
Suppose that 0 < I p(k) <1, then wv(i, 1) is nonnegative and
=1
nondecreasing in i , so that V(i) is nonincreasing and concave.

Proof. From THEOREM 2.2 v(i, 1) = V(i - 1) - V(i) is nonnegative.
We will prove v(i, 1) is nondecreasing in i using reduction to absurdity.

From (11} we have

d-i L
g-v(i, 1) = I p(k) S 1-F(r)dr (12)
k=1 v(i, k)

‘and then

d-i v(i, k)
v(i, 1) ~v(i -1, 1) = I p) L - Fk(r) dr (13)
k=1 v(i -1, k)
+p(d ~ i+ 1)8 1-F, . - (r) dr
v(i-1,d-1+1) d-i+l
d-i v(i, k)
> L. p(k) I - Fk(r) dr .
k=1 v(i -1, k)
Suppose that for some j (0 < j <d =~ 1)
vid -1, 1) Z oo 2v(i, D (14)
and
. V(j: 1) < V(j -1, l) (15)

Put the set A = {k; v(j, k) <v(j -1, k), p(k) >0, k =1, ..., d - j}.
Using the equation wv(j -1, k) - v(j, k) =v(j -1, 1) - v(j + k, 1)
and 0 < Fk(r) < 1 we have

"
“
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Sv(j -1, k)

v(i, D -v({i -1,k 2- I pk) 1-F () dr
- keA v(i, k)
2~ L P(k) (V(J -1, k) - V(j, k)) (16)
keA
=- I pk) (v(3 -1, 1) -v({d +k, 1))
‘keA .
== V(J -1, 1) P(k) + I pk) V(j +k, 1) .
keh keA
From {14) we have
v(i, D -v@E -1L, D 2 @ D -vE -1, D) $op® A7)
) keA
>v(j, 1) ~ v(j -1, 1),
d
 where the last inequality is derived from 0 < I p(k) <1 and (15).
k=1

This contradiction in (17) comes from (15), then wv(i, 1) dis nondecreasing

in i and the proof is completed.

. d
Next we treat the case of I oplk) =1.
k=1
THEOREM 2.4.
d
Suppose Z p(k) =1 , then there exists a nonnegative and nondecreasing
k=1

function .v(i, 1) satisfying (12)._ That is, there exists a nonincreasing
and concave function V(i) satisfying (11).
Proof, Let U(i) and u(i, 1) =U0(i - 1) - U(i) satisfy (11) and (12)
respectively. Suppose Ehat for some J (0 <j <d-1)

u(d -1, 1) > ... >u(jf, 1) * (18)
and

u(j, 1) <u(j -1, 1). (193

-16-



If one of inequal equations (13), (16) and (17) is strictly inequal, then
we can derive the contradition as in the proof of THEOREM 2.3.

Then it is necessary that

d—j : ‘
r p(k) =1 - « {20)
k=1
and
F(u(j - L, k)) = F(u{j, k)) =0 for p(k) >0 (21)

and using the monotonicity of wu(i, 1) in (18) and wu(j + k, 1) = u(j, 1)
for ke A din (17)

utj +k, 1) = u(i, 1) for 1 <k <max {k: p(k) > 0}. (22)
Now put V(i) and v(i, k) as follows:

V(d.— 1) =0(d - 1)

v(i, 1) =¢u(i, 1) j<si<d-1 :
u(i, 1) 1<di<j (23}
0 1=0

Vi, k) = V(i -~ 1) - V(L + k ~ 1)

v(0, k) = V(0) - V(k - 1)

From the definition v(i, 1) d4s nonnegative and nondecreasing in i
because wu(i, 1) is nondecreasing in j <i<d-1 from (18) and

u(j, 1) is nonnegative. The proof will be completed if we prove

o
1

. d-i o
=v(i, 1) + I p(k)S 1 - Fk(r) dr » (24)
k=1 v({i, k)

N

for i =0, ..., § -1, 1In the cases of i =1, ..., j -1 we have

v(i, 1) =.u(j: D, v(d, k) = ku(j, 1) =u (j, k) then

=17
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d~j <0
u(j, 1) + ¥ p(k) 5 1 - Fk(r) dr ' (25)

g=
k=1 u(j, k)
d-j w
=v(i, 1) + = p(k)S L-F@)de (1=1, ..., j - 1.
k=1 v{i, k)

For 1 =1, ..., j -1 the equation (24) is proved. Moreover, from (25)
F(v(1, kK)) = F(u(j, k)) = 0 then for i =1 din (25) we have
d-j

v(l, 1) + ; p{k) X 1 - Fk(r) dr
_ k=1 v{l, k)

]
il

0

d-j ® . d-j
v(l, 1) + I p(k) S 1-F @) dr - £ p() v, k). (26)
k=1 0 k=1

- In the case of 1 =0, we have v(0, k) = V{(0) - V(k - 1) + V(k) ~ V(k)

V({0) - V(k) - V(0) + V(1) = v(1, k) - v(1, 1) <v(l, k) and F{v(0, k))

F(v(l, k)) = F(u(j, k)) = 0 then from (26)

d-j o
v(0, 0) + © p(k) X 1 - Fk(r) dr
' k=1 v(0, k) '

d-j o
Z pk) X . 1-7F(r) dr
k=1 v(l, kY - v(1, 1)

d-j «© d-j
LI plk) S 1- Fk(r) de +v(1l, 1) - £ p® v(1, k) =g .
k=1 0 k=1

The proof is completéd.

If there exists j satisfying (18) and (19), every customer arriving

in state j is acceptea by the stationary optimal policy because-of (20)

and (21). The transition probability from state j to stgte j -1 is O
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and states i1 =0, ..., j -1 are transient as the stétionary Markov chain.

i

THEOREM 3.4 states that there exists a stationary optiﬁal monotone policy,

in which every customer arriving in state i =0, ..., J is accepted.

COROLLARY 3.5

There exists a critical-number monotone stationary optimal policy for
infinite-horizon without discounting o = 1 such that the acception region
of reward ¥ under (i, k) is Bi,k = {r; r > v(i, k). ‘For a fixed k,
v(i, k) 1is nondecreasing in i and for.a fixed i the critical-number of
reward per unit service time v(i, k)/k is nondecreasing jp 1 5_k7§'d1——i
Proof. The proof is immidiately obtained from that V(i) is nonincreasing

and concave.
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