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1 Introduction

Nonlinear complementarity problens (NCP) form a fairly geneval class of mathematical pro-
gramming problems with a large wmnber of applications. For instance, any convex programming
problem cail be modelled as a monotone nonlinear complementarity problem (MNCP). Also,
the problem has a close connection with variational inequalities, which play an important role
in the study of cquilibria in e.g. ecconomics, transportation planning and game-theory. For a
good mtroduction in CP and traditional solution methods we refer the reader to the book of
Cottle et al. (2]. A survey on variational inequalities is provided by Harker and Pang [9].

The study of interior point methods for linear programming that has flourished since 1984, also
led to the use of barrier methods for nonlinear convex problems, see Nesterov and Nemirovsky
[40), Jarre [15], Den Hertog et al. [12, 11, 10], Kortanek and Zhu [29], Monteiro and Adler
[36], Zhu [49], ete. An important aspect of these algorithms is that their convergence rate has
been established for classes of problems which satisfy certain Lipschitz conditions. A general
and wnifying analysis was provided by Nesterov and Nemirovskii [40], who managed to give a
framework for the study of central patli--following methods for nonlinear programming problems
satisfying the so-called self -concordance condition. Recently, Nesterov and Todd [41] analyzed
primal-dual potential reduction algorithms in a similar framework by considering a symmetric
primal-dual cone representation of convex programming problems. Jarre {15] and Den Hertog
et al. [12] used the relative Lipschitz condition, which was later shown (see e.g. [17]) to be
essentially equivalent to self-concordance. Zhu et al. [49, 29, 44]) used the scaled Lipschitz
condition to analyze path following methods.

The fundamental work of McLinden [31} brought us a lot of ideas to develop interior point
algorithms for linear complementarity problems (LCP) and NCPs ([6, 8, 7, 13, 24, 26, 21, 22,
23, 20, 18, 27, 33, 38, 42, 40, 48, 47] etc.). The global convergence of these algorithms has been
shown by using the existence of the central path, which can be seen as a minimum requirement
for intevior point mnethods to be applicable. Similarly to the case of nonlinear convex problems,
the study of the convergence rate has also become active for NCPs satisfying a smoothness
condition on the mapping. In particular, Chapter 7 in [40] is completely devoted to the study
of variational inequalities and their solution. Some drawbacks of the analysis in [40] are that
it focuses on central path-following methods, that the type of search—direction to be used
is prescribed (Newton's divection w.r.t. a self-concordant function), that the algorithm is in
essence a pure primal algorithm, and that small neighborhoods of the central path are used.
The last aspect has been handled by Nesterov in [39], but we are not aware of results concerning
other search-dirvections. Potra and Ye [43] dealt with primal-dual interior point algorithms for
solving MNCPs, and studied the global and local convergence rate and the complexity of the
algorithms. Thelr smoothness condition (a scaled Lipschitz condition) can be regarded as a
generalization of Zhu's condition [49].

In this paper wo will focus on the complexity analysis for a family of primal-dual affine scaling
algorithms for NCP. This serves as an extension to the analysis of the same family for linear
CP by Jansen et al. [13]. The family contains the classical primal-dual affine scaling algorithm
of Monteiro et al. {37] and the primal-dual Dikin affine scaling algorithm of Jansen et al. [14]



as special cases. In the analysis we make nse of wide neighborhoods of the central path. The
definition of the neighborhood is cquivalent to the so-called infinity-norm neighborhood as
used for linear programuming in [25], {30] and [1}, among others. The introduction of such a
type of neighborhood has two important consequences. The first is that we inay not hope for a
complexity bound that is better than O(nlu 1/¢), where = is the number of variables and ¢ the
required accuracy. The sccond is that we need to consider separate components of the vector
of complementarity products instead of its norm. The latter aspect needs us to reconsider
the use of several smoothness conditions (as self--concordance) for this type of analysis. The
analysis of owr algorithms nor the algorithms themselves use any barrier functions. This leads
us to make asswinptions on the smoothness of the mappings involved. A version of the scaled
Lipschitz condition appears to be a natwral choice. We introduce a new condition, Condition
3.2. which is trivial in linear cases. The advantage of this condition is that it does not require
the monotonicity of the mapping while it seems to be indispensable for the scaled Lipschitz
condition even if the mapping is linear. Therefore, we consider in this paper mappings for which
the Jacobian matrix is a so-called P, -matrix (see, Kojima et al. [20]). A different approach
to the analysis of primal-dual large neighborhood algorithms was taken in Nesterov and Todd
[41]. They reformulate a given convex programming problem in a primal-dual self-scaled conic
reformulation and assune the cxistence of a logarithmically homogeneous barrier for the cones
involved. However, although theoretically the reformulation is possible, it is far from clear what
its implications arc for the existence of logarithimically homogeneous barriers.

This paper is built up as follows. In Section 2 we introduce the mathematical formulation
of the CP and define some notation. In Section 3 we introduce a search mapping and derive
some gencral results. Section 4 introduces the family of algorithms we consider and provides
a complete complexity analysis. In Section 5 we consider several smoothness conditions, their
relationships, and their usability for owr purposes.

2 Problem statement

Let us consider the NCP:
(CP) Find (z,5) € R®" such that s = flz), (z,8) > 0and z7s = 0.

Here f is a C' mapping from IR” to R". We denote the sets of feasible and interior—feasible
points of {CP) as follows:

F = {(z.s) eR”: 5= f(2), (z,5) >0},
FU = {{z,s) e R* : 5= f(z), (z,s) > 0}.

We assue that FV is not empty, or stated otherwise, that an interior point exists.

In the literature the linear complementarity problem (LCP) has gained much attention, see
e.g.. Cottle ct al. {2]. In this special case the mapping f is given by

flz)= Mz +q,



for M € R"*" and ¢ € IR". Special conditions on the matrix M have been developed to
guarantee the existence of a solution. These classes include PSD (M positive semi—definite},
P (M has positive principal minors), Py (see below) and CS and RS (column-sufficient resp.
row-sufficient). Sowme knoww implications arve

PSDC P, CCS, PCP., P.=CSNRS,

see e.g.. Cottle [2]. Viliaho [45] and Kojima ot al. [20]. In this paper we will be interested in
the class F..

Definition 2.1 Let v > 0. The matric M € R™™" s in Pu(r) if

(1+48) > & (ME); + S &GIME); 20, VEER™
iely (&) iel {£)

where
I—I—[&):{? {a ME); >0} I-(‘s) { Ez(ME <0}

The rmatrizc M ds in P, 4f it i3 i Pu(s) for some k.
Throughout this paper, we impose the following condition on the mapping f.

Condition 2.2 There cwists « constant x> 0 such that the Jacobian V f(x) of the mapping
fis a Po(r) motriz for all 2 > ().

For ease of notation we allow ourselves to perform componentwise operations (like multiplication
and taking powers) on vectors. For instance, by d = v/z/s we mean the vector d obtained from
di = /2;/s;. Wherever this abuse of notation might be inconvenient, we use capital syllables
to denote the diagonal matrix obtained from a vector; for instance D = diag (d). We also define
the mappings w. vyin. vnax and w for every (z,s) € F 0. which are continuous with respect to

(@, s) € FO:

v(x, 5) = (x 5)1/2

Vmin(#,8) = 1'11111{'01 =12, ,ﬂ.}, (1)
Vax (2,6} = max{v; :i=1,2,...,n},

w(:z:, ‘:) =  Umin /'Umdx <1l

We often use the symbols v, v, Mk and w(v) to denote v(z, 8), Umin(Z, ), Vmax(,s) and
w(z:, ), respectively. For a given p € (0,1), we emnploy the following set as a neighborhood of
the central path, which plays a key role in owr analysis:

Np) = {(ar,s)e}"ozw(w,s)zp}.



3 The search mapping and its properties

Supposc that we have an interior feasible point (z, s) € F 0 ie., s = f(z)and (z, s) > 0. Given
displacenients Az and As, let us define

() = x4+ 0Am, (2)
As(8) = As+g(8)/9,

s(0) = s+ 0As+g(0) =5+ 0As5(8), {3)

9(8) = fla+0Az)— f(z)~0Vf(z)Az. (4)

The mapping +(d) above was introduced in [27] as a modification of the one in [36] for the
convex progranuning problem. The mapping g(#) contains the second order effect introduced
by the displacement. Obviously, we have (2(0), s(0)) = (z,s). We require our search—directions
to satisfy the following equation

—Vf(z)Az 4+ As = 0. (5)

Then we sec that

$(0) - flx()) (s +8As)+ (f(x+ 04z}~ flz) — IV f(z)Az) — f(x + 8Az)
(s — f(2)) +0(—Vf(z)Az + As) (6)

= 0

"

for every 8 > 0. i.c., feasibility is preserved by construction. Consequently, if we find #.such
that {x:(8), s()) > 0 then (z(#), s(8)} is also an interior-feasible point.

The term g(#) is continuous and higher order in 8, i.e.. limg_¢ [[g(8)[|/8 = 0; hence we have

ds()|
—dg—- 40 = AS.

When the mapping f is linear, the term ¢(8) vanishes and we obtain
z2{f) = x4 0A=z,
() = s+0As,

which means a usual line search mapping.

Our analysis starts from representing the componentwise complementarity product z(6)s(6)
where «(8) aund s(8) are given by (2) and (3):

2(8)5(8) = (2 +0Az)(s + As())
= 25+ 0 (shx+ zAs(0) + 02 AzAs(8). (7}
We infroduce the primal-dual scaling which is usual in the analysis of interior point methods

(see e.g., Gonzaga [5]):
d= (1:3"1)1/2.

n



The important property of this scaling is that it maps both 2z and s to the same vector v; this
makes it possible to express the scaled search-directions as orthogonal components of a vector.
In scaled space the search directions are denoted by

pe=d 'Ar, p, =dAs = DVf(z)Az. (8)

Let us define the vector p, as
Po = Py + Ps.

Part of the following lemmia is similar to [13. Lemuma 4.1].

Lemma 3.1 Lelp,. pe. and p, be as defined above. Then, we have

(i) ~nllpell? < AcTAs = plp, < Il

(i) [|AzAs]ly = papalloc € $(1+ 48)||po|®.

Proof:
The vectors p, and p, sabisfy

‘“va(ﬂ’)me‘i'Ps = 0
PetPs = Po

Applying Lemma 3.4 in Kojima et al. [20] gives
Paps 2 —5llpall®. (9)

Note that the leimna applies since the Py (&) property is preserved by pre— and post—multiplication
with a positive diagonal matrix (cf. [20, Th. 3.5]). Defining ¢, = pa — ps, it holds

i 1 ¥ 1
Peps = Zllpol® = llgal®) < Zllpoll®.

Using (9} we further obtain _
2
llgull® < (1+ 4s)lpoI?.

Fmally, since pupe = (p'f: - q,'f,) /4

1
IPapallos < Zmax{llp-ullﬁo,llqullio}
1
< gmax{lipell®, llg.[*)
1 ,
< Z(1+4n)upvuz-

This completes the proof. g



For convenience in fitrther discussions we define the mappings:

1).,(6) = dA.s(@} = P + d (%}_) ,

‘[);.(9) =pr+pl) = Py + d (%or)) s (.10)
0(8) = (2(0)s(8))1/2.

Using these definitious we may write

sAx + 2 As(0) = up,(F),
AxAs(0) = pps(8).

Hence equation (7) can be rewritten as
u(8)? = 2:(8)s(0) = v* + Gup,(8) + 82p,p,(0). (11)

The reader way verify that (11) is very similar to the corresponding equation in Jansen et al,
[13] for the lincar case. Our next task will be to prove results analogous to Lemma 3.1 for the
vectors Ax and As(8). To be able to do this, we impose the following condition on the mapping

7.

Condition 8.2 There crists a p € (0,1). © > 0 and a v > 0 such that if (z,8) € N(p) :=
{{z.s) € FY: wlz.s) > p}. end if (Ax, As) € R satisfies (5) and ][m_lAm-i-s_lAs[[ <1,

then

lps(8) = pell < ¥8)Ips||

for every 8 € (0.0]. Herew(z,s). pe and pa{8) are defined by (1) and (10).

The following observation is useful in the analysis and follows by definition:
Pe(8) — po = pe(8) — Ps-
Also. notice that the inequality |[ps(8) — ps|| < v||ps|| is equivalent to

fla+8A2) — f(x)
4 :

- Vf(:z:)Aa:)

< W|dVf(z) Al (12)

or stated otherwise

9(0)

a2\ < v6ldas].

Note that the condition depends not only on the mapping f but also on the displacement
(Az, As} used in an algorithm. If the mapping f is linear, however, the above condition holds
with ©@ = +oc, ¥ = () and with every p € (0.1), independent of the search-directions. In Section
5, we will show how Condifion 3.2 is related to smoothness conditions on the mapping f and
certain primal-dual interior point algorithms.

Using Condition 3.2 we derive the following lemma.



Lemma 3.3 Let pe. pa(8). pe and pu(8) be as defined above and let Condition 3.2 hold. Then

(1) [lpol®] < (1 +78vTF2m)|poll.
(i) |pe(8) = po| S YVITF2R|pulle < 1Y "(H')" e 81pl

Twllpe)
for any (x.s) € N(p) and § € (0.8]. Here the function w is defined by (1).

Proof:
The rvelation p, = pp + pe and (i) of Leainma 3.1 imply
ol = lpoll? = 2035 = Hpall* < (14 25)lpo ||
Since Condition 3.2 holds, we have

e (O < lipalt + 112:(8) = pall < llpoll +78lps |l < (2 +78v1 + 26} |p.]

which is the assertion of (1), Similarly,
Ipo(8) = po| = |ps(8) — ps| < ¥8|lpslle < ¥OV1+ 2k]|palle.

Finally, we scc that

\/"'_?’lp-v |m ax

|p1' [min

v
w(lpy

Ipolle = llpellpy 'po < Mool Iy ' Ipo] € == py| = PRI
This completes the proof of (ii). y

We may now prove the following lenmumna.

(13)

Lemma 3.4 Let p,. pe. pod0). po and py(8) be as defined above and let Condition 3.2 hold.

Then. for every (x,s) € N{p) and 8 € (0, 0], we have

(i) —(1+90)(1+2x)|lpul? < Az"As(8) = pLpa(8) < $(1 + yv/T+ 26)%|Ipul2.

(i) 42850, = Ipepe(®lloc < (11 +0yVTFIR) + (L +99)(L + 25)) 2],

Proof:

{i): By (4), (5) and {10), we have

pe(0) = dAs(0) = d (f(w +64z) ~ f(x)) .

g

Using also definition (8) we obtain

(82) Bs(6) = plpa(6) = Z(8) (f(z +62) ~ [(a)).



JFrowm (12) we derive
d{f(x + 8Ax) — fle))|| € (14 78)8||dV f(z)Az|.
Just as in (13} it holds
pel? = fpel* — 202 pe — llpsll® < (1 + 26 [p 12 (14)
Consequently.

Az As(8)]

%I(A:l:)v’(f(ﬂ-‘ + 04z) - f(z))]

< Sla Axfld(fle +08) - Fla))]
1
< 5”?1” (1 +0)0||ps |l
< (L+78)(1 + 26)[[py|?, (15)

where the last hnequality follows fronm (13) and (14); this proves the left inequality in (i). For
the right we can be better. We proceed as in the proof of Lemma 3.1. By (10} we have

}va) = pr +ps(6).
Letting ¢.(6) = p. — ps(8). we obtain the following bound:
Ly Al l v * 1 b 1
Papa(8) = 2O — g O) < ZHpolDI® < 701+ 07VIT2RPIpIP (16)

where the last nequality follows from Lemma 3.3. For (i) observe that combining (15) and
(16) leads to the bound

%iiquw)llg < i(l +0VI+ 204 poll” + (14 78) (1 + 25} lp .

Hence, nsing

1 ;
peps(8) = 7(0el0)” ~ 0,(6)?)

we have
napra (8 < -1 : N )12
”]J;r[).e( )”00 4 mdx{”p'l’( )”001 ”qv( )”oo}

1 : 9
S - max{ ||Pa-(9) ”2! ”%’(6)”-}

4
1 . : .
< AV 28 ol + (1 +76) (1 + 26) 2.

This completes the proof of the lemma. g

The above leinias give us some tools for analyzing primal-dual algorithms applying to NCP.
In the linear case. Lemma 3.1 is important to provide the polynomiality of many primal-dual



algorithms ( [25. 24, 34, 35. 26. 32. 33, 20. 19, 18], etc.). On the other hand, Lemma 3.4 suggests
us that these analyses may be extended to nonlinear cases.

Before proceeding we mention that for the monotone NCP the bounds in Lemma 3.4 can be
improved by using

Azl As(9) = ;—_z(em:)’f‘(f(m 4+ 8Az) — f(z)) > 0.

4 Primal-dual affine scaling algorithms

4.1 Development of the algorithm

Up to this point. onr analysis was general, in the sense that we didn't specify our search-
directions. The conditions imposed $ill this point arve feasibility (5) and Condition 3.2. We
will now derive a family of affine scaling directions as in Jansen et al. [13]. The directions are
obtained by ninimizing the complementarity (suitably scaled) over an ellipsoid, which is the
idea of Dikin’s primal affine scaling algorithm [3].

Cousider the problem

minimize = s subject to (xz,s) € F.

The NCP is equivalent to the above problem in the sense that (z, s) is a solution of the NCP if
and only if it is a minimum solution of the above problem with objective value zero. According
to the search mapping defined by (2) and (3), the complementarity z(8)7 s(6) is obtained by

w(8)75(8) = w"s + 0 (s7 Aa + 2T As(8)) + 62627 As(9).
It follows frow definition (4) of g that

d(z(0)75(0))
df

Torgy — T
= lim 2(0) sl6)—2"s

= sTAz + 2T As.
bt f—0 g

The above relation gives us an idea for the determination of the search-direction (Az, As). Let
r be a fixed nonnegative constant {the order of scaling in the algorithm). Taking account of
the equation ~V f(2)Az + As = (), we consider the following problem, which is essentially the
same as the one given in [13]:

Minimize ((zs)") (z~ Az + S_IAS)
subject to —Vf(x)Az+ As =0,
la= Az + s7 As|| < 1.
Obviously. the solution of the above system satisfles the assumption imposed on (Az, As) in

Condition 3.2. If we take » = 1 then the solution of this subproblem (Az, As) minimizes the
derivative

d(z(8)"5(6))
s |,

10



It is not difficult to find that the solution of the KKT (Karush-Kuhn-Tucker) optimality con-

ditions for the above problem satisfies the following system:
—Vi(z)Ax+ As =0, (17)
.U2r+2
(18)

SAL + 2As = — —— .
2 ]|

The reader may observe that in case of linear or quadratic programming for r = 0 this system
exacbly determines the well-known (classical) affine scaling direction of Monteiro et al. [37].

From this moment on we let p, have the following definition:
n2r+l
v
(19)

Po = 5o

N

Using the definitions in (8), the above optimality system can be rewritten as
—DV f(2)Dp, +ps =0, (20)
Do+ Ps = Po. (21)

Since the Jacobian Vf{z) is a P.(x) matrix the system has a unique solution for every = € R™

{ef. [20. Lemuua 4.1]).

We can now state our algorithm which is based on [13].

Input
(9, $9): the initial pair of interior—feasible solutions;
r > 0: the degree of scaling;

Parameters
€ is the accuracy parameter;

f is the step size;

begin
2= al; g = gV,
while z7s>c do
Calculate Az and As from (17) and (18);
Compute the search mapping (x(8), s(8)) by (2) and (3);

Find § such that (2(8), s(8)) > 0;

= .'1:(9_);
5= s(8);
end .
end.

Figure 1: Primal-dual affine scaling algorithm.

11



4.2 Convergence results

We will analyze the beliavior of the family of primal-dual affine scaling algorithms as follows.
First, we will give some general vesults for the case v 2 0. These regard the complementarity
and the feasibility of the iterates after o step, Theu, we will analyze the complexity of algorithms
with r > 0; finally, we cousider the classical primal-dual affine scaling algorithin (with » = Q)
of Monteiro ot al. {37]. Natwrally, we will impose Condition 3.2 for those p, and p,(8) generated
in the algorithu nnder consideration. Heuce, in this section we will further assume that p,, is
given by (19} for certain constant » > 0, and that p,, p., ps(€) etc., are obtained from solving
(20} (21).

JFrom Lenuna 3.3 and Lemuna 3.4 we obtain the following result, which is a key for observing
the behavior of v(8)2 = a(#)s(8).

Lemma 4.1  Suppose that Condition 3.2 holds. Then, for every (z,s) € N(p) and § € (0,0],
we have

(1) llp(8)] < (1+0yvI+28)|lvlle < (1 +6yVI+28)|0],
(ii) — (1 4 gryntliee) ) S < upu(8) < (1 - va) 242

wl)* fle=1] [
(iid) pLps(0) < 4 (14 6yyTF25) o],

(i) lpepe(Dlloe < (3014 67vITF IR + (140701 + 26)) o]l

Proof:
The vector p, is given by p,. = If"" “ Hence we have
”,U‘Z-r+l ”
|l = - < |l < v,
“Pt ” HUZ‘,” - ” “00 — “ ”
w(lpe|) = wlv)*
[po| = —pe.

Thus the lemma follows from Lemunas 3.3 and 3.4, y

The following lenuna is completely equivalent to Lemma 4.2 of [13]. It concerns a technical
result used in estimating the new complementarity.

Lemma 4.2 (Lemma 4.2 of [18]) Let v € IR}, be an arbitrary vector.

gyt ||U||2

T IV

(i) fo<r<1. then —

12



c'l',u'.?r+2 w(‘“)21'—2

it) If1 <vr. then —— < -
(i) If1 < r. then o S 7

2
Holl”

Let us introduce some notation:
= 142k,
w(,U)2:'+1

2vn
1/ n(l 4+ 2x) i

w(-“)'?.r+l 2,(9‘

= =

H|

(22)

Notice that  and 7 depend on »; however, in this section we are concerned with the behavior in
one iteration so v can be considered to be fixed. Later we will derive uniform bounds for these
quantities, We are now rcady to show how the error in complementarity can be reduced by
taking a suitable step size 8. Cowmbining Lemuma 3.4, Lemma 4.1 and Lemma 4.2 with equation

(11) we obtaiu the following lemma (cf. [13, Lemma 4.3]).

Lemma 4.3 Let 5. 9,7 be as defined in (22). Then

. " . . A 1
(1) Fo<+r <1 and 8§ < mm{@, T+ __\/F(H-W]‘l} then

AT ol 8y — Untanl2 _L) 2
w(0)"310) = (@) < (1~ =) ol

. . . 1wl ,
(i) If1 <r und 6 < min {@, T AT } then

PV _ 2 _w(’U)%“g 2
#{6)"s(8) = fo(O11" < (1 —4—\/_17,_9 llult*.

Proof:
Since § < 1/(27) we have 1+ 65 < 1+ 9. The new complementarity is
(@) = P+ 0T, () + 8% ps(0)

. ely2r+2 1 : .
ol — (1 - HW)W + 921(1 +67) 2|2

Jlo]1? 1 1
+ 8 ———
2\/'H \/’H(1+’l9)24

= (1-2=) Il

The proof of (ii) is similar. |y

A

(1 +9) 2|2

IA

llol* ~ 6

The following lemma gives us a bound 8 such that (2(8),s(8)) € F° for every § < 8, i.e., the

new iterate is interior-feasible.

13



Lemma 4.4 Letr > 0 be « given constant and let T,9,7 be as defined in (22). Suppose that
Condition 3.2 holds. Also let

¥

. 1 _

) (1 + 25). (23)
If (x,5) € N{(p) and

. 1 3vrw)® w) Qw(v)?  3wlv)
()59<1mu{0 7= M+ 7 ( 1+ T6n —4\/ﬁﬁ)} (24)

then (2(8). s(8)) € FY.

Proof:

The proof is essentially the samc as a part of the proof of Theorem 5.1 in [13]. From the fact
tliat the search direction satisfies {5) we have feasibility from {6). We still need to show that
(2(8), 5(8)) is interior—feasible. The frst upper bound § < © follows from Condition 3.2. Due
to the second bound on 4 it holds 1+ 67 < 1 + 4. jFrom the second bound on § and (iv) of
Lemima 4.1 we get

pepe(®)eo <TI0l

Relation (11) and Lemuna 4.1 imply then

0 0 2 +
w02 < wr-8(1- H 2r|| —1-6’2—2||'u|[2
¥ +2 b
w(@)? > o —9(1+9w)“ 2r||—92ﬁ2||?1”goe

for every 8 € (0,0]. Now let @ be a given positive number and consider the function
t.'-+l

[l I

Then one casily verifies that ¢ is monotonically increasing on the interval {0,v2,,] if § <

il S overy « > 0. Note that

(1+ravil
”“2’.” > “{"2"” > 2\/ﬁvmm - zﬁw(v‘)%
(1++r){1— 971")?.';;‘ e (E+r)(E+ 677 ) v2 vE T 3(1+ ?‘)U?ﬁax 3(1+r)

hence if we enforce the third upperbound in (24) the largest coordinate v(8)max of v(8) and the
smallest coordinate v(#),,,, can be estimated as follows:

) 2?+2
(g)ﬁlw < 'Ulimx - ( )”m2a::” + 92—2 gmx# (26)
2r4+2
g > -4 2 'Ul'nljl- 92—2 2
u( )mm 2 YUmin (1 + 07) -1 Vmax- (27)

[
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By the conbinnity of the mapping v, if v(8)2, > 0 for every § € [0, 8], then (2(8),5(8)) > 0 and
consequently (x(8),s(8)) € F for this interval. Hence it suffices to show that v 6‘)?“;“ >0ifd
satisfies (24).

Dividing the relation (27) by v2.  gives us the following condition to ensure that v(8) i > 0
,U??: 2 -ﬁ'z
1—8(1+ 6m) 2 — ¢ >0
L e
Since
2y 2y
v Y

min min :_1__
o>l = vaull, — vn

and 1+ 67 < 3/2 the condition certainly holds if

o e T

2/ w(v)
It is easy to check that the last upper bound in the lemma ensures the inequality above. This
completes the proof of the lemma.

1

5 > 0.

By putting the above together, the following bound on 8 enjoys both the results in Lemma 4.3
aud Lemma 4.4:

0 <8 <min

~ 1 1 2y/nw@) wv) w(v)?2 _ 3w(v)
{O*zf‘ V(l+9)2 3(1+r) 7 ( L+ 16n72 4\/ﬁﬁ)}' (28)

If the mapping f is linear, we can take ® = 400 and v = 0 in Condition 3.2, and consequently
¥ =7 = 0. Futhermore, if f has the monotonicity property, Condition 2.2 holds with x = 0.
In this casc, we obtain the bound 5/4 < ﬁ2 < 3, since 0 < ¥ < 1. Thus, Lemma 4.3 and
Lemma 4.4 above almost coincide with Lemma 4.3 and a part of Theorem 5.1 of [13] for linear
monotone complementarity problems.

4.3 The polynomial convergence for r > (

This section is devoted to analyzing the polynomiality of the class of primal-dual affine scaling
algorithms for r > 0. For a giveu parameter p € (0,1), each algorithm in this class generates
a sequence of iterates { (2%, %) 1k =1,2,.. .} satisfying w(v*) > p for every k > 1 where the
function w is given by (1). This condition on the iterates is in fact equivalent to requiring that
the iterates are in the wide neighborhood defined by infinity norms that has been used in the
analysis of interior point methods in e.g. [25] and [1]; the wide neighborhood is given by

!
£t s
Ae(0,1), pi= - (1-PFp <z (14 Fp.

Suppose that the aurent point belongs to (z,s) € M(p), i.e., (z,5) € FY and w(v) > p. Our
algorithm determines the next point along the curve (2(8), s(6)) given by (2) and (3) by choosing

15



. a step size 8. The following theoremn enswres the existence of 8 > 0 for which (z(8), s(9)) € F°

and w(v{8)) > p for every # € (0,8].

Theorem 4.5 Let r > 0 be a given constant and let T,0,7 be as in (22). Suppose that
Condition 8.2 holds. If (w, s) € N(p). 8 satisfies (28) and

) 1— /)21' f)?'(l - pQ'r)
<#< ;
0< 6_mm{Zﬁ(l—l—pz")'2ﬁ3(1+p2)\/ﬁ . (29)

then (x(8). s(8)) € N(p).

Proof:

The part ((0). 5(8)) € F is obvious from Lemma 4.4. Hence we need only show that w(v(8)) >
£, 1.6, ;)211(9)2 < w(8)2

max — min*

Utilizing the relation vy, = w(v)vax = P¥max. the same discussion for finding the bounds (26)
and {27) leads to the following relation:

20, 2r+2

2 2 f 2 — P Umax 27 o
'“(9)miu 2 p Vnax — g{1 + HW)W -0 p_zvmax . (30)

Hence, from (26) and {30) we derive a sufficient condition for 8 as follows:

w242 2r,, 272 =2
9 . W g_9 s 2 2 o PV 2?? 9
4 ('U;Znax - 9(1 - Hﬁ)ﬁ + gz'qz'ulfmx) S 4 ('U;nax - 9(1 + QTT)W -0 ?Umax) :

By rearranging this inequality, we have

T+ %) vl

.

((1—om) = (1 +0m)0™).

Since ||o*"|| < rv2r . we obtain the bound

g < 21— 07) — (14 0m)p")
- 71+ p%)v/n

Using the first bound in (29) we find that & will certainly satisfy this inequality if

271 _ 21
p< LU P)
(1 + p?)y/n

Thus we obtain the theorem. |y

We are now in the position to derive the complexity of our algorithms. The following theorem
canl be derived from Lemma 4.3 and the above theorem.
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Theorem 4.6 (Theorem 5.2 of [13]) Let r > 0 be a given constant and let 0 < p<1be
given. Suppose that Condition 3.2 is satisfied. Let ¢ > 0, (29, %) € N(p) be given and let
0 satisfy the conditions in (28) and (3.9) Then the primael- dual affine scaling algorithm with
order of scaling v stops with « solution (2. ™) for which (z*)7s* < ¢ and w(v™) > p holds, after
ot most

ETY AN . )
(i) %h; Y2 terations fO<r <1,

4

(ii) 4,‘{-01 e T erations ifl1<r.

To be wore specific about the complexity, we have to check which of the various conditions
on the step size f is strongest and how 8 depends on the input parameters. This will be done
below.

It is easy to verify the following bounds

el < 1
"fz—ﬁ < Vs 5
W1+28) < 7 < L)
Using also 1 2 2. we get from (23)
S < <1(1 ! )2 (1+ )(l+2h‘.)<3(l+h‘,) (31)
g="= 2v2 2v2 :

We analyze the bounds in (28) consecutively. Notice,
1 p?.! +1
2T 7 29y/n(l + 2&)
1

1 1
Vil + )2 = N 1+1/(2f )2 = 2yn’

2/nw(v)? 2\/_,02'
3(L+r) _3(1+r

We have ; ]
w(u) <

<1,
i/nn ~ 4/2./574

so using the fact that the function ¢(#) = V1412 — ¢ is monotonically decreasing we obtain

M( 1+9w(”)° 3w (v ) > “) (VI-1) 2

7 1+n

16n7°  4/n7q

For the bounds i {29) we obtain

1-p* (1= p*)p?rt! (1 - p%)p?H!

MWL+ p?") T 29I+ 2811+ p2 T dy/nI F )1 + p?

17




PA=py o P
22 (1 4+ p2)y/n = 6(1+ &)1+ p2) v

Thus we obtain the following result as & corollary of Theorem 4.6.
Corollary 4.7 Let us take the situation as in Theorem 4.6, besides that we specify p = 1//2.

(i) If0<r <1 andn 2 2 we may choose

1-277" 1-2-7
f = min {@ } )

"129+/n(1 4+ &) 18y/m(1l + &)

hence the compleaity of the algorithm, s

S 0y 0
o (\/'I_una.x{% Mma}c {'Y, M}}ln (@ )E i )

o 1~ 2-r

(ii) If r =1 and n > 2 then we may choose

P 1 1
= min B s 3
' Bay/n(l % 7)) 36v/n(1 + R)

hence the complezity of the algorithm is

O0NT 0
o (ﬁnmx{%,\f’n(l+h‘.}max{fy, \/1-4__—,{}}111 ( 1 d )

(iit) If 1 < v and n sufficiently large we may choose

- 1 1
f = min {@, 2r+2y /(1 + &) 36yn(l+ &) }

hence the complezity of the algorithin is
. 1 (.'I!O)TSO
"o/ . = 2\ s T
0(2 \/Hmdx{@,dn(l+h.)ma,x{2 'y,\/l-f-ﬁ:}}ln - .

Remark 4.8 Notice that the neighborhood A (p) fulfills two roles in the above analysis. The
first is as the admissible region in which the algorithm generates the sequence as in Section
5 of [13]. In this case. the initial point (29, s%) prescribes the possible choices of p so that
p < w{z0, sY). The second is as the region where the nonlinear mapping f can be approximated
suitably as in Condition 3.2. If the mapping f is linear, however, Condition 3.2 holds with
every p € {(0,1); hence we can start from an arbitrary initial point (29 s9) € FP. In addition,
© = +oo and vy = 0 in those cases, and ~ = 0 if f is monotone; hence the above corollary
corresponds to Corollary 5.1 of [13] if f is linear and monotone. Observe also, that for r > 1
the complexity bound gets worse as r increases, and similarly for r < 1 as r decreases to zero.
A final remark to be made is that the actual value of £ (which might be hard to compute)} is
not required in practice, althongh the theoretical step size and complexity depend on it. In
an implementation we can just compuée the maximal step that ensures w(z?, s%) = p, which is
guaranteed to be as large as the theoretical step.

18



4.4 Polynomial complexity if r = 0

In this scction we show that, with snitable step size, the classical primal-dual affine scaling
algorithin of Monteiro et al. [37) can be applied to NCPs satisfying Conditions 2.2 and 3.2
with a polynomial complexity bound. We believe that this is the first proof of polynomial
convergence of the affine scaling algorithm for NCPs.

So frow now on we assume that = 0. It is easily verified that Lemma 4.3 and Lemma 4.4 still
apply in the presont case. Theorem 4.5, however, is not valid for + = 0. In fact, by taking the
limit in (29) as » tends to zero one obtains that the step size 8 becomes zero. Below we show
that by making a positive step, (i.c., § > 0) w{v) may well decrease, but the decrease can be
bounded from below. This is the contents of the next lermma.

Lemma 4.9 Let T, 9 be as defined in (22) and 7 s in (23). If (z,s) € F° and

) 1 1 21 w(w) Swlv)?2  3w(v)
< B, — -, . - ' 32
0 £ 8 < min {O, o7 AT IR 3 = ( 1+ Ton? ~ Tym (32)

then (z:(8). s(8)) € FO und
1+ w(@?)
1 (7 va+om)

Vn—0(1+67)

1+ w(u(8)?) >

(33)

Progf:

It may be clear from Lemma 4.4 that the given bounds (32) on @ guarantee the feasibility of
the new iterate (x(8), 5(4)). So it vemains to show that (33) holds. First observe that (26) and
(27) also hold for » = 0. Hence, by using the notation w? = w(v?) = /8 with & and g such
that ae < v? < fe. one has
(1 —8(1 + 07)//n)a — 62728

T {1-6(1-6m)//n)B + 6%7°8

w2 (/i — (1 + 67)) — 0272/
(v —8(1 + 0%)) + 6272 /n + 2027
w*(yn — (1 + 67)) — 0272 /n — 26°%

(v —0(1+0m)) + 6272 /n + 2027

After adding oue to both sides and rearranging the terms the inequality (33) follows. y

w(v(8)?)

Now we are veady to prove the polynomial complexity. We will denote by (2(*}, (%)) the iterate
after & iterations and for simplicity we use the notation wy, := w(z¥), (F),

Theorem 4.10 Let an initial interior point (29, s“”) e FO, with Vip<wy<landl<e<
(270 be given. We define parameters L and 7 as follows.

L =0T 64 N - } 2
= In — - Ti= > (14+x)+ wo\/n(l-l-u) + —
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We wssume that L 2 1 andn > 2. Lett be the smallest real number in the interval (7,74+1/4nL?)
such that K = 2tnL? is integral. If := 1/(t\/nL) < O, then after K = O(nL?/(w})) iterations

the algorithm yields o solution (%, 5%) such that (z*)7s* < ¢ and w(z*s*) > w—z‘l > p.

Proaf:

For the nowent we make the assanption that in each iteration of the algorithm the step size
0 = f—\/[ﬁ satisfies the conditions of Lemuma 4.9. Later on we will justify this assumption.

Taking logaritluns in (33), and substituting the given value of 8, we obtain

1+wg ' 02 (72 vn + 27)
hll—!—wﬁ < A'111(1+\/ﬁ—5(1+9?))
< LTy 2m)
= TJ/n—-8(01+ 67
i 1/ (#*nL?) (7" + 2m) v/

- Yn—2/(tynL)
T+
"tL(tnL — 2)’

IA

where we used T < T/m and 87 < 1 in the third inequality. Hence we certainly have w,% >
wd/2 > pas long as

72+ 97 <i 14 wd

k . 34
Ll -2) =1 % (34)

Since (o) :=W((1 + o)/(1 + 7/2)) is a concave function, and #{0) =0, ¢(1) 2 % it holds
1+ wﬁ

1449

In

w2
> Y0
4

As a consequence, inequality (34) is certainly satisfled if

2
wytL{tnl — 2)
P —— 35
472 + 27) (35)

2

We conclude that if the total munber of iterations satisfies (35) then the inequality w >
Lolds.

Since Lemma 4.3 is valid and we employ a fixed step parameter 8, the algorithm stops after at
most A iterations, where
4\/— (1(0) 540
¢

= 4tnL2,

and then we have (¥ N7 4% < ¢ Note that the definition of t guarantees that 4tnL? is integral.

So, as far as the reduction in complementarity is concerned, the algorithm needs not more than

4tnL? iterations. This munber of iterations will respect the bound (35) if

. . tnl — 2

475731—12 S wgtLT.
4(7% + 27)
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Dividing by witL and rearvanging terms gives the condition

i 16 (77 —|—27r)+ 2

z —_“’U L (36)

which is satisfied by the value assigned to # in the theorem, since 7? < 2(1+4 &) and

oyl 4 24) <7\/2n1+2h 27v/n(1 + &)

- =
Wi Wo wo

It remains to show that in cach iteration of the algorithm the specified step size # satisfies
condition (32) of Lemma 4.9, First. observe that § < © by assumption. ;jFrom (36) we have
327
12> — 2> 327%.
wy
The condition § < 1/(27) is cquivalent to
27
\/— L
which is glmmnh ed by the assumption on L. Since d < —\/-, a sufficient. condition for the third

bound in (32} is
1

8 <
= VRl + 17Gv)
which is satisfied since £ > 2 from (36} aud L > 1. The fourth condition is trivially guaranteed,
so it remains to deal with the condition that for each &

(AT Qw% 3wy
f < — 1 -—.
< 7 ( + 16n7?  4n7

Using n > 2 and 7 > /574 (see {31)), we have

Therefore, since 5
1
\/l+02—a>§ if OSG<Z’

it is sufficient to show that § < wy./(27). for each k. As we have seen before, for the given step
size we have wy, > wy / V2) for each k. So is it sufficient that @ satisfies ¢ < wo/(2v/27) or even
8 < wo/( 2\/_\/1 + x}. This amounts to wot/nL > 2v6v/1+ x. Due to the assumption that
L>1landn > 2. i‘lnt. certainly holds if ¢ satisfies £ > \/T-R" Using wg < 1, ¢ > 7 and the
definition of 7. it is obvious that # satisfies this mequahty Hence the proof of the theorem is
complete. g

As the proof of the above theorem shows, we need the assumption wy > /2p on the initial
point (2%, 5%) so that the generated sequence {(z¥, s )} lies in M(p) for which Condition 3.2 is
effective. However, as we have mentioned in Remark 4.8, if f is linear then we can take any
p € (0.1). and the assumption does not affect any choice of the initial point.
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5 Smoothness conditions on the mapping f

In the literature on interior point methods for nonlinear programming problems a few smooth-
ness conditions on the functions involved have been proposed. These conditions serve the
purpose of bounding the second order effects not taken into account by Newton’s method.
Since these conditions are only applicable to monotone mappings, we confine owrselves in this
section to mappings f satisfying the monotonicity property. In this section we show how these
conditions are generalized to the setting of NCP and indicate their use for analyzing algorithms
in wide neighborhoods.

We first introduce some notation regarding a trilinear form N € R™*™**, We use the notation
. = o i
Niz,y,z] = Z Z Z £zyjszjk:
, Pk

where N'. 4 =1,....n, arc natrices.

5.1 Zhu’s scaled Lipschitz condition

In this section we will show that the (inodified) scaled Lipschitz condition as introduced by
Zhu [49] also guarantees Condition 3.2 to hold. The scaled Lipschitz condition was also used
by Potra and Ye [43] for the analysis of Newton’s method for monotone NCP, by Kortanek et
al. [28] for an analysis of a primal-dual method for entropy optimization problems and by Sun
et al. [44] for min 1wax saddle point problems.

Definition 5.1 Let G be a closed conver domain in R™, with nonemply interior @ := int(G).
A single -valued monotone operator f : Q — " satisfies the scaled Lipschitz condition if there
8 ¢ nondecrensing function () such that

IX (f(z+h) = fla) = V(@) < $(e)hT Vf(z)h (37)

for allx > 0 and h satisfying |2~ 'h]l < o.

We will show that any mapping satisfying the scaled Lipschitz condition also satisfies Condition
3.2

Theorem 5.2 Let the mapping [ satisfy the scaled Lipschitz condition with G = {z € R" :
@ > 0}. Then. for every p € (0.1), there exist values fory and © such that f satisfies Condition
3.8

Proof:
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Suppose that (x.5) € M(p) and (Ax, As) € R2" satisfy (5) and flz~1Az + s~ Asfl < 1. Since
f is monotoene, Lenuna 3.1 Liolds with # = 0. Hence

-1 2 - 2
e Aal2 = ol
< e P lpal® + 20T ps + llpsl[2)
1 .
< —llpe + 2l
Yinin
’02
< 3a'Az 4 57T As)?
Ylnin
1
= ﬂ-g*

where the last inequality follows from the fact that w(v) = s > pand [lz~ Az+sTlAs) < 1.
Thus, it © < wp then [z~ Azj] < « for every 8 € (0, ©], and we have

”d (f(fﬂ + BAB:L'J - flz)

Il

p4(8) = pal] -V f(:n)Am)

1 .
S glv leolla(f (= + 002) - f(z) - 8V (z)Az)|
< —;-”'U_l|[oo'(/)(rx)92AmTVf(m)Am
< Ol Heoth(e)fld Azl [dV £ (z) A
< el [vllcollz "t Azl ||V fz) Az

1

< 9m¢(a)llﬂ’_[A$,l ll2sl,

()
S ¢ [)2 "px“”

Consequently. we obtain © and v as

O=ap and v= ?,l:_f()gz_)‘

This completes the proof. §

Deflnition 5.1 of the scaled Lipschitz condition implies that ATV f(z)h > 0 for every £ > 0 and
e with Jl«~'2][ < e, a priori. Hence, using this condition seems not to be suitable when we
analyze the case where the mapping f has no monotonicity. In fact, even if f is linear, i.e. given
by f(x} = Mx 4+ g4, the condition does not necessarily hold for the matrices M in P.. On the
other hand. Condition 3.2 does not need the monotonicity and holds for any linear mapping,
which may be an advantage of the condition.

5.2 Self-concordance and relative Lipschitz condition

The most important (and most general) condition is self~concordance introduced by Nesterov
and Newmirovskii [40], later also used by, e.g., Jarre [16), Den Hertog [10] and Den Hertog et
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al. [11], Freund aud Todd [4], Nesterov and Todd [41]. The crux of the condition is that it
bounds the third order derivative of a function in its second order derivative. In [40, Chapter
7] it is shown how the condition can be generalized to nonlinear mappings. A main difference
with the Lipschitz conditions is that the gelf-concordance does not immediately apply to the
mapping itself; what is needed is a so--called self-concordant barrier for the domain (in our
case IRT}.. and we may use the function — 371 | In ;) and a mapping that is f-compatible with
this barrier function. We have the following definition. Since these conditions only apply to
monotone mappings, we assuue f to be monotone in this section.

Definition 5.3 A C? smooth monotone operator f : RY — R" 15 called §-compatible with
Fla) == lnw; if for allw >0 and h; € R", = 1,2,3, the inequality

1=

3
|f(@) [, ha, D)) < 8328 TT{F (@) hs, ha] 3|~ e |12}
i=1 |
holds.

If the mapping f is [ compatible with the function — 377, Ina; then the barrier function
Filz) == (L+ )2 {tf () +a~'} is strongly self-concordant for all ¢ > 0 (see Prop. 7.3.2 of {40]).
A similar property can be obtained if the mapping f is strongly self-concordant itself. For all
a > 0 and B > 0, if the mappings ¢ and ¢ are self-concordant then the mapping a¢ + Gy
is also self-concordant with some parameter. Self-concordant mappings satisfy the following
condition., which may be called the ‘relative Lipschitz condition’ (see Prop. 7.2.1 of [40] and
Section 2.1.4 of [17]).

Definition 5.4 Let G be a closed conver domain in IR™, with nonempty mterior Q = int(G).
A single-valied monotone operntor h : @ — IR" satisfies the relative Lipschitz condition if for

allz €Q.y € Q for which r .= \/(y — 2)TVh(a)(y — ) £ 1 the inequality

1
Az 1) a7 Vhiz)g.

lq’f'(vh(.y) - ‘Vh(iﬂ))ﬁ’l < ((1

holds for all g € R".

In the following lenma, we will show how /3-compatibility and the relative Lipschitz condition
can be used to bound the iner product plps{8), which plays an important role in the complexity
analysis, see Lemnma 3.3 and Lemma 3.4.

Lemma 5.5 Let the mapping f be B-compatible with F(z) = — Y Inz; and p € (0,1). If
(z,58) € N(p) = {(x.5) € FO: wlu.s) > p}, and if (Az,As) € R?" satisfy (5) and ||z~ Az +

sTIAs|| € 1. then
lsﬁ'”min) 2
—oETmin 12
A

for every 8 > 0. Here w(x.s), p. und py(8) are defined by (1) and (10).

o 1
P.{'p-ﬁ(a) < 1 (1 44
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Proof:
Using Taylor’'s expansioun. we have
g(0) = Ffla+0Az)— f(z) - 0Vf(z)Ax
= 20 f'(y)As, A .

where y = x + #AAx for some A € RY with A; < 1. Then, for every ¢ > 0, it holds

g et 6
pip8) = Az (As+¥)
= Az'As+ (%Bf”(y)[ﬁ.n:, A:z:,A::c])
T B2 -1
< AwAs+ 5 BOf (y)Az, Ag] |ly~ A
7 33/ / ~2 NPT
N e n (tFw+Y ) [Az, Aq) iy Al (38)

We will apply the relative Lipschitz condition with y and z to the self-concordant mapping
hiz) = tf(z) -z~ L.
Since Az’ Vf(x)Ax = AzT As, the relative Lipschitz condition gives
(tf’(y) + Y—‘—’) [Az.Az] < (1 + HTI/\/‘Z? - 1) (AmT (t Flz) + X‘2) Am)
< 12 (tA:r:TAs + “:z:_lAm[[z) .
By the monotouicity of the mapping f and Lemma 3.1, we have
0< AaTAs < Slipol

Also, the asswunption guarantees

1 7 2 =l 2 1 s ; -
7 (8aTAs 4ol Axl?) = —— (pTps + il )
T mn
1
< —— (#Lps + lpell?)
Yinin
1
< 3 "p:c +ps“2
Ymin
2
< Ug‘lax |[m_1Am + S—IAS”2
Vhin
T
P
It is easily seen that
_ 1 » _ 2 2
ly~" Azl < mmﬂﬂ’ Azl < 2|z~ Azl < U—_“Pm +psil = - lpo]]-
- min min



Substituting the latter results in (38) with ¢ = 1/v2, gives

» 3J 2 pi22
'P;:I-PS(E) < ”pﬂ“ “Pv“ l)mm
P Vmin

250ﬂ'vmin) 2
-1 '
£ (Lo o

IA

whicli completes the proof. |

(From the lamna we can derive the following corollary in the case of the primal-dual affine
scaling algorithins considered in Section 4.

Corollary 5.6 If Aw and As are determined with ¢ primal-dual affine scaling algorithm as

wn Section 4, then
T 250
pho0y < 7 (1467 If?

Proof:  In the algorithm, the vector p, is given by —ﬁ%. The result immediately follows
from the inequality
Vain 'Umiu]]'uzrll 'Umin”'v2r” 1

ool = W2 7 vmaxllv? ] = o

The result of this corollary gives an alternative proof for a bound of the type as in Lemma
4.1(1). Unfortunately, our analysis of the primal-dual affine scaling algorithms is based on large
neighborhoods. This implies that also a bound (cf. Lemma 4.1(ii)} on

||p:tfps(9)”oo

and on ||g(8)]l« is requirved. We have not been able to derive such a bound using self-
concordance and relative Lipschitz. However. to have more insights into the relationship be-
tween the self concordance and our condition, we will need to enforce more strict conditions
on the mapping. Recall that Condition 3.2 is equivalently written as

1D (f(x + 0Az) = f(z) — 6V F(z)Az) | < 18] DV f(z)Ac]). (39)
Using Taylor's expausion we obtain
1D (flz+ 1) — flz) — Vi) || = | D(Vf(y) - Vi(z)) R

where y = @ + Al for some vector A satisfying A; < 1, Vi. For matrices A and B we mean by
A =< B that B — A is positive semidefinite. It is not difficult to derive the following results from
the above observations:
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Theorem 5.7 Let G be a closed conver domain in R™, with nonempty interior @ := int(G).
Let f be a single valuwed monotone operator f:Q — R", and let

M=Vf(x) and N =V f(y} - V(=)

for each .y € Q. Then

(1) i — ((qu,—]; - 1) M<N=< (ml—?-)? - 1) M for allz € Q, y € Q such that (y — z)T M(y —
2) <12 then f satisfies the relative Lipschitz condition,

(ii) if N'D?N < @22 MTD>M for all € Q. y =z + 0Ax € Q such that |z~ {y—2z)f < v
for cvery 8 € {0,0]. and D = diag (d) with d > 0, then f satisfies Condition 3.2 with O.

While the above theorem seems to be quite trivial, it may be somewhat practical since the
conditions in the theoremn can be more easily checked than the original conditions. In fact,
we can find some examples to satisfy the relative Lipschitz condition and/or Condition 3.2 by
using the above theorem.

Remark 5.8 If thie Jacobian V f(z) is symmetric for every ¢ € @, the assumption NTD2N <
v*MTD2M in (ii) of the above theorem can be replaced by the condition that there exist
positive muuber v and a nonsingular matrix P such that

(i) N XM and

(it) P"D(\/'?M — N)DP and P“ID(\/'TM + N)DP are diagonal matrices.

Example 5.9 [LCP]

Consider the lincar complementarity problem with f(z) = Mz + ¢; here M is a symmetric
positive semidefinite matrix and ¢ € R". Then Vf(z) = M and it is easy to see that all of the
smoothness couditions are satisfied. Specifically, Condition 3.2 is satisfied with ©® = 400 and
o =10.

Example 5.10 [Entropy functionj
Let . € R™ and > 0 and let ¢(x) be an entropy function of the form

Plz) = Zmi log (&) .
Pt u;

Let us define f(a) = V¢(x), that is fi(x) = logax; —logu; + 1 for all : = 1,2,...,n. Then f
satisfies all of the smoothness conditions (c.f. Theorem 4.1 of {49]).

It should be noted that the above two examples also satisfy the conditions in Theorem 5.7.
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