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Abstract  The paper deals with a variation of conventional optimal stopping problem where a searcher
(price maker) offers a price to price taker, who could be either a seller or a buyer of an item, depending
on the situation. Most of the previous studies have dealt with the problem by having the searcher to try
to sell individual items at the highest price, or purchase specific items at the lowest price available, with
the offers varying continuously. In other words, in the traditional methodology, the so called searcher does
not ectually have a best price in mind. Yet, in reality, most of searcher do preset various price levels for
different price tekers, depending on the price taker’s demand. In order for the searcher to reach the best
decision, two considerations are necessary: (1) Selection of price taker. (2) Pricing policy. This paper will try
to develop two dynamic programming models and illustrate them with numerical examples. These models
can be applied to solve problems such as assets selling problem, seat booking problem, personnel recruiting
problem and so on.

1. Introduction

First, let us consider the conventional optimal stopping problem [1-17] where, within a
given planning horizon, an item must be sold for a price offered by buyers, or must be
bought for a price offered by sellers. As a valuation of the problem, let us consider that a
number of identical items must be sold, or purchased, for a price offered by a searcher. In
the former case, the objective of the searcher is profit maximization and that of the latter
case is cost minimization. The problems that can be solved by the models include:

o Assets selling (Maximization model) 5]

Suppose that a real estate agent must sell a number of identical houses by a certain day
in the future. Here, let us assuine that a selling price is presented after a buyer (price taker)
has arrived. The agent will try to sel! his houses at highest possible price to buyers before
the deadline. If some houses are not sold out before the deadline, they must be disposed
at a price offered by a dealer, regardless of how low it may be. Apparently, it is risky to
keep offering at high price, because it is likely that buyers will reject the high price, and
ultimately some of the houses will remain unsold by the deadline. On the other hand, if the
houses are offered at low price, the total sales will be small even if all the houses are sold out.
Therefore, in order to come up with the suitable price, two considerations are necessary: (1)
selection rule of buyer, and (2) pricing policy. In this case, it is common that the optimal
pricing policy depends on the remaining period before deadline and the remaining unsold
houses.

o Seat booking problem (Maximization model) [7 — 13]

When a customer (price taker) decides to travel by air, it is necessary to book reservations
with airline companies prior to the departure. In most cases, customers will request for
price quotations before deciding to buy tickets. Depending on the price being offered, the
customers would decide whether or not to make the purchase. Since the demand of service or
convenience may be different for difterent kinds of customers, it is reasonable to classify a pool
of identical seats on the same flight into several booking classes through the application of



restrictions on tickets. Under this practice, for the purpose of maximizing the total expected
revenue in a single {light, the [ollowing two decisious 1nust be made over the whole decision
period. First, deciding whether to accept or reject a request for a certain booking class and,
depending on the seats available at the time and the probability that the customers will buy
the tickets, determining the appropriate price that is to be offered to the customers once the
airline company decides to accept the specific customer.

¢ Personnel recruiling (Minimization model)

Suppose that a personnel department of a certain company has been assigned the task of
finding a number of staffs within a given period. The department then tries to find staffs
at lower salary before the deadline. If the department is not capable of finding the required
number of staffs within the time limit, then it must accept the salary proposed by personnel
recruiting company by the deadline, however high it may be. In order to accomplish the
recruiting task at the lowest possible cost, the mnanager should come up with a selection
rule which helps determine whether to accept or reject the interviewee, and payment policy
determining how much pay should be offered to the interviewee once he/she is accepted. The
job search problem [6}, explained by the maximization model, where an unemployed worker
tries to find a job within a given period, is similar to the problem discussed above.

e Decision structure of the models

‘The decision structure of the above problems is depicted in Figure 1. It shows the searcher’s
decision making process of whether to accept a price taker and how to offer a price, and the
price taker’s decision making process of whether to accept the price being offered.

An arriving price taker ol class !

Decision by searcher accept or reject reject the price taker

accept the price taker

Decision by searcher offer price z

Decision by price taker accept or reject reject the price

accept the price

Figure 1
Structure of Decisions

Lo



2 Models
2.1 Profit Maximization Model

Consider the following discrete time sequential stochastic decision process with a finite
planning horizon. First, for convenience, let points in time be numbered backward from the
final point in time of the planning horizon as ¢, t — 1,... and so on, where an interval between
two successive points in time, say time ¢t and time ¢ — 1, is called period ¢.

Assume that there exists a finite number of identical items, say consumer products, lands,
houses and so on, that must be sold to buyers (price takers) arriving one by cne at a time
within the given planning horizon. Further, assume that there are L > 1 classes of buyers,
and let A,({) be the probability that a buyer of class { will arrive where A (0) = 1 — 55, A:({)
is the probability that no buyers will appear.

Let p;(z) be the probability that a buyer of class { buys an item if the offered selling price
is x. Here, for given a; and b such that 0 < a; < by, let py(z) =1 for z < ay, pi{x) = 0 for
b < z, and p;(x) be strictly decreasing in z for q; < x < . Let F(#) be the probability
distribution function of the maximum permissible purchasing price 8 that a buyer of class !
has in mind for the items, that is, if the offered price is smaller than 8, then the buyer will
decide to buy, and refuse to make the purchase if otherwise. Then p;(z) can be given by

p@) = [ dR(o)

Assume that cost ¢ < by (service cost, value-added cost and so on) will be incurred if an
item is sold to a buyer of class {.

Thoughout the paper, let 8 € (0, 1] be a per-period discount factor. Finally, assume that
if 7 items still remain at time O (deadline), then they must be disposed at price (i), usually
a very small amount.

The objective here is to maximize the total expected present discounted selling profit, the
total expected present discounted selling price minus the total expected present discounted
cost.

2.2 Cost Minimization Model

As the profit maximization model is applied in selling items, the cost minimization model
is applied when trying to buy a finite number of identical items.

Let A((l) be the probability that a seller (price taker) of class [ will arrive, and let g(z) be
the probability that a seller of class [ will sell the item if the purchasing price is x. Here, for
given a; and ¥ such that 0 < a; < by, let g(z) =1 for & < z, (x) =0 for z < a,, and g(z)
is strictly increasing in x for a; < z < b;. Let @(#) be the probability distribution function
of the minimum permissible selling price # that a seller of class ! has in mind for the items,
that is, if the offered price is larger than @, then the seller will be willing to sell; otherwise,
he does not sell. Then ¢/(z) can be given by

ae) = [ dQu6),



Assume that cost ¢; < I will be incurred when an itemn is bought from a seller of class {.
IFurther, assume that if ¢ items remain unpurchased by time 0, then those items should be
supplied by the total cost of v(i) > 0.

The objective here is to minimize the total expected present discounted purchasing cost, the
total expected present discounted purchasing price plus the total expected present discounted

cost.

3 Preliminaries

3.1 K-function

For given a and b such that 0 < a < b, let p(z)} be a strictly decreasing function of z > 0

for a <z < b with p(z) =1 for £ < a and p(z) =0 for b < 2. And, for any real number v,
define

Kl) = max p(x)(z — v). (3.1)

Let z(v) denote the smallest z attaining the maximum of the right hand side of (3.1) if

exists.

Lemma 3.1

(a) K(v) is nonincreasing in v and K(v) + v is nondecreasing in v.

(b) K(v) 20 for all v and K(v) >0 forv < b.

(c) z(v) is nondecreasing in v.

(d) a<z(w) <b forallv, a <a(v) <b forv<b, and 2(v) =b for v > b.
(e) If 1 < 1y, then K(1n) — K(n) < 1p — 1.

(£) If vy 2 1a, then K(1n) — K(1n) > vy — 1.

Proof: (a) The former part is immediate since p(z)(x —v) is nonincreasing in v for all . The
latter part is clear from the fact that p(z)(z — v) + v(= p(z) + (1 — p(z))v) is nondecreasing
in v for all z.

(b) The former part is clear from the fact that K(v) > p(b)(b — v) = 0. The latter can
be proved to be true since for £ > 0 such that £ + v < b,

K@) 2 p§+v)v+&§—v)=p(+v)E >0,
(¢} For any £ > 0, we have

K(v+§) = maxp(@)(@— (v +£))

= pla(v +{Nalv + &) — (v +£))

= pla(v + §)N (v +£) —v) — p(z(v + €))¢

< pla(w))(@(v) — v) — plz(v + £))¢

= plz(@))(@(v) - (v + &) + &lp(z(v)) — pla(v +£)))

< pla(v + )zl + &) — (v + &) + E(p(z(v) — p(z(v + £)))

= K(v+&) +{p(=(v)) — plz(v + ).
Therefore, we have 0 < p(z(v)) — p(x(v + £)), that is, p(z(¥)) > p(2(v + £)), implying that
z(v) < z(v -+ £) because p(z) is strictly decreasing in z for a < z < b.
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(d) First, assume b < #(v). Then
K(v) = p(z@))(z(v) —v) = 0= p() (b —v),
which contradicts the definition of z(v). Assume that z(v) < a, then
K@) =plz())zv) —v) =z(v) —v <ae—v =pla)lea —v) < K(v),

which is also a contradiction. Therefore, it must be that a < z(v) < b. Second, for any
£ > 0 such that v + £ < b, we have

K@) 2pv+Ww+E~v) =& +§) >0

Hence it follows that ¢ < z(v) < bif v < b. Finally, for b < v, we have p(z)(z — v) < 0 for
all x < b and p(z)(z — v) = 0 for all z > b; therefore, we have b < z(v). Combining this
with the definition of z(v) results in b = z(v).

(e) From (a), for 11 < 15 we have
K@) + v < K(in) + .
Hence, it follows that K'(1;) — K(1s) < 15 — 11 for vy < 1.
(f) Same as the proof of (e). o
3.2 S—function

For given @ and b such that 0 < a < b, let g(z) be a strictly increasing function of z > 0 for
a <z <bwith g(x) =0 for z < a and ¢(z) = 1 for b < z. And, for any real number v,
define

S) = min g(z)(z — v). (3.2)

By z(v) let us denote the largest  attaining the minimum of (3.2) if exists.
Lemma 3.2
(a) S(v) is nonincreasing in v and S(v) + v is nondecreasing in v. |
(b) S(w) <0 for all v and S(v} <0 for v > a.
(c) z(v) v and SW)+v >0 forv > 0.
(d) z(v) is nonincreasing in v.
()a<z)<bforallv,a<z()<b fora<v, and 2(v)=a forv < a.
(£) If 11 2 vy, then S(11) — S(n) > 1o — 1y
Proof : (a) Same as the proof of Lemma 3.1(a).
(b) The former part is clear from the fact that S(v) < g(a)(a — ) = 0. The latter can
be proved as follows, for £ > 0 such that v — € > a, .

S) < qlv =& —§—v) = —£glv —¢) <.
(c) The former part is apparent. The latter is immediate from a fact that for v >0,

SW) +v = qz@) (@) - v) + v = gz (1)zv) + (1 — g(z()))v > 0.
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(d) For any € > 0, we have

S +§) = ming(z)(z — (v +§))
= qlzv + ) +£) - (v+¢))
= gz +§)) (v +§) —v) — qlz(v + )€
2 qe@))(x(v) — v) — qlz(v +£))¢
= gz(W))(z(v) — (v +§)) + E(g(z(v)) — g(x(v + £)))
2 gy + &) (x(v +€) — (v + &) + §la(zv)) — q(z(v +§)))
= 5 +&) +&lalxw) — qlz(v + £))).
Therefore, we have g(z(v)) — g(z(v + §)) < 0, that is, g(z(v)) < ¢(z(v + £)), implying that
z(v) < (v + €) because ¢(z) is strictly increasing in x for a < z < b.
(e) First, assume b < xz(v). Then

S) = glz()(x(v) —v) =z(w) —v > b—v = qb)(b-v),
which is a contradiction. Assume z(v) < a. Then
S(v) = q(w))(z(v) —v) = 0 =q(a)(a — »),
which contradicts the definition of x(v). Therefore, it must be that a < z < b. Second, for
£ > 0 such that a < v — &, we have
S(w) <qlv =&y —€—v) = —gq(v - §) <0,

hence, it follows that ¢ < z(v) < b if v > a. Finally, for v < a, we have g(z)(z — v) > 0 for
z > a and ¢(z)(x — v) = 0 for z < a; therefore, we have x(v) < a, leading to a = z(v) by
the definition of z(v).

(f) Immediate from the latter part of (a). |

4 Analysis I — Profit Maximization Model —

Let ¢ denote the number of items that are available at present time and (i) be the
maximum total expected present discounted profit starting from time £ > 0 with ¢ items
remaining. Then, clearly, we have

2%(0) = 0, ' t >0, (4.1)
L
'U,:(’i:) = /\5(0)6?),:_1(’1:) + Z)\g(l) lnax{gt(i,l), 6'01"1(?:)}, ) = ].., t> ]., (42)
=1
where g¢:(3,{) is the maximum total expected present discounted profit starting from time

t > 0 with 4 items remaining, provided that the seller (searcher) accepts the buyer (price
taker) of class [ who has just arrived. Then g,(i,1) can be expressed as

(i, 1) = max{p(@) (@ — e + P (E — 1)) + (L = pu(2))Bus (D)}, £2 1, 1> 1. (4.3)



The final condition is given as follows:

v(3) = Ao(0)ax(s) +Z,\0 )max{go(£, 1), a(i)} i>1, (4.4)

where

9o(3, 1) = max{p(z)(z ~a+a(i-1))+ (1 —p(z a(z)} i>1. (4.5)

Here, note that 1p(Z) can be expressed by (4.2) with ¢ = 0 if setting

-1(2) = a(i)/B.

Let
Aa(i) = a(i) —a(i — 1), i>1,
Av(i) = v(i) —wft — 1), i>1,t>0,
z (i, 1) = o + BAy (). i>1,t>0, (4.6)

(2 (i, 1) = (i, 1),
And, for convenience, let
2104,1) = o + BAv_,(i).

Then, ¢:(%,1) can be rewritten as follows.

g3, 1) = mxax{p;(x)(:c — o+ Bua(i — 1)) + (1 — pi(2)) Bu—1(8)}
= Pua1(d) + maxpl( Nz —a+ Bu1(i — 1) — Bup1 (4))
= fu,_1(3) + Kz(zt 1(5, ).
Theorem 4.1 g:(i,{) > Bv_1(2)
Proof : Clear from the fact that K;(v) > 0 from Lemma 3.1(b). =
From Theorem 4.1, v;(2) eventua.lly leads to

ve(1) = Bve—1(3) + Z)\t(l)Kl(Zt—l(ia 1), 1>1,t>0, (47)
=1

where we have

wli) = afi) + ZL:/\o(l)Kz(a + Aali)), i>1. (4.8)

Lemma 4.1 If z(%,1) > by, then 2:(3,1) = b,.

Proof : Immediate from Lemma 3.1(d). u

Lemma 4.2 Assume that Ac(i) is nonincreasing in i. Then

(a) If (i) > 0, then v,(i) > 0 for all t and i.

(b) If a(t) > 0 and there ezists | such that M(l) > 0, then v,(i) > 0.
(c) Aw(%), hence z(3,1) is nonincreasing in i for t > 0.

(d) Aw(i), hence z,(i,1) is not always nondecreasing in t fori > 1.
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proof : (a) Clear from (4.7), (4.8) and Lemnma 3.1(b).
(b) Suppose A, (I*) > O for a certain class {*. First, from (4.7) and (a) we have

L
v (1) = Pu_. (1) + Z)\t(l)KI(CI + A1 (3))

L L
= 3" Bua (@) + Y MO EKi(a + BAvu-1 (3))

=0 =1

. L
> SN (Bus (i) + Kile + BAvs(i)))
=1

= i)\g(l)(Cz + ﬂA‘U;...l(?;) + IQ(C; - ﬁA’U;._1(?:)) + ﬁvt_l(i - 1) — Cl).
=1 .

Here, since ¢+ BAv_1(%) > ¢ — Pre—1(( — 1) due to u{z) > 0 from (a), we have from Lemma
3.1(a)

L
u(t) 2> M) (e — Bu1(E — 1) + Ki(e — Buee1 (i — 1)) + Bua (i — 1) — @),

i=1

L
= Zz\t(l)fﬁ(q —Bu—1(z — 1)).
I=1

Iurthermore, since ¢;—fv,.1 (i—1) < b due to ¢; < by and (a), we have Kj(c;—fu_1(i—1)) > 0
from Lemma 3.1(b); hence, it follows that v,(Z) > 0 due to A.(I*) > 0.

(c) Clearly we have from (4.8) and Lemma 3.1(b).

Avp(2) — Aup(1) = Aa(2) — Aa(l) + ZL:)\O(J)(K;(C; + Aa(2)) - 2K1(c + Aa(l))).

< Aa(2) - Aall) + i,\o(z)(fa(q + Aa(2)) - Ki(a + Aa(1))).

=1

Here, since ¢; + Aa(2) < ¢ + Aa(1), from Lemma 3.1(e) we have

Aue(2) — Ang(1) € Aa(2) — Aa(l) + i/\o([)(da(l) — Aa(2))
=1

= 20(0)(Ac(2) — Aee(1)) < 0.
For 1 > 3,
A’Uo(?:) — AU@(?: - 1) = AO{(’L) — A(}f(t - 1)

+ ZL:)\O(l)(K;(c; + Aa(i)) — Ki(a + da(i — 1))
=1

+ Z M) (Kl + Aa(i —2)) — Kia + Aali — 1))).

Here, since Aa(i) < Aa(i~1) and Aa(i — 1) < Aa(i—2), from Lemma 3.1(a) and Lemma
3.1(e) we have

Aug(d) — Avg(i — 1) < Aali) — Aali — 1) + i,\o(z)(m(q + Aa(i)) — Ko + Aol — 1))
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’l
< Aa(d) — Aafi — 1)+ Ao(IH Al — 1) — Aw())
{=1
= Ao (0)(Ac() — Aai — 1)) < 0.
Hence, the assertion holds true for ¢ = 0. Assume it also holds true for t—1. Then, Av;_,(5),

hence z_1 (3,1} is nonincreasing in 4, from (4.7) and Lemma 3.1(b) we have

D0(2) — (1) = BlAvir(2) — Aunes(D)) + 3 N (Kiloor (2, D) = 2Ki(zaa (L D))
=1 ‘

L
< B(Av1(2) — Auema (1)) + D0 MU Ki(2-1(2, 1)) — Ki(ze-1(1,1))).
i=1

Here, since 2;_1(2,!) < 2-1(1,1), from Lemma 3.1(e) we have

AU,&,(Z) —Zlvg( ) < ﬁ(A’Ut._ ( ) A'Ug 1 +Zz\t (Zt._.]_(]. l) — Zt— 1(2 l))

= B(Av_1(2) — Ava (1)) + 62’\t (Avg (1) — A1 (2))
= BA(0)(Ave-1(2) — Avea (1 )) < 0.
For 7 > 3 we have
Ay (i) — Av(i — 1) = H(A’Ug_l(?;) — Au_y (1 — 1))}
+Z’\t Y Ki(ze-1(2,1)) — Ki{ze—1 (2 — 1,1)))

l'-‘l

+Z)\; I(l Zz 1(1, — l)) — K[(Zt_l(’i — l,lj)).

Here, since 2;,-1(4,1) < z-1(t —1,1) and 21 (i — 1,1) < z_1(i —2,!), from Lemmna 3.1(a) and
Lemma 3.1(e} we have .

A'Ut(i) - A'Ut(i - 1) < ﬁ(A'Ut—l(i) — A1 (i — 1 + i)\t(l)(f{l(zt-l(i)) - I{[(zg._.]('l: - 1))
< ﬁ(A'Ug_l(L) Z_\’Ug 1(?; h 1)) + Z/\t (Zt..l(?' —1 l) — - 1(1' l))

= B(Av_1 (1) — Avy (i — 1)) + ﬁz Ae(?) (Avt_l(i —1) = Au,(3))
= BA0) (A1 (6) — Aves(i— 1)) < 0.

(d) For example, let Ay (f) =0 for { = 1,2,..., L, Ao(l) > O for a certain {, and (s} > 0.
Then, we have v;(¢) > 0 from (b) and (1) = Bu(1) from (4.7), hence, for a certain 3 < 1
we have

Avi(1) ~ Avg(1) = v1(1) —wo(1) = (6 — 1)we(1) < 0. -

Theorem 4.2 Assume Aa(i) is nonincreasing in i. Then
(a) v:(3) is not always nondecreasing in i for t > 0.
(b) If Aa(i} > 0, then (i) is nondecreasing in i for t > 0.
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(c) v (i) i3 not always nondecreasing in b fori > 0.

(d) If B =1, then v,(3) is nondecreusing in t for i > 0.

(e) If Au(l) is independent of t and (i) = 0, then v (i) is nondecreasing int fori > 0.
Proof: (a) If a(s) <0 and A({) =0 for i =1,2,..., L, then we have from (4.8)

u(1) = a(1) +i,\ou)m(a + (1)) = a(1) < 0 = v 0).
=1

(b) First, it is clear that v(1) > ‘Ug( ) from Lemma 4.2(a). Next, for i > 2 we have

vo(2) — vo(i — 1) )+ Z)\o WKi(a + Aai)) — Kl + Aafi — 1))

Here, since Aa(i) < Aafi—1), from Lemuna 3.1(a) we have Kj(ci+ Aa (i) > Ki(a + Aa(i —
1)). Hence it follows that vy(3) —we(i — 1) > Aa(s) > 0. Assume the assertion holds true for

t — 1, so v—1(4) is nondecreasing in i. It is clear that v, (1) > v,(0) from Lemma 4.2(a). For
1> 2 we have

: L
'Ug(?:) b 'U,:(?: - 1) = ,B(’Ug_l(?,) — 1);_1(?: - 1)) + ;A;(!)(I(l(.&';_l(i, l)) - K{(Zt...]_(i - 1, [)))

Here, since 2;-1(4,{) < 2z-1(¢ —1,{) from Lemma 4.2(c), we have from Lemma 3.1(a)
v(8) —w(@ —1) > Bu-1(E) — v (1 — 1)) > 0.
Hence, by induction the statement has been proven.
(¢) Let \(l) =0 for I = 1,2,...,L, A_1(l) > O for a certain {, a(i) > 0 and B <1

Then from (4.7) and Lemma 4.2(b) we have () = fu_1(2) < ve—1(%).
(d) If 8 =1, then from (4.7) and Lemma 3.1(b) we have

v (?) = v-1(2) + i)\g(l)fﬁ(zt_ﬂi, 1)) 2 v—1(2), 121t >0 (49)

=1

(e) If A;(!) is independent of ¢t and a(i) = 0, then from (4.7) we have

u(1) = Pu_1 (i) + ZL:/\(I)K;(zt_l(i, D), 1>1,t2>0, (4.12)
=1
where from (4.8)
L
w(i) = Y A Ki(a) >0, i> 1 (4.13)
=1

Then, from (4.12) and (4.13), we have

v (1) —w(l) = Buo(1) + > MO (HKi(z(1, 1) — Kilen))

=1 -
= Buo(1) + A (Kila + Buo(1)) — Ki(e)). . "
=1
Here, since ¢;+ fup(1) = ¢ due to vy(1) > 0 from Lemma 4.2(a), we have from Lemma 3.1(f)
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L
v1(1) —vo(l) 2 Bua(l) = 37 BANwe(1) = BA(0)ue(1) > 0.
=1

For ¢ > 2, since 2y(¢,1) = a1 + fAu (i) = ¢ from (4.13), we have from (4.12) and (4.13)
L
v1(7) —w(i) = Bw(i) + Z)\(U(Kl(zo(i= D)) — Ki(a))

"‘Z’\U) Ki(e) — Ki(er))

= Bup(7) > O
Hence, v1(i) = v(t). Assume v-1(z) > v;_2(3) for all &, Then, for t > 2 and 7 > 1 we have

Uz(?;) —’Uz._l( ) ﬁ(% 1( —"'Ut_z +Z/\ “ Kz .4 1(1« [)) K;(zt_g(z', l)))

‘Here, if z_1(i) < z_2(¢), then from Lemma 3.1(a) we have
v (3) — ve-1(8) 2 Bve-1(d) — ve—2(d)) 2 0.
If z,_1(2) > z_5(1), then from Lemma 3 l(f) we have
v (2) _"‘lUt—l(i) Z Bu-1() — v—2(d)) + Z,\(l)(z;_g(i,l) — z1(1, 1))
= ﬁ(v; 1(1«) — 1)3_2 + ﬁZ)\ Av; 2(L A’Ut_1(’l:))

- = BAO) (-1 (8) — w2 (4) +ﬁz)\ (v (f — 1) — vy 2(2-~1))>0 [

Lemma 4.3 Assume Aq(i) is nonincreasing ini. Then :

(a) If B =1, then Au(3), hence %(1,1), is nondecreasing int fori > 1.

(b). If A:(l) is independent of t and a(i) = O, then Au,(3), hence z(i,1) is nondecreasing in
t fori> 1.

Proof: (a) First, clearly from Theorem 4.2(d) we have Av,(1) — Av,—; (1) = v, (1) — v (1) >

0. Second, from (4.9) for 7 > 2

L
Av () = Avea(3) + ) M () (Fze1 (0, ) — Ki(z-1(6 = 1, 1))

I=1
Hence, for t > 1 and ¢ > 2 we have

A’U;(L) — A‘Ut 1 E/\g l)(f(j Zi—| (& l)) — f(z(zt_l(i — ]., l)))

Here, since z;-1(¢,{) < z_1(i — [, 1) from Lenuna 4.2(c), the statement has been proven by
Lemma 3.1(a).
(b) From Theorem 4.%2(e), it is clear

ﬂ‘Ut(l) - A’Ug_1(].) = ’U;(].) - ’U;.__l(l) Z 0.
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For 7 > 2, since Ayy(i) = 0 from (4.13), we have

A’U]_(’i) - AUQ(’L) = A‘U1(L) = 0

Thus, the assertion holds true for ¢ = 1. Assume it holds true for t—1, So Ay (2) = Ave_o(i)
and z.1(%) > 2-_2(4) for all 4 > 1. From (4.12) for i > 2 we have

L .
Auy(i) — Avea (i) = B(Av1(3) = Avea(3)) + 30 M) (Ki(2e-1(5, 1)) — Ki(zer (i — 1,1)))
1=1
L .
= AN (Ki(z-2(5, 1)) — Kilze—a(i — 1,1)))
I=1

= B(Av1(3) — Avea (i) + ZA (Ki(z-1(3,1)) — Ki(z-2(2, 1))
L
+Zx\([)(}([(z;_2(i — 1,[)') - f([(zt._q(‘i - 1,1)))
=1
Here, since z—5(i — 1,1)) < z,-1(¢ — 1, 1)) and 2, (i, 1) > z_5(s, (), from Lemma 3.1{a) and
Lemma 3.1(f) we have '

L (i) — Av_1(3) > B{Av1(3) — Avp_y(2)) +Z)\ D(Ki(2-10,1)) — Ki(z-s(3,1)))
> ﬁ(ﬂ‘l);_l(?:) - ../_.!\U;._.g(?:)) + ZA(!)(Z},_z ('L, l) - Z;....],(’.i, [))

= ﬁ(A’Ug_l(b) A'U; 2 +62/\ (A’Ut 2( ) A’Ug_l(i)) .
2 BAO)(Avi-a (i) — Ava(3)) >0, n

© Theorem 4.3 Assume Aa(i) is nonincreasing in i. Then

(a) z:(2,1) is nonincreasing ini for t > 0.

(b) If B =1, then z:(i,!) is nondecreasing in t for all i.
(€) If M(t) = A(1) for all i and a(3) =0, then z,(3,1) is nondecreasing in t for all i.

proof : () Immediate from Lemma 3.1(c) and Lemma 4.2(c).
(b) Clear from Lemma 3.1(c) and Lemma 4.3(a).
(c) Clear from Lemma 3.1(c) and Lemma 4.3(b). =
5 Analysis II -~ Cost Minimization Model —

Let ¢ denote the number of items that should be purchased and v, () be the minimum total
expected present discounted cost starting from time ¢ with i items to be purchased.- Then,
clearly, we have

2(0) =0, ‘ t>0, (5.1)
L

0 (E) = X (0)Bue-1 () + - M) min{g, (3, 1), Bur—1 (5)}, 121, t>1, (5.2)
I=1 .



where ¢;(i,!) is the total expected present discounted cost starting from time ¢ > 0 with ¢
items to be purchased. Suppose that the buyer (searcher) accepts the seller (price taker) of
class { who has just arrived, then g,(¢,{) can be expressed as

g:(i,0) = nrgn{q;(:v)(x +o+Pua(E—=1))+ (1 —q@)Buy_1(E)}, i>1,t>1. (53)

The final conditions is given as follows:

volt) = Ap(0)y(3) + me{gg(z 1),v(i)} i>1, (5.4)

where

9(i,0) = min{g(z)(z +a + (G - 1)) + 1 - @)@}, i>1. (5.3)

Now, note that vp(Z) can be expressed by (5.2) with ¢ = 0 if setting v_, (i) = v(i)/8.
Let

(Z:(t 1) = z:(i,1)
Ay(2) = 7({@) — (- 1), i >1,
A () = ve(2) —ve(i — 1), 121, t>0,
2(1,1) = BAw(D) — ¢, i>1,t>0, (5.6)

and, for convenience, let z_;(i,1) = BAv_;(i) — ¢;. Then, for i > 1 and t > 0 we have

9.2, 0) = min{p(z)(z + ¢ + Pup-a (6 — 1)) + (1 = pu(2)) Bre—1 (4)}
= fur1(i) +min{p(z)(z + & + Bu-1 (i — 1) — Bui-a (i)}
= Pu_1(i) +S;(zt 1(2,0)).

Theorem 5.1 g;(3,1) < Bve_1(3)

Proof . Clear from the fact that Si(v) < 0 from Lemma 3.2(b). =
From the Theorem 5.1, v;(2) can be rearranged as follows

v(t) = B, (i) + ZAt(l)S;(zt_l (2,1)), i>1,t>0, (3.7)
=1
where
L
v(3) = 7(1) + 3 Ao(D)Si(B(1) — ar), i>1 (5.8)

=1
Lemma 5.1 If z(7,{) < a;, then z,(¢,1) = .
Proof : Immediate from Lemma 3.2(e). n

Theorem 5.2 If Avy(i) is nondecreasing ini. Then
(a) v(1) >0 for all t and i.
(b) % (f) is nonincreasing in t for all i.

13



proof : (a) It can be proved by induction starting with

L
vo(2) = 7(3) + IZ/\OU)Sz(A'T(i) - )
=1

L L
= > Xo(Dv(E) + X Ao (DS Av() — )
=0 =1
L

2 > (D)) + SA () ~ @),
I=1
Here, since Ay(2) — ¢ < (%), from Lemma 3.2(a) we have

vo(i) > Z/\o(l (v(@) + Si(v(2)))-

Furthermore, since (¢) > 0, from Lemma 3.2(c) we have 15() > 0. Hence, the assertion
holds true for t = 0. Assume it holds true for ¢ — 1. Then since v;—;(i) > 0, from Lemma

3.2(a) and Lemma 3.2(c) we have
v(i) = Bu—1 () + D M(D)Si(BAv () — a)
=1

M) (Bve—1 () + Si(BAv—1(8) — 1))

Y%
Mt‘*

—
I

1
A(B)(Bue-1(2) + Si(Bu—1(i))) > 0.

< 0, it is immediate that

V.ILMP

(b) Since v (¢) > 0 and Sz(
ve(3) — v—1(2) = (B — Vo1 (3) + i)\t(l)st(ﬂvt—l(i) —¢) <0 n

1=1
Lemma 5.2 If Ay(i) ts nondecreasing in i, then, Au (i), hence z(i, 1) is nondecreusing in |

fort > 0.
Proof : Clearly from (5.8) and Lemma 3. 9(b) we have

Aug(2) — Avg(1) = Ay(2) — Avy(1) + Z/\o (S{AY(2) —a) —251(Av(1) — &)

2 A4v(2) — Ay(1) + ZAo(l)(Sf(d’T(QJ — ¢}~ S(Ay(1) — o))
=1

Here, since Ay(2) > Av(1), from Lemma 3.2(f) we have
L
Avg(2) — Avo(1) 2 Ay(2) — Ay(1) + D Aa(D(AY(1) — Av(2))
=1
= Ap(0)(Av(2) — 4y(1)) = 0.
For i > 3,
Aug(d) — Awg(i — 1) = Ay(i) — Ay(E - 1)
L
+Z/\g(1)(Sz(A'y(i) —a) = S(Av(i—1) —a))
-fzz\o(f (Si(Ay(i —2) —a) = Si(dy(i = 1) — a)).

=1
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Here, since Ay(i) > Ay(i — 1) and Ay(i — 1) > Ay(i — 2), from Lemma 3.2(a) and Lemma
3.2(f) we have

: A'Uo(z') - A’Uo(?; - 1) 2 A’)’(%) — A’}f(i — 1 + i)\o(l S;(A'y(z') - Cz) - S;(A"/(i - 1) - C;))
. . [_

> Ay(i} ~ My(i—1) +Z/\o (O)(Av(E — 1) — Av(3))
= A(O)(Av(E) — Ay(i ~ 1)) > 0.

Hence, the assertion holds true for ¢ = 0. Assume it holds true for t — 1, so Ap_1(2) and AR

Az y(,1) are nondecreasing in 7, Then from (5.7) and from Lemma 3.2(b) we have

L
A (2) — Av(1) = B(Av_1(2) — Ay_y( +2At(l (Si(z-1(2,1)) — 281(zs-1(1,1))).

> B(Av1(2) ~ Av_y( +Zl\t (Si(zt-1(2,1)) = Si(ze-1(1,1))).

‘Here, since z,-1(2,{) > z_,(1,!), from Lemma 3.2(f) we have

A’Ut(g) —A‘Ug(l) 2 ﬁ(A’Ut_l(g) —A’Ut_1(1) +i/\;(£ (Zg_ (1 t) - i 1(9 l))

= B(Ava1(2) — Avg_y( +ﬁ21\;([ (Avgy (1) — Ay (2))
= B (0)(Ave—1(2) — Av,- 1( ))>0

For 7 > 3 we have
A’U:(i) _— A'Ut(?: — 1) —_ ﬁ(A’Ut 1( ) Avg_l(l. — 1))
+Z’\‘(l (Si{z-1(2,1)) — Sz (i —1,1)))
=1

L
+ ZAL‘(!)(SI(:Z:—I(& - 2: l)) - SI(Z:..l('I: - 1: !)))'
i=1" -
Here since z}_l(z', D2z (-1 and (i —1,1) > 2,_,(( —2,1), from Lemma 3.2(a) and
Lemma. 3.2(f) we have

A7) — Ay (i = 1) 2 B(Ave-1(8) ~ Aupoy (6 — 1)) + D M8 (21 () — Silze—a (5 — 1))
=1

> ﬁ(A'Ut—l(?;) — A‘Ut_]_(‘l; - 1 +i/\g l Z —1 (1 -1 [) — Zt_l(i, l))
l_

= B(Av-1(i) — Ave-y(i — 1)) +[321\¢(J)(AU; 1 — 1) — Ay (3))
= BA(0)(Av—1 () — Av,- 1(4"—1)) 0 L .

Theorem 5.3 If Ay(i) is nondecreasing in i, then v,(i) is nondecreasing in ¢ fort >0.

proof : From Theorem 5.2(a), clearly vp(1) > vp(0). For ¢ > 2 we have

v(i) —w(i—1) = y(@) —v(E - 1) + ZL:/\o(l)(Si(m(i) —a) = Si(Av(E-1) — a)).
. =1
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Here, since Av(7) is nondecreasing in 7 and by the definition of ¥(0) = 0, we have Av(3) > 0.
For ¢ > 2, since Ay(i) — ¢ = Av(i — 1) — a, from Lemma 3.2(f) we have

vo(3) —w(t —1) > Ay(d ‘i*Zf\o WA —1) — Ay(3))
> Ao(O)AT(‘b) > 0.

- Hence, the assertion holds true for t = 0. Assume it holds true for ¢ — 1. Then, v_(i) is
nondecreasing in i. Since we have v;:(1) > 0 = v,(0) from Theorem 5.2(a). And for i > 2 we
have from (5.7)

v(l) — (i~ 1) = B (i) — v (E — 1)) + Z)\t(l (Si(z-1(3, 1)) — Si(z-1(6 — 1, 1))).
Here, since z,_;(%,!) > z-1(i — 1,!) from Lemma 5.2, we have from Lemma 3.2(f)
( )—'U;(l-—l) >ﬁA‘U; 1 +Z)\; ..4 1('1:—1,1)'—2':_1(?:,[))

= ﬁ.ﬂU; 1 + ﬁZ/\;(i AU; 1(’& — 1) .ﬂt_l(i))
> Ba(0 )Av¢_1(z) 2 0.
Hence, the statement has been proven. =

Lemma 5.3 If Av(3) is nondecreasing in i, then Av,(i), hence z (¢,1) is nonincreasing in t
for all 1.

| proof : Clear from Theorem 5.2(b), we have
A’Ut(l) —_ A"U;,_l(l) = -’UL(I) — ‘U;...l(].) S 0
For ¢ > 2, we have

A'Ug(%) A'Ug 1() ( - 1)A‘U¢ 1 +z/\t(£ Sz ,..g 1(% l)) S[(ut 1(7;—1 l)))

Here, since z;_l(z,l) > zi3(¢ — 1,0) from Lemma. 9.2, we have from Lemma 3.2(a) and
Theorem 5.3

Ay(3) — Aviey(6) € (B—1)Au_1(i) < 0.  m

Theorem 5.4 If Ay(i) is nondecreasing in 1, then
(a) 2:(2) is nondecreasing ini for all t > 0.
(b) x:(3) is nonincreasing in t for all i.
proof : (a) Immediate from Lemma 3.2(d) and Lemma 5.2.
- (b) Immediate from Lemma 3.2(d) and Lemma 5.3. N

16



6 Numerical examples

. Here, let us demonstrate the properties of optimal pricing policy by six numerical examples
where Examples 1 to 4 are for profit maximization model and Examples 5 to 6 are for cost
minimization model. In both models, it is assumed that there exist four classes of custoiners,
and Fi(0) and Qi(9) are both uniform distribution on {a, b;] shown in Table 3, and costs ¢;
are as in Table 4.

The values of A(l) are assumed to be such shown in Table 1 for Examples 1 to 3 and 5 to
6, and in Table 2 for Example 4. For afz), let us assuine

(i) = (685 4 15¢) (Aa(i) = 670 + 30:) for Example 1,

a(7) = (715 — 151) (Awa(s) = 730 — 30i) for Example 2,3,4.
For «(2), let us assume

() = (2015 — 15¢) (Av(i) = 2030 — 305) for Example 5,

(i) = (1985 + 15t) (Avy(z) = 1970 + 30i) for Example 6. Furthermore, For the
discounted factor 3, let us assume :
8=1 for Examples 3, 5,
5 =0.98 for Examples 1,2,4,6.
- Table 1
time | 0 ~15 | 16 ~ 30 | 31 ~ 45 | 46 ~ 60 | 61 ~ 75 | 76 ~ 90 | 91 ~ 100
A1) | 0.20 0.14 0.07 0.15 0.10 0.18 0.22
()| 018 | 015 0.12 0.18 0.13 0.17 0.15
A3) | 0.15 0.12 0.07 0.18 0.12 0.18 0.16
M) [ 016 0.13 0.10 0.20 0.15 0.19 0.17
‘Table 2 Table 3 Table 4
time | 1 ~120 class ay iy class | ¢
(1) | 0.30 =1 1200 | 1700 =1 250
A(2) | 0.18 I=2| 900 | 1450 [=2]170
A(3) | 0.15 =3 800 | 1150 I=31100
XN(d) | 016 =4 750 | 920 I=4] 50

' The optimal price z,(,!) for these examples are depicted as in Figures 2 to 7.

o Example 1 (8 = 0.98, Aa() is nondecreasing in ). Figure 2(a) shows that (5, 2) is not
always nondecreasing in t. Figure 2(b) shows that zs0(i, 2) is not always nonincreasing in i.
e Example 2 (8 = 0.98, Aca(%) is nonincreasing in i). Figure 3(a) shows that z,(5,2) is not
always nondecreasing in t. Figure 3(b) shows that xy4(z, 2) is nonincreasing in .

e Dxample 3 (8 = 1 and Aw(i) is nonincreasing in ). Figure 4(a) shows that z,(5,2) is
nondecreasing in £. Figure 4(b) shows that @4(4, 2) is nonincreasing in i. '

o Example 4 (8 = 0.98 and (i) = 0). Figure 5(a) shows that z; (5,2) is nondecreasing in
t. Figure 5(b) shows that 2s0(2,2) is nonincreasing in i. - '

o Example 5 (8 = 1, Av(i) is nonincreasing in i). Figure 6(a) shows that z; (20,2) is not

always nonincreasing in ¢. Figure 6(b) shows that z0(%, 2) is not always nondecreasing in i. -’

. Example 6 (8 =0.98 and Av(z) > 0). Figure 7(a) shows that 74(20, 2) is nonincreasing
in ¢&. Figure 7(b) shows that 214z, 2) is nondecreasing in 4.
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7 Conclusioh

In the current paper, the optimal price is defined by z,(,!), which stands for the price

-in which there are still ¢ periods and 7 items remaining for the price taker of class I. The

conclusions obtained here are summarized as follows:
1. It is always optimal to accept every arriving price taker (Theorem 4.1, 5.1).
2. The optimal price z,;(i, {) in profit maximization problem can be summarized as in Table 5.

Table 5 Optimal Price (7.1}

Aa(i) is Aca(i) is nonincreasing in i a(i) =0 and A(l)

~ nondecreasing in 4 0<f<l ' 8=1 is independent of t
not always monotone in ¢ | not always monotone in ¢ | nondecreasing in ¢ | nondecreasing in ¢
not always monotone in ¢ nonincreasing in ¢ nonincreasing in ¢ | nonincreasing in #

(1) If Aafz) is nondecreasing in 7, then z,(z, 1) is not always monotone in t and 5 (Example 1,
Figure 2(a,b)).

© (2) If Aa(?) is nonincreasing in ¢ and 0 < 8 < 1, then z,(3,!) is not always monotone in £,

but always nonincreasing in ¢ (Theorem 4.3(a), Example 2, Figure 3(a,b)).
(3) If Aa(d) is nonincreasing in ¢ and § = 1, then z,(i, ) is nondecreasing in ¢ and nonin-
creasing in i (Theorem 4.3(a,b), Example 3, Figure 4(a,b)).

(4) If a(i) = 0 and A (0) = A(), then z:(¢,1) is nondecreasing in ¢ and nonincreasing in %

(Theorem 4.3(a,c), Example 4, Figure 5(a,b)).

. (5) It may happen that, although a customer has being accepted, the price taker may

decide to reject the offered price. This would imply that the price being offered by the
searcher has being set too high. Theoretically, this occurs when b < 2(i,1); in this
case 24 (1,1} = b, from Leiuna 4.1. Under this condition, even if a customer is accepted,
the deal will not go through. Therefore, when by < z(i, (), the searcher can dec1de to
reject a price taker of class [ arbitrarily before making a price offer.

3. The optimal price z;(4,!) in cost minimization model can be summarized as in Table 6.

Table 6 Optimal Price z,(,1)
Ac(i) is nonincreasing in i | Aa(i) is nondecreasing in 1
not always monotone in ¢ nonincreasing in ¢
not always monotone in £ nondecreasing in i

(1) If Ay(7) is nonincreasing in ¢, then (3, ) is not always monotone in ¢ and i (Example 5,
Figure 6(a,b)).

(2) If Av(3) is nondecreasing in ¢ and Avy(3) > 0, then x(i,{) is nonincreasing in ¢ and
nondecreasing in ¢ (Theorem 5.4, Example 6, Figure 7{a,b)).

(3) It may happen that, although a price taker has being accepted, the price taker may
decide to reject the offered price. This would imply that the price being offered by
searcher has being set too low. The: rutically, this occurs when z (g, ) < a;; in this case
(3, 1) = a; from Lemma 5.1. Undcr this condition, even if a price taker is accepted,
the deal will not go through. Therefore, when z(z,!) < a;, the searcher can decide to
reject a price taker of class { arbitrarily before making a price offer.
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Appendix

1500 [ -7}5(5, 2) 1500 |- 5320(7:: 2)
1000 ! 1000 w
300 500
A- 0 - 2 o " T )
B 0 25 50 75 100 1 5 9 13 17 2 35
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Optimal price is not always monotone in ¢ Optimal price is nonincreasing in i
(Theorem 4.3(a))
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(Theorem 4.3(b)) (Theorem 4.3(a))
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