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Abstract

This paper extends Fishburn’s Savage-type axiomatization for skew-symmetric
additive representations of preferences in decision making under uncertainty to non-
simple acts. It is shown that the representation that covers all acts follows if we
modify Savage’s P2, P6 and P7 and drop P1.

1 Introduction

This paper is concerned with an extension of Fishburn’s Savage-type axiomatization for
skew-symmetric additive (SSA) representations of preferences in decision making under
uncertainty (see Savage (1954} and Fishburn (1970)). An SSA representation is described
as follows. Let § and X be non-empty sets of states and consequences, respectively. Let
F be a set of acts which are functions from S into X. By >, we denote a binary is
preferred to relation on F. Then we say that (F,>) has an SSA representation if there
exist a real valued function ¢ on X x X and a probability measure 7 on 25 such that for
all f,g € F,

£rge=> [ (), 0())dn(s) > 0,

wherer ¢ is skew-symmetric (i.e., ¢(z,y) + ¢(y,2z) = 0 for all z,y € X). The SSA
representation reduces to subjective expected (SEU) repersentations when ¢ is separable
as ¢(z,y) = u(z) — u(y) for some real valued function u on X.

In the last decade, several axiomatizations for the SSA representation have appeared.
Fishburn (1984) and Fishburn and LaValle (1987) used lottery acts for that axiomatization
to generalize Anscombe and Aumann’s SEU axiomatization (see Anscombe and Aumann
(1963)). A general axiomatization with finite states was obtained by Fishburn (1990).
Savage-type axiomatizations were developed by Fishburn (1988a} and Sugden (1993).
However, their axiomatizations are not fully more general than Savage’s SEU, since they
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considered SSA representations for simple acts, i.e., the resulting consequences are finite.
The aim of this paper is to extend their axiomatizations to cover all non-simple acts. Qur
key axioms are modifications of Savage’s P2, P6 and P7.

The paper organized as follows. Section 2 reviews Savagels SEU representation and
Fishburn’s SSA representation. Then in Section 3 we state axioms for our extended SSA
representation. Section 4 provides the proof of the extended SSA theorem.

2 Savage and SSA Axioms

Throughout the paper, let F be the set of all acts, defined as functions from 5 into the
consequence space X. Subsets of S are called events. By A° we denote the complement
S\ A of an event A. A constant act is an act f such that f(s) = « for all s € S and some
z € X. Every z € X will be identified with a constant act. A simple act is an act f such
that {f(s): s € S} is finite. Let F* be the set of all simple acts, so F* C F.

For f,g € F and an event A € 25, let f (4 g denote the act & such that k(s) = f(s)
for all s € A, and f(s) = g(s) for all s € A°. Then any simple acts can be represented as
follows: for As,...,An-1 €25 and ;,...,7, € X,

(o (21 Oy 22) Qa, 23) -+ Oty Tn-1) Odn_y Tn-

When A, C A, C... C A,_;, we shall simply write ; O, 22... Zne1 Qany Tn.

Let ~ and > be defined in the usual way: for f,g € F, f ~gif f = g and g = f;
f = gifnot(g = f). An event Aissaid to benullif fQuh ~gQah forall f,g,h € F>.
Let A be the set of all null events. A partition of a nonnull event A, denoted by w(A), is
a set of a finite number of mutually disjoint nonempty events whose union equals A. An
n-partition w(A) will be denoted by {4;,..., A} for 4; € 24,i =1,...,n. A comparative
probability relation >* on 2%, read as “is more probable than”, is induced by > as follows.
For all A, B € 25,

As*Bifforallz,y€ X, 2 Qay >z (Op y whenever z > y.
Let ~* and =* be defined in the usual way.

Definition 1 (F,>) is said to fulfill Savage’s axiom system if = on F satisfies the follo-
ing seven azioms, which apply to all f,g,h, k' € F, all z,y,2,w € X, and all A,B € 25.

Pl. > on F is a weak order.

P2. IffQOahz=gQah, then fOal =gQOal.

P3. IfAgN,thenz-y<=z2Qaf>y04f.

Pa. Ifz~yandz>w,thenzQay >z Qpy <= 2Qasw > 2Qpw.

P5. a> b for somea,be X.



P8. Iff = g, then for eachz € X, there is a partition w(S) such that for all C' € w(.5),
tQcf>gand f>20cy.

P7. IffOuab = g(s)Quh foralls € A, then fQah > gQak; if f(8)Oah = gQOah
forallse€ A, then fQah>=gQah.

The meanings of P1-P7 are discussed in many places in the literature (e.g., Fishburn
(1970, 1988b)), so that we do not repeat them here. However, it may be deserved to be
mentioned here for the later development of our axioms that, in P6, at least one of the
acts f and ¢ can be simple. ,

Savage’s representation theorem is stated as follows.

Savage’s SEU Theorem. If (F,>) fulfills Savage’s aziom system, then there exist a
real valued bounded function v on X and a finitely additive probability measure © on 2°
such that for all f,ge F, all A, BC S, and dl0 <A <1,

(1) g [u(f()dr(s)> [ulgls)dn(s).
(2) A»*B < n(A)>n(B).

(3) AecN < r(4)=0.

(4) =(C)= An(A) for some C C A.

Moreover, u is unique up to a positive linear transformation and © is unique.

Although u must be bounded in Savage’s SEU theorem, it is not the case when only

feasible acts are simple.
Let F;, denote the set of acts whose only components are z and y, i.e.,

Fey={f € F: f(s) € {z,y} for all s € §}.

Definition 2 (F,>) is said to fulfill Fishburn’s SSA axiom system if = on F satisfies
P2-P5 in Definition I and the following three azioms, which apply to all z,y € X, all
f,g,h€F, and all A, B € 2%,

P1*. > on F is asymmetric, and > on F;y is a weak order.

P2*. IfANB =0, fOuh = gQah, and fOph = gOph, then fQaunh = ¢Qauh,
and if, in addition, f Qah =g Qah, then f Qaush > ¢ Qaus b.

P6*. If f = g, then given z,y € X, there is a partition w(§) such that, for all
Cew($),20cf>y0Ocyg,z0cf>g,and f-yOcy.

Those axioms P1*, P2*, and P6* were proposed by Fishburn (1988a). A recent axiomati-
zation by Sugden (1993) modifies P4 and replaces P1* by the completeness of -, i.e., for
all f,g € F, f > gorg > f. However, their axiom systems cannot apply to (F,>) when
JF\ F* is not empty.

Fishburn’s SSA representation theorem is stated as follows.
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Fishburn’s SSA Theorem. If (F2,%) fulfills Fishburn’s SSA aziom system, then
there exist a skew-symmetric, real valued function ¢ on X x X and a finitely additive
probability measure m on 25 such that for all f,ge F*, al ABC S, and all0 < A < 1,
(2), (3), and (4) of Savage’s SEU theorem hold along with

. [ g E d(z,y)r({s € S: f(s) =z and g(s) = y}) > 0,

(z )€Yy,

where Yy = {(z,y) € XxX : f(s) =z and g(s) = y for some s € S} is finile. Moreover,
$ is unique up to multiplication by a positive constant, and © is unique.

3 Axioms and a Theorem

This section presents the main result. We introduce three new axioms and state our ex-
tended SSA representation theorem which covers all non-simple acts. One of our axioms is
a cancellation axiom whose original idea appeared in nontransitive additive conjoint mea-
surement by Fishburn (1990, 1991). The other two axioms are respectively modifications

of P6 and PT.
To state our cancellation axiom, we need the following notation. Given a finite parti-

tion w of S and an integer n > 1, we shall define a binary relation £} on 7" = F x... x F
(n times) as follows: for all (f1,..., f*),(g%,....4") € F",

(fe BN ™)
< 1t is true for each A € w that for all f,g € F

[{E « (f*(s),g%(s)) = (f(s), 9(s)) for all s € A}
= [{k: (f*(s).g%(s)) = (9(s), £(5)) for all s € A}|.

The following axioms apply to all f,g,f%,...,f%¢%...,¢* € F, all z,y € X, all
A € 25, and all 3-partitions w of S.

P2 If(f1, 1% 1% FYENg %, 6% ") and f* = gF for k =1,2,3, then g* &= f*.

P6*. Iff > g and z = y, then for every event A, there is a partition w(A) such
that, for all B € w(A), yOs f>2sg-

P7*. Iff(s)Oaf=9(5)Oug forall s € A, then f = g.

P92** is a cancellation axiom. When S is finite, this is tantamount to the cancellation
axiom proposed by Fishburn (1990, 1991). Suppose that the SSA represntation is to hold

and (fla fza fsa fd)Ez(glag2193:g‘i)' Then

S5 [ #(F4),5* e)dr(s) = 0.

k=1 AEw(S)



If f¥ = ¢* for k =1,2,3, then

5 J L@ 20 tor k=1,

Agw(S

so that

> [ 6(54s), g (s))en(s) < 0.

Agw(s) '

This implies that ¢* = f4, so P2** is necesarry for the SSA represntation. We also note
that at most 3-partitions are necessary for the representation.

P6* asserts that any event A can be partitioned into small-probability events such
that the conclusion of the axiom obtains. Together with the other axioms, it will be shown
later in Lemma 2 that the claim of P6* can be valid without the restriction of & > y.
PT* is a conditional monotone dominance axiom. P6** and P7* are also necessary for the
SSA represntation.

QOur main result is stated as follows.

Extended SSA Theorem. IfP2**, P3, P4, P35, P6*, and PT7* hold, then there exist a
bounded skew-symmetric real-valued function ¢ on X x X and a finitely additive probability
measure T on 2° such that for all flg € F, all A,BC S, and all0 < XA < 1, (2), (8), and
(4) of Savage’s SEU theorem hold along with

f g [6(5),9())dn(s) > 0.

Moreover, ¢ is unique up to multiplication by a positive constant, and = is unique.
The proof will appear in the next section.

4 Proof of Extended SSA Theorem

Throughout the section we shall assume that Axioms P2**, P3, P4, P5, P6™, and PT*
hold. We prove the extended SSA theorem in four steps. The first step shows that (F*,>)
has Fishburn’s SSA representation, i.e., there exist a skew-symmetric real valued function
¢ on X x X and a probability measure = on 2% that satisfy the numerical representation
of & in Fishburn’s SSA theorem. The second step shows that ¢ must be bounded. In the
third step, we shall introduce binary conditional relations >4 on F X F for events A with
0 < n(A) <1, and prove that (F x F, -4) has Savage’s SEU representation. In the final
step, we complete the proof of the theorem.

Step 1. We prove the following claim.
Claim 1 (F*,>) has Fishburn’s SSA representation.

The proof will appear at the end of this step.
Without restricting our attention to F?, we obtain the following lemma.
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Lemma 1 > on F is asymmetric, and P2 and P2* hold.

Proof. Since (k, &, &, h)EL(h, h,h k) for any act k and any partition w, P2** requires
L ~ h. To show that > on JF is asymmetric, we suppose f > g for f,g € F. Then for
any h € F, (h,h, f,9)EL(h, k,g,f). Since b ~ h and f > g, it follows from P2 that
not(g > f). Hence > is asymmetric.

To show P2, let ff = fOua hiy¢' = gQa by, and A = h Q4 ki for i = 1,2. Then for
W(S) = {A, A}, (F B, B2, g?) EA(gh, B, b2, £7). TE f' = g*, then by P2, f? = g%, 50 P2
holds.

To show P2*, suppose that the hypotheses of P2* hold. Let w(S) = {4, A°} and

flzha gl_—"h:
fzszAhv 92=90Ah,
fsszBha gsngBh7

fA=9Qaush gt = fQaur b

so (f1, f2, F3, FYELY (Y, 6%, 6%, 9. If f2 = g% and f3 - g%, then by P2**, g* ~ f*. Hence
the first part of P2* obtains. Assume next that f? > g%, and 2 g% If f* ~ g% then
by P2*, g% = f2. This is a contradiction. Hence we must have g* > f4, so the second
part of P2* follows. ' a

The claim of Axiom P6* can be strengthened as in the following lemma, which will be
used in place of P6**.

Lemma 2 If f = g and > y, then for every event A, there is a parirtion w(A) such
that for all B e w(A), yOp f =2 QOpgend2Qs f =y Ong.

Proof. Supposethat f - g andz »= y. Then by P6™, there is a partition w(A) such that
for all B € w(A),y Qs f > ¢ Op g. For some a € X and B € w(A4), let w(8) = {B, B¢}
and

f=yOsf ¢ =z0gY,
f?=z0Q0s8a, @ =y0Baq,
f?=zQ0sa, ¢ =y0Osa,
ff=y0Osy ¢*=zQ0sf

so (f2, f2, F°, F)Ei(g, o% g%, 9"). Since f1>g', f? &= g%, and f° = g%, P2™ impies that
tOsf>y0OsByg. .

Proof of Claim 1. If P1* and P6* are to hold, then (F°,>) fulfills Fishburn’s SSA
axiom system, so that the desired result of the claim obtains. However, this is not the
case, i.e., P6* may not be drived from our axiom system. We note that requirements of
P6* can be divided into two parts (i) and (ii) as follows: if f - g, then given z,y € X,
there is a partition w(S) such that for all C' € w(5),
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i) zQcfrgand f-yQOcyg,
(i) zQc¢f>yQcy

In Fishburn’s proof of his SSA theorem, the requirement (i} is needed to show that > on
Foy satisfies P6. In other part of the proof, only the requirement (ii), which is a direct
consequence of Lemma 2, is applied. Therefore, it suffices to show that our axiom system
implies that P1* holds and > on F, satisfies P6.

First, we show P1*. By Lemma 1, = on F* is asymmetric. Suppose that z > y for
z,y € X as assured by P5. It suffices to show that > on F,, is negatively transitive. Let
w(S) = {(A\(BUC)HU(AN BnC)U(A°N B NC%),(B\(AUC) )U((CNA)\B),(C\
(AUB)U((ANB)\C)} and

fr=ug, gt =z,

f2=2Qaxv, @ =20nY,
fP=z0szv, ¢ =xQcv,
=200, ¢*=zQay,

so (f1, F2, 72, FOELYg", 6%, 9%, ¢%). Assume that ¢* = f* and ¢° = f°. Then by P2,
f4 > g*. Hence > is negatively transitive.

Next we show that > on F,, satisfies P6. Suppose that z = y and f > gfor f,g € Fuy.
Then f = 24y and g = 2O py for some event A and B. Given z, it follows from Lemma
9 that there are partitions w( A\ B) and w(B\ A) such that, for all C € w(A\ B)Uw(B\ A),
zQcf>20cg. Since f =z Q¢ f for C € w(A\B) and g = z Q¢ f for C € w(B\ A),
we obtain that for all C € w(A\ B)Uw(B\ 4), f >z Ocgand zOc f > g

For A° N B°, Lemma 2 implies that there is a partition w(A° N B¢) such that, for
all C e w(ANB),yOc f = 2QcgandaecQOc f > yOcg so f - z Oc¢ g and
Q¢ f > g Since f > g, f=2Qansf > g = 2Qanp g. Thus we let w(S) =
w(A\ B)Uw(B\ A)Uw(A°NB?)U{AN B}. Then for all C € w(5), z Oc f > ¢ and
f>=20cy

When z is replaced by y in the preceding paragraphs, it readily follows that there is
a partition w(S) such that, for all C € w(S), y O¢ f = g and f > y Oc g. Hence > on
Fay satisfies P6. O

Step 2.  Given an event A, we define a preference subset Py C FxF and an indifference
subset 14, C F x F as follows: for all f,g € F,

(f,g) € Pa <= fQah»>gQahforsomeheF,
(figy€ls < fQOah~gQahforsomeheF.

The inverse B~! of a subset B C F X F is defined by R™' = {(f,9) € F : (9, f) € R}
We note by P2 that I, = I3, PAOP;* = PyNIy =P NIy =0. When A is not null,
P, is not empty. We shall write P and I in place of Ps and Is, respectively.

In what follows, we shall denote elements of 72 = F x F by bold faced letters, and the
first and second components of f € F? will be denoted by fi and fy, respectively. Each
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f is regarded as a mapping frorn S into X% = X x X. Thus we let f(s) = (fi(s), fo(s))
for all s € §. The inverse ™! of f = (f1, f2) is defined by f~! = (f3, f1). We say that f

is simple if f1 and f, are simple. Let f Q4 g denote a pair of act (fi OQa 91, f2 Oa g2)-
A pair of constant acts will be denoted by @ € X?%. A pair of identical constant acts
will be denoted by z*, i.e., 1 = z2. When (fi,..., fP)E™(f3,..., f7), we shall write

(Ff',....f™ e E™.
Since P2* will be frequently used in our proof, we rewrite it using our new notations
as follows.

P2*. IfANB=0, fc PyUl,, and f € PgUlIpg, then f € PaupU Laup, and if, in
addition, f € Py, then f € Pays.

By Fishburn’s SSA theorem, there exist a skew-symmetric real valued function ¢ on
X? and a finitely additive probability measure m on 2% such that (2)—-(4) of Savage’s SEU
theorem hold along with, for all simple f € F?,

fePs 5 da)n({s: f(s)==}),

mEYf

where Yy = {x € X?: f(s) = & for some s € S} is finite. Moreover, ¢ is unique up to

multiplication by a positive constant, and 7 is unique.
Given an event A with 0 < 7(A) < 1, let B be any event such that AN B = 0 and
m(A) = w(B). Then each pair of acts in F? belongs to exactly one of the following classes:

(1) fis bzgronAL<=>fOAa:EPAUﬁfora,llazEX2
(2) fislittleon A<= fQax € Pjgforall z € X2
(3) fisnormalon A<= fQaa ¢ Paus and f Qab & Pylp for some a,b € X2

Note that f is big on A iff £~ is little on A. If f is simple on A, then f is normal on
A whenever m(A) < L. It follows from the following lemma that the above definitions are
independent of choice of B, so they are well defined.

Lemma 3 fANB=ANC =0,7(A)==(B)=7(C) #0, and f Qs € Paup for all
z € X2, then FQux € Pauc for allz € X2,

Proof. Suppose that the hypotheses of the lemma hold. Assume that f Qa a & Pauc
for some a € X2 For some b, let w(S) = {4, A°} and

' = (fOaz)Quaus b,

2= (77040 Qaue b

2 = (a7 04 a) Qauc b7,

' = (aQaz7") Qaus b7,
so (F%, F% F% f*) € E*. Since f' € P,f* € PUI, and f° € I, P2* implies f* € P~
Therefore we obtain

fie P d(a) < ().
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Since @ is arbitrary, this is a contradiction. Hence f (O4 ¢ € Paue for all 2 € X2, i

The aim of this step is to prove the following claim.

Claim 2 ¢ is bounded. Furthermore, if there is an f € F*? which is either big or little
on some event A with 0 < 7(A) < 3, then for all € X?, ¢(x) < sup {¢(y) : y € X?}.

To prove the claim, we need the following lemma.

Lemma 4 Suppose that AN B = §,n(A) = ©(B) # 0, and f s big (respectively, little)
on A. Then g is little (respectively, big) on B if and only if F Qa9 € Lius.

Proof. Suppose that ANB = §,w(A) = n(B) # 0, and f is big on A. When f is
little on A, the proof is similar. Then f Q4 g(s) € Pyyp for all s € B. Thus by PT*,

FOag € PaupU Laus.
First we assume that g is little on B. Then f(s) Oa g € Pl for all s € 4, so by

P, fQag € Pl Ulp. Hence F Qug € Luus.
Assume next that f Q4 g € Iaus. Suppose on the contrary that g is not little on B.
Then by definition, a Q4 g € Paup U Lsup for some a € X%, Let w(S5) = {A, A°} and

f'o= (7 0ug7") Quusd’,
P = (a OAQ)OAuBb

f3 = (a )OAuBba
= (f OAG Y Ouus b

so (FL,F2 . fY) € EL Since f1,f° € I and f2 € P U I, P2* implies that f* €
PEJB U Iaup- This contradicts bigness of f on A. Hence g must be little on B. o

Proof of Claim 2. Suppose on the contrary that ¢ is unbounded. Let {Ag, By} be
a partition of § with 7(Ao) = #(By) = ;. We then construct denumerable partitions
w(Ag) = {B1,By,...} and w(Bo) = {A1, As,...} with 7(4;) = #(B;) = 270+ for { =
1,2,.... Since ¢ is unbounded, for i = 1,2,..., we can take ¢(z;_;) > 2° for some
x;_1 € X2. Then let

f(s) = wmiforallse 4;andi=0,1,2,...,
g(s) = z;forallse B;and:=0,1,2,....

| 8(F@)dn(s) = [ #lg(s))dn(s) = +co.

By the construction of f, f € P4, and f(s) € Pg, for all s € By. By P7*, f € Pg, U Ip,.
Thus by P2*, f € Psyug, = P. Similarly, g € P.
We show that f is big on By. Note that

Clearly we have

lim Zqﬁ (:)m(A;) = +o0.

i —00



Then for each € X?, there is a natural number m such that

i P(z)m(As) + m(Ao)d(z) > 0.

f=1

Thus let a simple f* be defined by

Fls) = = ifs€ A,
= x; fs€A (i=1,...,m),
a” otherwise,

so f' € Pyp 4, Let
f2s) = a; ifse€di (=m+1lm+2,...),

= a* otherwise,

so by P7*, f? € Poyyma; U lussma;- Since £ Op, & = F* Qun, a4, f, it follows from P2*
that f Op, # € P. Since z is arbitrary, f is big on Bop. It is similarly shown that g is
big on Ay and & Oy, f is big on By for any z.

Take ¢ € X2 to satisfy (z Ou, 7') O, a* € P. Then let w(S) = {4;, A5} and

fi = (@04 27" Os, o,
fi = (@7 Qa4 21) Op, o,
f: = (2104 ) Os 97",
fi = @04 f 09

Then (f;, for fa: fu) € EX. By Lemma 4, f; € I, since @; O4, f is big on By and g~!
is little on Aq. Since f, € P and f, € I, P2* implies f, € P~'. However, by Lemma 4,
we must have f, € I, since & (g, f is big on By. This is a contradiction. Hence ¢ must
be bounded.

Suppose that there is an f that is big on an event A with 0 < 7(A) < 3. When f is
little on A, the proof is similar. Let B be an event such that ANB = @ and #(4) = =(B).
Suppose on the contrary that ¢(a) = sup{é(z) : z € X?} for some @ € X?. Then by
Claim 1, £7'(s) Qu @ € Pyup U Iyyp for all s € A. By P7~, F'Oua € PaugUlsus,
so f Oaa! € Payp. This contradicts bigness of f. Hence ¢(z) < sup{é(y) : y € X?}
for all z € X2, O

Step 3. Given an event A with 7(4) = 1, we define a binary relation =4 on F? by

Frag it fFQOQahePUIandg(Qash e P 1UI for some simple k,
or f and g are either big or little on A.

It is easy to see from P2** that this definition does not depend on choice of specific h.
Let ~4 and >4 be defined as usual: for f,g € 72, f ~4 g iff f >4 g and g =4 f;

f =4 g iff not{g =4 f).
Now we have the following claim whose proof is given at the end of this step.
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Claim 3 Suppose that 7(A) = 1. Then (F?,>4) has Savage’s SEU representation.

Before establishing the proof of the claim, we need the following three lemmas.

Lemma 5 Suppose that ANB =0 and 7(A) = x(B) #£ 0. Then f € F? is normal on A
if and only if f Oa h € I4up for some simple h.

Proof. Suppose that ANB = § and m(A) = n(B) # 0. First we assume that f is normal
on A. Then fQuaa € PaypU Iyupand F Qa4 b € P,[JB U I4up for some a,b € X2, If
FOuaac Iyupgor FOub € Iyyp, then the desired result obtains. Thus we assume that

FOua € Pyup and FQab € Plg. Since 7(A) = n(B) # 0, we have a Q4 a™* € L4up.
For ¢*, let w(§) = {A, A°} and

1= (fOaa)Quus ¢,
2= (F70ab7) Quus
f3 = (aQu a—l) Quaus ¢,
f4 = (a"l OA b) OAUB c*.
Then f € P,f* € P, f* € I, and (£, f%, £°, f*) € EL. By P2, f* € P!, so we have
fle P! = w(A)d(e)+x(B)p(d7')>0
= ¢(a) > ¢(b).

Suppose that C, D C B, 0 < 7(C) < 7(B), and 0 < n(D) < «(B). In what follows, we
are to show that if fOa(aQcb) € Paup and fFOu(aQpb) € Pilg, then #(D) < #(0).
Hence by Lemma 2 and the property of 7, there is a unique number 0 < o < n(B) such
that £ OQa{a Or b) € Isup for all events E C B with 7(E) = «. Note that a Og b is
simple. Hence the desired result obtains.

Assume that fFQ4(aQcb) € Paup and fFQOa(aOpbd) € P;{JB. Take any event C" such
that 7(C") = 7(C) and C’' C A. Then it is easy to see that (a O b) Qa (@t Qcb™) €
Iup- For ¢*, let w(S) = {A, A°} and

! = (FOa(eQc b)) Qaus ¢,

2= (F0u(@Op b)) Qaus ¢,

P = (0o b)Oale™ Ocd™) Ouus ¢,

= (@ Qo b)) Oa(aOp b)) Oaus c*.

Then f' € P, f2 € P,f* € I, and (£, %, %, f*) € BX. By P2, f* € P, Noting that
¢(a) > ¢(b}, we have

(@ Ocr ) Oa (@™ Op b7') € Paup
= 7(C")é(a) + (r(A) — 7(C')$(b) + 7(D)¢(a™") + ((B) — m(D))$(b7") > 0
= (n(C") — n(D)){(¢(a) - (b)) >0
= 7{C"} > 7(D)
= #(C) > n(D).
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Next we assume that f(ah € I4p for some simple A. Then we are to show that f is
normal on A. Suppose on the contrary that f is big on A. We then derive a contradiction.
When f is little on A, a similar contradiction obtains. Hence f must be normal on A.

Since h is simple, for every s € B, ¢(h™'(s)) < ¢(a) for some a € X2, so by Claim 1,
aQah € Pyup VU Lyyp. For ¢*, let w(S) = {4, A°} and

ff= (FFTO4R™) Quus
" f? = (aQah)Quaus ¢,
P = (@ Qaa)Qaus c,

= (fOaa)Quaus

so (F1, 5 5, FY) € EX. Since f* € I, f* € PUI, and f° € I, P2* implies f* € P~1UI.
This contradicts the bigness of f. O

Lemma 6 Suppose that A, B ¢ N, ANB =§, and 0 < 7(AU B) < 1. Then we have
that for all f € F?,

(1) if f is big on A and g is big on B, then f Qa g is big on AU B.

(2) if f is little on A and g is little on B, then f (Oa g is little on AU B.

(3) if f is big on A and g is not big on B, then f Q4 g is normal on AU B.

(1) if f is little on A and g is not little on B, then f Oa g is normal on AU B.

Proof. Suppose that A,B¢ N, ANB=0,and 0 < 7(AUB) <1 Let A’ and B’ be
events such that 7(A) = n(A),n(B) = »(B),A'NB' =0, and (AU B)N(A'UB’) = 0.

(1) Suppose that f is big on A and g is big on B. Then for all z € X2, f Q4 @ € Paya
and gOp® € Ppupr- By P2*, (fO49)Qaus® € Paupuarup, 50 fFOag is bigon AUB.

(2) The proof is similar to (1).

(3) Suppose that f is big on A and g is not big on B. Then by Claim 2, ¢ is bounded
and |¢(x)| < 1 for all z € X2 With no loss of generality we assume sup ¢ = 1. We are
to show that there are a,b € X?, C C B', and C' C A’ such that 0 < »(C) < =(B'),
0 < #(C")y < w(A'), and

(a) @Qaa€ Pl and g Op a € Pyjpng for all € X2,
(b) FfQabe Pauraney and @ Op b € Pgupuer forall & € X2,

Thus by P2* and P7*, (FO49)Qausa € Piisuaus and (FOag)Oausb € Paupuarusr
so that £ (0. g is normal on AU B.

First we show (a). Since g is not bigon B, g Op b € Pglg U Igyp: for some b € X2,
Take any C such that ¢ C B’ and 0 < 7(C) < #(B'). Then for any a,c* € X%, let
w(S) = {B, B} and

! = (g7 08 b ") Opus ¢,
fz = (bnl Os b) Osusr ¢,
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1l

1 (5O a™) Osuene ¢
= (g 05 a)Osupno)
so (1, F%, %, fY) € EL Since C C B’ is arbitrary, we can take such a C such that
0 < n(C) < m(B)(1 — |¢(b)]). Thus we have
w(B)

WW(E’)I <1

Then since a is arbitrary, we let a € X? satisfy

—n(4) —7(B)
(A) +7(C)  =(B)—r(C) |4(B)1}.

-1 < ¢la) < min{ﬂ_

Therefore, we have that for all z € X2,
m(A)

¢(a) < “TA) + 70 = m(A)¢(z) + (r(A) + 7(C))é(a) <0
= 2Que€ Pl
a) < ~—BL__ 0« B
= 7(B)¢(b) + (x(B'} —n(C))¢(a™?) > 0
= f°=(b0sa")Opupmnoc) ¢ € P.

Since f' € PUT and f* € I, P2** implies f* € P71, s0 g Op a € Py} BAC)
Next we show (b). Take any C” C A’ such that 0 < #(C") < W(A’S. Then consider
any b which satisfies

7(B)
n(B') + =(C")
Since f Qa4 b € Pyyar, Lemma 2 implies that there is a partition w(C") such that for all
C' € w(C"), f Qa b € Payancry. We restrict b to satisfy

< ¢(b) < L.

(B)
—_—— b 1.
(B + (o <) <
Hence # Op b € Ppupuer and f Op b € Pauaney).-
(4) The proof is similar to (3). D
Lemma 7 Let m(A) = L. Then we have
(1) f~agifand onlyif fQah €Il andgQah €I for some simple h, or f and g

are either big or little on A.
(2) feagifandonlyif fQaheP andgQah € Pt for some simple h.
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Proof. (1) Suppose that f Q4 h € I and g O4 b € I for some simple k, or f and g
are either big or little on A. Then it readily follows from the definition that f ~4 g.
Suppose next that f ~4 g. Then by definition, f =, ¢ and g =4 f. It follows from
the definition of >4 that there are simple h; and hy such that fQahy € PUL g k1 €
PrUILgQahsc PUland fQuhy € P1UIL or f and g are either big or little on
A. Assume that f and g are neither big nor little on A. Then let w(5) = {4, A°} and

f1 = fOAhl
2= g Qaki?
f3 = gQah
o= £ 0ahsY

so (£, F%, £3, F*) € E?. Since f', f%, and f° arein PUI, P2** implies that f* € P~1UI,
so fQuahy € PUI Thus f Oa h, € I. Similarly we have g O4 hy € I. Hence the
desired result obtains.

(2) Suppose that fOah € Pand gQah € P! for some simple h. Then by definition,
f =4 g. We are to show that f ~4 g is false.

If f is little on A, then f Qa4 h(s) € P  foralls € A°. By PT*, fQah e PT1UL
This is a contradiction, so that f is not little on A. Similarly, g is not big on A. ¥ f is
big on A, then by Lemrma 5, there are no simple h; such that f (O4 hy € I. Similarly,
littleness of g on A implies that ¢ Q4 hy € I for no simple h,. Hence, if f is big on A or
g is little on A, then by (1), f ~4 g is false.

Assume that f is normal on A. When g is normal on A, a similar analysis leads to
the desired conclusion. By Lemma 5, f O4 by € I for a simple h;. It then follows from
P2** that g O4 hy € P71, Therefore, there is no simple h such that f Oq h € I and
g Oah el Hence f ~4 g is false.

Suppose next that f =4 g. Then there is a simple h such that either f Q4 h € P
and g Qshe P'UI or fOahe PUTland gQah € P71 Assume that fQuh € P
and g Q4 h € P71 U I. A similar proof applies to the other case. If g O b € P71, then
the desired result obtains. Thus we assume that g O4 b € I. Since h is simple, there are
two partitions, w(A) = {As,...,4n} and w(A°) = {Bx,..., B}, and a simple hy such
that w(A;) = 7(B;) for i = 1,...,n, and for some a,,...,a, € X?,

h(s) = a; ifs€B,
ho(s) = a; ifs€ A

Thus hy' Qa b € 1.
We assume that o Q4 ki’ € P for some simple h;. Then let w(S) = {4, A°} and

fl = g—l OA h'_la
f2 = h’al OA h’;
.fa = h’O OA h;l)
f* = 9gQah,
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so (f1, % F3, fY) € B Since fl e I,f*€ I, and f° € P, P2* implies that g O by €
P-1, Therefore, it suffices to show that such an h, exists and satisfies £ O4 by € P.
With no loss of generality we assume that sup¢ = 1,¢(e1) = ... 2 é(an), and
m(B;) > 0fori=1,...,n. If ¢(a1) = —1, thenforall @ € X%, 2 Qs h € PTUL
Thus applying P2**, it is easy to see that f Q4 2! € P, so f is big on A. By Claim 2,
|#(a1)] < 1, a contradiction. Hence we can take some b € X? such that ¢(a,) > #(b).
By Lemma 2, there is a partition w(A;) such that for all C' € w(A,),

FOa((dQOca1) Oa, h) € P.
Let hy = (b Oc¢ a1) Oa, h. Then it readily follows that hy Oa hl‘l € P. 0O

Proof of Claim 3. We say that B C A is null with respect to (w.r.t.}) >, if for all
f.g,h € F* £ Oph ~4 g Op h. We are to show that =4 satisfies the following seven
axioms, which are understood as applying to all f,g,h, k' € 2, all ¢,y, z,w € X?, and
all B,C € 24, '

B1. >, is a weak order.

B2. I fQOphzagQOph,then fOph' =49 Osk.

B3. If Bisnot null wrt. =4, thene gy <= Qs fr-sv0Os f.

B4, Ifaer-syandzsyw, thene Qpy a2 Qcy <= 2Qpw =4 2 D w.

B5. a >4 b for some a,b € X2

B6. If f or g are simple and f >4 g, then for each @ € X2, there is a partition w(A)
such that for all C € w(A), 2 Oc f =agand f -4 2 Qe g.

B7. U fQOph=ag(s)Ophiforallse B, then fOph =4 gQph;if f(s)Oph =4
gOphforallse B,then fOph=4a9Qsh.

If f and g in Axiom B6 can be arbitrary, then (F?,>4) fulfills Savage’s axiom system,
so that it has Savage’s SEU representation. However, it follows from the proof of that
representation (see Fishburn, 1970, Chapter 10) that it suffices to assume that f or g is
simple. Thus B1-B7 implies that (F?,>4) has Savage’s SEU representation.

(Bl) First we show that >4 is asymmetric. Suppose on the contrary that g =4 f and
f >4 g. Then by Lemma 7, there are simple hy, hy such that g Q4 by € P,f Qa hy €
P fQshs € P,and g Q4 hy € P71, Those four relations obviously violates P2**.
Hence » 4 must be asymmetric.

To show negative transitivity of >4, we suppose that not(f =4 g) and not(g >4 k).
Then g =4 f and h =4 g. We are to show that h >, f, ie, not(f >4 h). When at
least one of f,g, and h is not normal on A, the desired result easily obtains. Thus we
assume that they are normal on A. Then by definition, there are simple hy, hs such that
hQsh € PULgQahi € PPUILgQOahs e PUI and fQaho € P7PUL Let
w(S) = {A, A} and

fl = h'OAhh
f2 = g—loAhq_la
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.f3 = gOAh2:
f4 = h’_IOAhgli

so (fY, %, %, f*) € E2. Since f', f* and f° arein PUJ, P2** implies hQ 4k, € PU L
Hence h >4 f.

(B2) We have three cases to examine.

Case 1. (f and g are normal on B) It follows from Lemma 6 that for all h € F7,
f Op h and g Op h are normal on A. Suppose that f Op k1 =4 g Op k1. Then
(fOsh1)Qahs € PUI and (g Qg k1) Qahs € P~1UI for some simple hz. By Lemma
5, (g Op h2) Oa hy € I for some simple hy. Let w(S) = {B, B°} and

1 = (£ Osh1) O hs,
2 = (7 Oshi") Qs b3,
2 = (g OB h2) Oa by,
o= (F Oshs") Qahih

so (£, f%,F3, f*) € EX. Since f1,f2 € PUTI and f° € I, it follows from P2** that
fe P7PU . Hence (f Op hs) =4 9 Op hs.

Case 2. (either f is big on B and g is not big on B, or f is not little on B and g is
little on B) Suppose that f is big on B and g is not big on B. The proof for the other
case is similar. It suffices to show that f Op h =4 g Op h for all h € F2.

Take any B’ such that 7(B") = 7(B) and B’ C A°. Let C = A\ B and C' = A°\ B'.
If h is big on C, then by Lemma 6, f Op h is big on A and g Op h is normal on A.

Hence, f Oph >4 9 Osh.
We assume next that h is little on C. Then f Op k is normal on A. If g is little on B,

then by Lemma 6, g Op h is little on A. Thus f Oz h >4 g O h. If g is normal on B,
then by Lemma 6, g Op h is normal on A. Thus it follows from Lemma 5 that there are

simple Ry, ko, and kg such that (§QOph)Q4a(h1QOp k) € I and (gOphi)Opus hs € 1.
Let w(S) = {B, B} and

! = (g 0sh)O4(h1 Op ha),

2 = (971 Os k") Opus b3,

b (f Os h1) Osusr hs,

1= (F70s ™) Oa(hi* Op k1),

so (F1, 72, 2, FY) € EX. Since £, f* € I, by P2, f* € P implies f* € P71, Thus
fOgph =4 gOp h. It remains to show that f* € P. Since f is big on B and g is normal
on B, fOpa € Psup: and g Op a & Ppyup: for some a € X*. For b*, let w(S) = {B, B°}
and

g' = (g Osh1) Osup hs,
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g9*> = (fOsa)Osus b,
g°> = (7' Ora™")Onup b7,
g* = (7' Oshi') Osus h3',

so (g*,9% 9% g*) € EX. Since g' € I and g*,g° € P, P2™ implies that g* € P71,
Last we assume that h is normal on C. Then by Lemma 5, h Q¢ hy € Igyc for some
simple hy. Since f Op &~ ! € Ppyupr and ¢ Qp &~ € Igyp:, P2* implies that

(O h)Qa(@ ' Op hi) €Iand (f O h) Qa2 Op hy) € P.

Therfore, f Oph =4 2 Qp h for all € € X2. Since g Opa~* & Pgup for some a € X2,
it follows similarly that @ O h =4 ¢ Op k. By transitivity of =4, fOph =4 ¢ Op h.

Case 3. (f and g are either big or little on B) Suppose that f and g are big on
B. When f and g are little on B, the proof is similar. Then it suffices to show that

fOph~4sgQOphforall h.
Suppose on the contrary that f Qg h =4 g Op h for some h. Then by Lemma 7,

(FOsh)Oahi € Pand (g Oph)Dahy € P71 for some simple h,. Take any event B’
such that BN B’ = § and 7(B) = x(B'). For z,a* € X?, let w(S) = {B, B°} and

1= (@7 0sh™)Oahit,

2 = (90s2)Osus @',

2 = (20p2") Osus a*,

= (@ 0sh)Oah,
so (FL, %, fY € E:. Since g is big on B, we have f* € P. Since f! € P and
2 € I, P2* implies f* € P~1. Hence (2™ Op h) Qa k1 € P71 for all . Then by
P, (f Og h) Oa hy € P71 UL This is a contradiction. Hence we must have that
fOph ~49Qphfor all h.

(B3) Suppose that B is not null w.r.t. 4. We note by Lemma 7 and Claim 1 that

e>4y > QshePandy(Oshe P! for some simple h
= ¢(z) > ¢(y)-

If f is simple, then we have

eOpfrayOnf
— (20 f)QOahe P and (yOp f) Oah € P for some simple h

= ¢(z) > 4(y)

Hence the desired result obtains.
Assume next that f is not simple. Then for any simple g, it follows from B2 that

zQOpfrayOf<=208B9>4v0O8Bg.
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Hence the desired result follows from the preceding paragraph.
(B4) This follows from Claim 2 and Lemma 7.
(B5) By P5,a€ Pforsomea € X® Thusa€ Pyanda™' € P{l,soa>,a™".

(B6) Suppose that f or g are simple and f >, g. We assume that f is simple. When
g is simple, the proof is similar. By Lemma 7, f Qs h € P and g OQa h € P~ for some
simple h. We are to show that given # € X?, there is a partition w(A4) such that for all

Cew(A), (Oc f)Qah € P and (z ch) Oahe pP-1,
Since f is simple, there is a partition w(A) = {4,,..., A,} such that for k = 1,...,n,

Ff(s) = ay for all s € A, and some a € X2

It follows from Lemma 2 that for & = 1,...,n, thereis a partition w(Az) = {Ar1, .., Akny }
such that fori =1,...,n,

((:D OAH a'k) OAk f) OAhE P

Given {Ag; : k=1,...,nand ¢ = 1,...,n}, it follows from Lemma 2 that for each Ay,
there is a partition w(Ag;) such that for all C € w(Ax),

(:cch)OAhEP_l.

It remains to show that (@ Q¢ f) Oa h € P. Therefore, letting w(A) = Uy w(As), the
desired result obtains.
Given Ay, it suffices to show that for all C C Ay, (& Oc¢ f) Oa k € P. By Claim 1,

((® Oap @) Oa, FYOah € P &= n(Aw)d(z) > o,
fOA hcP — ?T(Ak;)¢(a«k) > o,

where
a=[ | FN)dn(s)+ [ S(BT()dn(s).

A\Ag
Then we have

7(C)¢(z) + (r(Aw) — w(C))é(ar) > e,
so that (2 Oc f)Qah € P.

(B7) Suppose that f Qs h >4 g(s) Op h for all s € B. A similar proof applies to
another case. Then by Lemma 7, there is a simple hq such that for all s € B,

(fOph)Oahi€Pand (g(s) Osh) Qs hs € P7L

By P7, (g O h) Oahi € PUT. Hence f Qg b =4 g Os h.
O

Step 5. This step completes the proof of the extended SSA theorem. We need the
following lemma.
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Lemma 8 Ifn(A)=3,f ~ag, and f ~4c g, then f € P <= g€ P,

Proof. Suppose that #(4) = 2,f ~4 g, and f ~4c g. Assume that f € P. We have
three cases to exmine.

Case 1. (f is normal both on A and A°) We note that g is also normal both on A and
A°. By Lemma &, there is a simple h such that f Qs h €T and g Qs h € 1. Since h is
simple, it follows from Claim 1 that hy Q4 h € I for some simple hy. Let w(S) = {4, A°}
and

fl = fOAf)
2= 7 0ah™,
P = hQuh,
o= B7Oaf

so (F1,F5, F3, FY € E. Since f* € P,f* € I, and f° € I, P2* implies that f* € P-L.
Thus by Lemma 7, f = 4c h. Since f ~4¢ g, and > 4 is a weak order, we have g >4 h.
Thus by Lemma 7, bz Qa g € P and hy O4 h € P! for some simple h,. Let w(S) =
{A, A®} and

91 = hy,Quagy,
g° = hy'Qah7,
g° = gQah,
9* = ¢7'Qag™

o (¢%,9% ¢ ¢*) € EX. Since g* € P,g*> € P, and ¢g° € I are in I, P2* implies that
gie Pl sogeP.

Case 2. (f is either big both on A and A¢, or little both on A and A°) Suppose that
f is big both on A and A°. The proof for the other case is similar. Then f € P4 and
f € P4ye. By P2*, f € P. Since g is also big both on A and A¢, we have g € P, so that
the desired result obtains.

Case 3. (f is bigon A and little on A°) By Lemma 4, f € I. Since g is also big on
A and little on A°, we have g € I. Henc the desired result obtains. a

We now complete the proof of the extended SSA theorem. Suppose that 7(A) = 2
Then it follows from Lemma 7 and Claim 1 that for all simpe f,g € F2,

fra9g = fOAhEPanngAheP'lforsomesimpleh
R qu ))dor 5)>/¢ ))dr (s >/<;5 dw(s) for some simple h

= /:4¢(fs )dn(s) >]A¢gs dr(s).
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Hence Claim 3 implies that for all f,g € F2,
Frages [ $(F)dn(s) > [ dla(s))dn(s).

In what follows, we shall assume sup ¢ = 1. Thus we note that

j; H(f(s))dr(s) = % when f is big on A4,

= —% when f is little on A,

[[4¢(f(3))dr(s)| < % when f is nomral on A.

First we assume that f is normal both on A and A°. Then by Lemma 5, there is a
simple g such that f ~4 g and f ~4c g. Hence it follows from Lemma 8, Claim 1, and
the preceding paragraph that

= jS #(g(s))dn(s) >

())dn(s) + / Blg(s))m(s) > 0
)M(+]¢
Jdn(

Next we assume that f is big on A and not little on A°. Then f € P. Also we have
[ $(5(6))dn(s) = 5 and [ d(F(s))dn(s) > ~2
A 2 Ac 2’
so that

[ 9(Fs)in(s) = [ (F(sdn(s) + [ _o(£(s))dn(s) > 0.

When f is little on A and not big on A°, the desired result similarly follows.
Last we assume that f is big on A and little on A°. Then we have f € I. Also we

obtain
1

/¢ dﬂs——md]¢ Ndn(s) = -3,

[ 6(F(s))dn(s) =

so that

This completes the proof.
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