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The explicit expressions for the mean and the second moment of the waiting time dis-
tribution for an M/G/1 queue with random order of service can be found in the literature.
However, higher-order moments have been unavailable, because their calculation is extremely
laborious, albeit straightforward in principle. This paper presents the third through sixth
order moments of the waiting time in symbolic form, which is obtained by a Mathematica
program developed for formula manipulation. The results provide more information about
the characteristic of the waiting time distribution. In particular, they are used to compare
the skewness and kurtosis of the waiting time with those for the first-come first-served and
last-come first-served systems.
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1. Introduction

In M/G/1 queueing systems, the mean waiting time of a customer does not depend on the
order of service, such as first-come first-served (FCFS), last-come first-served (LCFS), and
random order of service (ROS) (8, sec. 3.4]. However, the distribution of the waiting time
does depend on the order of service, so do the second and higher-order moments. While the
symbolic calculation of these moments are relatively easy for FCFS and LCFS systems, it is
not the case for an ROS system due to an extremely involved calculation. This is why only
the second moment of the waiting time is available in the literature. Higher-order moments
would be useful to characterize the waiting time distribution more clearly, for example, in
terms of skewness and kurtosis.

This paper presents the explicit symbolic expressions for third to sixth order moments
of the waiting time in an ROS M/G/1 queue. They are obtained by a Mathematica [12]
program developed for symbolic formula manipulation. The program implements a procedure
described by Conolly [4, sec. 5.3.5], who remarks that “This is eztremelylaborious, and though
straightforward in principle, it is almost inevitable that errors are repeatedly committed.”
Conolly’s procedure is based on the Laplace-Stieltjes transform of the distribution function
for the waiting time originally derived by Kingman [7]. See also Cohen (3, sec. IT1.3.3], Takéics
[9], and Takagi [10, sec. 1.3] for the description of Kingman'’s formula. Alternatively, Burke
(1] and Carter and Cooper [2] (see also Cooper [5, sec. 5.12]) show approaches which do not
use transform methods. Fuhrmann [6] shows interesting relations among the waiting time
moments for FCFS, LCFS, and ROS systems. But his arguments apply only to up to the
second moment. The results in this paper can be compared with the corresponding results



for FCFS and LCFS systems recently obtained up to the 10th order by Takagi and Sakamaki
[11].

The rest of this paper is organized as follows. In Section 2, we define our model and
notation, and then show Kingman’s formulation. Section 3 provides a Mathematica program
that calculates the moments of the waiting time, together with annotation on its algorithm.
The complete symbolic expressions for the third to sixth order moments of the waiting time
are presented in Section 4. Section 5 displays the squared coefficient of variation, the skewness,
and the kurtosis of the waiting time distribution in FCFS8, LCFS, and ROS systems. The
program in this paper was written and executed using Mathematica Version 2.2 for SPARC
from Wolfram Research, Inc. [12].

2. Model and Formulation

Let us introduce our model and associated notation specifically. We consider an M/G/1
queueing system with an infinite capacity., The rate of a Poisson arrival process is denoted
by A. The Laplace-Stieltjes transform (LST) of the distribution function (DF), the mean,
and the nth moment of generally distributed service times are denoted by B*(s), b, and
b (n = 2,3,...), respectively. The service discipline is random-order-of-service (ROS), that
is, every customer present in the queune at the end of each service can be selected for the next
service with equal probability. The traffic intensity is given by p := Ab, which is assumed to
be less than unity for the stability of the system.

The waiting time W of an arbitrary customer is defined as the time interval from its

arrival to the service start. The mean and the second moment of the waiting time for W is
already available:

{2)
E[W] = 5% (2.1)
o 22K [Ab())2
BV = sa =0 T T- -9 (22)

According to Kingman {7] (also in [3, 9, 10]), the LST W*(s) of the DF for the waiting
time W is given by

p Mizp) 1 (1= A[BA —Az) - Br(s + A~ Az)]

* — —
Wils) =1 s ©*(s) B*(A—A2)—z

dK(z,s) (2.3)

where

1 du
K(z,5) = exp [‘/ u— B*(s + A — Au)

and ©*(s) is the LST of the DF for the length of a busy period, which is given as the unique
solution to the equation

(2.4)

©*(s) = B*[s + A ~ A0*(s)] (2.5)

The procedure to calculate the moments E[W"] (n = 1,2,...) is simple in principle; they
can be obtained as the coeflicients of the expansion of W*(s) in (2.3) in powers of s.

This procedure is described by Conolly [4, sec. 5.3.5], but he was able to yield only up to
the second moment as given in (2.2). In the next section, we will show a Mathematica program
that implements his procedure. An alternative way to calculate the moments is provided by



Takdcs [9], who uses recursive relations for a set of LSTs of the DF for the waiting time of an
arbitrary customer conditioned on the number of other customers present in the system at
the epoch of service start. This method is more tractable for manual calculation, but seems
less amenable to computer program.

3. Mathematica Program for Conolly’s Procedure

A Mathematica program shown in Figure 1 calculates the moments of the waiting time from
the expansion of W*(s) in (2.3) in powers of s, basically following Conolly (4, sec. 5.3.3].
For this purpose, let us rewrite the integration part in (2.3) as

¥ (s)

_ fl (l—z)[B*(/\—Az)—-B"‘(s+)\—-)\z)]dK(z’s)

©*(s) B*A—Az) -z

_ /@1‘(3} K(z,3) [1+ - (Al_“;) _z} dz (3.1)

The first paragraph of the program provides preliminaries. We obtain the nth moment
of the busy period length © in busy[n], using the method by Takécs [9] (see [11] for explicit
expressions for {E[O"];n = 1-10}).

The second part of the program deals with the expression in the brackets in (3.1}, which
is expanded in powers of 1 — z as

1—=z b n
1+B*(A—Az)—z = Z:%rn(l-—z) (3.2)

The coefficients {rn;n = 0,1,2,...} are obtained in g3[r]. We now change the variable
in (3.1) from z to y defined by

_z—0*s)
y= T=0%(s) (3.3)
Noting
z = (1-0%(s))y+0"(s)
1-z = (1-07(s))(1 —y)
dz = (1-0%(s))dy (3.4)
we ged

1 o0
T*(s) = f K [(1-0%(s))y+0%(s),5] | I ra(l — ©%(s))" Y| dy (3.5)

0 n=0

1—

where ¥ := 1 — y. Thus we can obtain the power series expansion of 1 + BOC }::) — in

s. The coefficients are polynomials in Y stored in g6 [n].



The third paragraph is concerned with the power series expansion of K [(1 — ©*(s)) y + ©*(s), s]
around s = 0. In the equation

1 -+ du
~log K [(1 - 0*(s))y + ©%(s),s] = fe N e wev I L)
we transform the variable from u to v by
u—0(s) —y(1— 0°(s)
 VTTa-ema ) &0
If V denotes 1 — v, then
v = @) +y(1-0%(s))+(1—-0%*(s))Yv=1-YV (1 - 0%s))
A=du = A(1-0*s)YV
du = (1-0%s))Ydv (3.8)
Thus we get
* * . v dw
—log K [(1—©*(s))y+0%s),s] = Y(1-O (s))f0 2 (3.9)
where
A:=1-YV(1-0%(s)) - B*[s+AYV (1 - 0*s))] (3.10)

We now expand A around s = 0. However, when s — 0, 1 — ©*(s) — 0. So we use

= Be()(0)
w=YV (L —0*s)). Since B*(s +Aw) = > — (s + Aw)”, we have
n=0 '
= B0
A=—w+ Zl nl( )(s + Aw)™ (3.11)
n=

as in £2n]. Further we expand (s + Aw)” in £3[n]. Hence we obtain A as a power series
in s whose coefficients are given in £6[n]. Note that A~! is also a polynomial of s. The
coeflicients are given in £8[n].

We proceed to calculate K [(1 — ©@*(s))y + ©*(s), 5] as

K[(1—0%s))y +0%(s), 5]

exp [-—- (1 —8*(s)) Y‘/Ul igf-}
exp [s i EL(:)'m] 5™ (;—Sl) {log[l -yl + i Ans"}]

m=1 n=1

SRRl SN (3.12)

n=0

where the coefficients {Ap;n = 1,2,3 ...} are obtained in £14 [n], and the coefficient {k,(V);n =
0,1,2...} are given in £16[n]. Note that we use notation ¥, v, and g&[n] for Y, V, and
1 — ©*(s), respectively, in the program.

‘We are now in a position to calculate the power series expansion of U*(s) as



T*(s) = ./01(1 ~ y)Ble/ [i kn(Y)sn] [i T(l —©%(s))*Y™| dy

n=0 n=0

= i Pn s (3.13)

n=1

The coefficients {ty,;n = 1,2,...} are obtained h1[n] in the fifth paragraph.
However, Mathematica cannot evaluate the improper integrals in the above. So we un-
protect the Integrate command, and define a new command, integrate. For example,

[ @ -vyeymogs — yynay, (3.9

is given by integrate[y m (Log{i - y])*n,yl. Other integrals are calculated in the same
way. This is shown in the fourth paragraph. Finally we can obtain E[W?™] by

WH(s) = (1-,:){14-%\1;*(3)} (3.15)

The moments are stored in h2[n], and to transformed into the KTEX form in h3[n].

4.

Third through Sixth Order Moments of the Waiting Time

We now present the third through sixth order moments of the waiting time distribution in
the ROS M/G/1 system obtained by the Mathematica program in Figure 1.

Bw?)

E[wY

B[wE]

It

Al — p 4 57) 3603 (28 — 160 + 402 - 5B) | AZ0(215(3)(30 ~ 235 4 752 — 2,3)
4(1 - p)(2 = p)(3 — 2p) 4(1 - p)3(2 — £)2(3 - 2p) 2{1 — 2)2(2 ~ p)2%(3 — 2p) 1)
228(8)(12 — 5p + 502) 3038(2N4 (00 — 1350 + T8p% - 2303 1 £,%)
5(2 - p}(1 — p}(Z - 2p){2 — 35) (1~ p)(2 - p)3(3 — 20)2
2335(2)%3(2) (864 ~ 1806 4 16682 — 7900° +233p% — 340%)  4[M(3N2(12 — 13p 4 702 - 2,%)
(1= )32 - 2)3(3 - 2p)2(4 —~ 3p) (t — p)2(2 — p)2(3 — 20)(4 ~ 35)
A26(2)o1) (218 — 3425 4 21957 — 89,7 4 20p%) 43)

(1—p)%(2 - p)2%(8 — 29)% (2 - 3p)
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2(1 — pY4(2 — p}A(3 — 2p)3(4 = 3p)2(5 — 4p)

2
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3(1 - p)3(2 - p)3(3 ~ 2p)2(4 ~ 3p)23(5 — 4p)
A%5(2)25(4) (49120 — 2812160 + 4308962 — 4185785° 4 274879p% — 13051705 1 45028,% — 1076857 4 168058 — 144,%)
21— 2)3(2 - p)3(3 - 20)3(4 ~ 3p)3(5 — 4p)
52 25(8)5 () (2520 — 49265 + 445352 — 254007 + 602pt _ 2025 4 32,5)
8(1L — p)3(2 — p)2(3 ~ 20)%(4 — 3p)(5 — 4p)
225(2)5(5}(10080 ~ 26344p 4 2841402 — 2072753 + 107735 — 360055 + 7408 — 96,7)
2(1 - p)3(2 ~ p)2(3 — 20)2(4 ~ 3p)2({—5 + 4p)

(4.3)

(4.4)



22647}{360 — 378p + 48702 ~ 21043 4 81p%)
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16265(2)*5(3) o
. 440294400 — 3240826440 + 10966103856
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10[x25(2)5(3))2
(1— 2)%(2 — p)A(3 — 20)3(4 — 30)3(5 — 40)3(6 — 5p)
+ 21211680280 — 1706703705,° + 1151947527,% — Be8365051,7 + 214864226p
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3
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. [62035200 — 362230720p + 1072369968p% — 1825112436p

B 8062499857 + 12111684510 — 1542792p1% 4 95328,1%)

3
20435(2)" (18720 ~ 653765 -+ 1036102 — 10182757 + 658500% — 3410695 + 11370p% ~ 235607 + 28405)

+
(1= 2)3(2 ~ p)3(8 = 20)2 (4 ~ 3p)2(5 — 4p}(6 — 5p)
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¢ 17094456p — 11521391,° + 5795769,% — 21425577 + 565537,
s(as(4))2
(1 — p)8(2 — p)B(3 — 20)4(4 — 3p)3(5 — 4p)%(8 ~ 6p)

% 9155007 + 73205*7)

2 4

- 2532909024,03 - 5987900016

- [12441600 — 141212180p - 755087984,

+  14711812352p% — 1630623565407 + 14710050481p° — 1091129776407 4 8681769715010 — 3373602580011 - 1304122826012 ~ 464850868,13
+ 122162113 — 24373942,"% 4 3469828,*% — 313800517 4 13536,1%]
— 333(2)%4(5) 2 3 4
+ TP T Ty 110713600 — 58527360p 4 145138464p> — 219478904,° + 230037828,
- 1791755160% 4 1068430200° - 4865703557 4 16227775,5 — 3860220, + 58268410 _ 43086,1Y)
2325030 5(5) (24560 — 1070885 + 14059257 — 12826203 + 81991,% — 3531955 + 049400 — 1248,7)
* (3= /22— 7Y2(5 — 20Y2(4 — 3Y2(5 — 49306 = 57)
+ 2225(2)4(8) (86400 — 303840 - 4060562 — 5241143 - 807T87o% — 2137175 4 7781808 — 1821457 4 2184,%) (4.5)
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5. Comparison with FCFS and LCFS Systems

Using the above results, we compare the squared coefficient of variation (s.c.v.}, the skewness,
and the kurtosis of waiting time distribution in the FCFS, LCFS, and ROS systems. These
quantities characterize the distribution.
According to the previous work [9,11], the second to the fourth moments of the waiting
time in the FCFS and LCFS systems are given by
Abt2))2 252
E[W3pers = { + 5.1
i 21— o7 T 3=p) )
3D AZp(2p(3) VIO
+
H1-p)*  (1-p)*  41l-p)

3ABAE 3A3DT®  2[a®]2 AZDHWO  \p®
E[w* =
Wiecrs = =@ "= T3 T 5GP

. a2 Ab3)

E(W*lLors = e + ST (5.4)
2 3[R 3AZp@p(3) Ab9)

EW lLcrs = 20— TSI T A= (5.5)

E[Wpcrs = (5.2)
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We can thus evaluate
oo VexlW]
(BEW)?
E[(w - B[W))]
{Var[W]}
E[(W - ElW])*]
{Var[W]}*

where Var[W] = E [(W — E[W])!] = E[W? — (E[W])®. Assuming a constant time of unit
duration for service times, B*(s) = ™%, we have calculated the s.c.v., skewness and kurtosis
of the waiting time in FCFS, LCFS, and ROS systems, and plotted them against p in Figures
2(a), 3(a), and 4(a), respectively. Similar values for the case of exponentially distributed
service times with unit mean are plotted in Figures 2(b), 3(b), and 4(b).

In these figures, we observe the following:

skewness =

kurtosis =

¢ In the three systems, the values of s.c.v., skewness, and kurtosis diverge as A approaches
Z€eTo.

¢ In the FCFS and ROS systems, those values converge when A approaches one.
* In the LCFS system, those values diverge when X\ approaches one.

» The curves for the ROS system lie between those for the FCFS system and for the
LCFS system.

In the limit A — 0, the order of service makes little difference because the system is almost
always empty when a customer arrives. In fact, we see that

A1)

BT = n+1

+0(\%)  n=1,2,... (5.7)

for the three systems. Thus, for the constant service time we have E[W™ =~ M/(n + 1) so
that

s.c.v. =3%+ou) (5.8)
3v3

k = — +0(VX 5.9

skewness "l (VA) (5.9)

kurtosis = 5—9/\— + 0O(1) (5.10)

For the exponentially distributed service time we have E[W™] » An! so that

s.cv. = ; +O(1) (5.11)

skewness = % + O(V/A) (5.12)

kurtosis = ; + O(1) (5.13)
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These explain the divergence as A approaches zero in Figures 2-4.
When p approaches one, the dominant terms in the waiting time moments for the FCFS
system are the following:

Ab2)
EW] = ——— 5.14
" = 3 (314
62
E[Wz]FCFS 2 W (5-15)
3[Aa(2))3
3[Ap(4
EWw* N 5.17
(W*ircrs 21— p)" ( )
Therefore, we get
R - (35)
s.c.v el LCRIOV A | (5.18)

Ab(2) )2
2(1—p

This implies that the s.c.v. does not depend on the distribution of service time. Similarly,
we have

skewness = 2 (5.19)
kurtosis = ¢ (5.20)
For the LCFS system, the dominant terms in the waiting time moments are as follows.
2 o DOP
EW ]LCFS ] 2(1 - ,0)3 (5.21)
3[Ab(M]3
EWw? N o 5.22
[W*lLcrs L (5.22)
1564
Ew* et At S 5.23
[ ]LCFS 2(1 - p)7 ( )
Thus we have divergence
5.C.V. A % (5.24)
2
skewness = fl——i—-%—z- (5.25)
kurtosis = 1—%?-—[; (5.26)

as shown in the figures. Finally for the ROS system, the dominant terms as p — 1 are given
by

E[Wros ~ ([i“fz:}; (5.27)
(218

E[WS]ROS ~ -;(% (5.28)
(2)14

E[W4]ROS ~ ?)(Gli._b;)i— (5.29)



which yield

scv. = 3 (5.30)
skewness 20 (5.31)
ness = —= .
3v3
1
kurtosis = 1—2— (5.32)

We note also for the ROS system that these coefficients do not depend on the service time
as p approaches one.

Another interesting observation is that the dominant terms in the waiting time moments
as p — 1 have the forms

p2n
EW" « ([i\_ p])“ for the FCFS and ROS systems (5.33)
n o))"
E[W ] m—;—_l for the LCFS systems (534)

which depend only on the first and second moments of the service time.
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$RecursionLimit = 16384

a =

w:

e = 5 (*dimension of n th momentx)
B0l = 1

B'[0] = -b

Derivative[n_J [B] [0]=Derivative[n] [b] * (-1i)"n

fi[n ] = (s/(s -lambda +lambda B[s])) n

busy[1] = b/(1-lambda b)

busy[n_] :sExpand[(-1)"{n-1)/lambda * (n-1)! = Coefficient[Series[f1fn],{s,0,n-1}],s~(n-1)1]

gllz] = Series[B[lambda - lambda z],{z,1,e+1}]

g2zl =1+ (1 - 2) / (gilz) - 2)

g3[n_] := Apart[Coefficient [Normal[Series[(-1)}"n * g2(z],{z,1,e+1}]1], (-1+2),n],b]
gdln ]l := Sumfs~i * (-1)"(i+1) * busy[i] /i!,{i,1,n}]

gbn_] := Normal([Series[(gd[e+1])"n,{s,0,e+1}]]

gsln] : Cancel [Collect [Expand [Sum[g5[i] * g3[i-11 * y~(i-1),{1,1,0}1]1,s]1]

£2{n_] := Normal[Series[(s+lambda w)"n,{s,0,e+1}]]

w= gafe+tl] * v * y

£3[n_] := Collect[Expand[f2[n]],s]

f£4[s] = Collect[Sum([Derivative[i][B][0] * £3[i] /it,{i,0,e+1}],s]

£f5(s,v] = 1- w - f4(s]

f6[n_] := Cancel[Factor[Coefficient[Cancel[f5[s,v]/ (b s)1,s,nl] /(i- y v}l
£7[s,vl = Sum[f6[i] * (-1)~(i+1) * s~i,{i,0,e+1}]

£8[n_] := Factor[Coefficient [Normal[Series[1/£7[s,v],{s,0,e}1],s,nl]
£9[s,v] = Collect[Sum[f8[i] * (-1)"i * s~1,{i,0,e}],{v,v}]

f10[s] = Collect[- Integrate[f9[s,v]/(i- v y),{v,0,1}],s]
f1i[n_] := Cancel[Factor{Coefficient[f10[s],s,n]]]

£12[s] = Sum[f11[i] * s-i,{i,0,e}]

£f13[s] = Collect[Cancel[Expand[£f12[s] * y * ga[e+1]/(b ) 11,s]

f14[n_] := CancelfFactor[Coefficient [f13[s],s,n]]]
£f15[n_] := Sum[fi14[i] * s~i ,{i,1,n}]
fi6[n_] := Cancel[Factor[Coefficient[Normal[Series[Exp[flS[e]],{s,o,e}]],s,n]]]

f17[s] = Sum[f16[i] # s~i * (-1)~i ,{i,0,e}]

Unprotect [Integrate]

integratelu_ + w_ ,y_] := integrate[u,y] + integratel[w,y]

integratefc_ u_ ,y_] := c integratelu,y] /; FreeG[c,y]

integrate[y_"m_. (Log{i-y_.1)"n_.,y.] := Sum{Binomialfm,k] * (-1)"k *
(-(1+a+k) )}~ (-n) #* n! *(l+a+k)~(-1),{k,0,m}]

integrate[(Logli-y_1)"n_.,y_] := (-1}"n * (1+a)~(-n-1) * n!

integrate[y_"m..,y.] := m! * Product[(a+i}"(-1),{i,1,m+1}]

integrate[c_,y.] := ¢ * (1+a)~(-1) /; FreeQ[c,yl

a=1/(1 - b lambda)

hifn_] := Cancel[Factor[integrate[Cancel[Factor [Coefficient[f17[s] * gélel,=,n11],y111
h2[n_] := Apart[Cancel[(-1)"n * n! * (1- lambda b) * lambda hi[n+1]}]]

h3[n_] := DolTeXForm([h2[[i]] >>> conc.tex,{i,0,n}]

ha[n_] := Dofh2[[i] >>> cenc,{i,0,n}]

Integrate =.

Protect [Integrate]

Figure 1. Symbolic calculation of the moments of the waiting time for an ROS M/G/1 system.
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Figure 2. s.c.v. of the waiting time in FCFS, LCFS, and ROS systems.
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Figure 3. Skewness of the waiting time in FCFS, LCFS, and ROS systems.
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Figure 4. Kurtosis of the waiting time in FCFS, LCFS, and ROS systems.



