No. 638

Effects of capacity constraints and concentration
on the pricing behavior in oligopolistic industries
with demand fluctuations

by

Toshikazu Kawakami

August 1995



Effects of capacity constraints and concentration on the pricing

behavior in oligopolistic industries with demand fluctuations

Toshikazu Kawakami*

Institute of Socio-Economic Planning, University of Tsukuba

Abstract
This paper introduces a capacity in Rotemberg and Saloner’s model on
firm's collusive pricing behavior so that the capacity cost serves as a cost
in adjusting firm’s output level. Then, we shall find that countercyclical
movements of prices can occur if firms can set up sufficiently large capacities,

or if concentration is high.

Correspondence: Toshikazu Kawakami
Institute of Socio-Economic Planning, University of Tsukuba
Tsukuba, Ibaraki 305, Japan

E-mail: kwkm@aries.sk.tsukuba.ac.jp

*I am especially grateful to my advisor, Professor Yoshihiko Otani for his help and
encouragement. I would also like te thank Professors Hiroshi Atsumi, Hiroyuki Odagiri

and Hitoshi Matsushima for their helpful comments. Any remaining errors are my own.



%

1 Introduction

Since Green and Porter (1984) and Rotemberg and Saloner (1986), several
attempts to explain firms’ pricing behavior by using the repeated game frame-
work have been made. Green and Porter have formalized the issue of secret
price cutting in which price drops, remains low for some time and then rises.
According to traditional interpretations, this phenomenon is explained as a
breakdown and rearrangement of a cartel for some reason. In contrast, Green
and Porter showed that this can be described as a perfect equilibrium which
would be collusive if the demand function were random and firms could ob-
serve neither demand shocks nor their rivals’ prices. That is, when each firm
doesn’t know whether the reason why its profit falls is due to a price cut by
its rivals or due to low demand, it must charge low price for some time to
punish its rivals if it observes a low profit. Therefore, they emphasize that
fluctuations of prices can occur even if there is no breakdown of a cartel.
Moreover, their analysis may be interpreted as an attempt to explain price
wars during recessions because low demand leads to a price cut and such an
interpretation can be found in various articles. However we would like to
interpret this phenomenon as an application of imperfect monitoring rather
than as a description of the relationship between firm’s pricing behavior and
business cycles.

Rotemberg and Saloner intentionally explored the relationship between
collusive prices and business conditions. The reason why Rotemberg and Sa-
loner carried out such an analysis follows from empirical findings in which a

positive correlation of labor demand and the wage rate can be found. Labor
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demand curves are usually thought to be downward-sloping in wages in tradi-
tional economics because labor demand will be determined by the marginal
product of labor if product markets are perfectly competitive. If product
markets are imperfectly competitive, labor demand curves are determined as

follows:
£(2) = po

where f'(z) is the marginal product of labor, p is the markup, and w is the
real wage. If, for some reason, an increase in demand makes the markup
go down, we may explain this positive correlation. Hence, Rotemberg and
Saloner need the theory that prices move countercyclically.

In their model it is supposed that firms play an infinite price-setting game
under demand uncertainty, such that in each stage firms set the price after
observing the state of demand. If the discount factor is sufficiently high, firms
can collusively charge the monopoly price regardless of the state of demand.
But if the discount factor becomes low to some extent, the monopoly price at
high demand cannot be sustained because the incentive to cut price is greater
at high demand than at low demand. Thus they have to make their collusive
price lower at high demand. Moreover, Rotemberg and Saloner emphasize
that the collusive price at high demand can be lower than at low demand
when the discount factor stays within some region.

Another point in their work deals with concentration!. In industrial or-

ganization, around 1930’s, it was found that prices move procyclically in

n their article they don’t describe this point explicitly. However we realize the fol-

lowings by studying their article in detail.



some industries and countercyclically in some other industries. Since then,

researchers have faced the following two questions.
1. Why do prices move countercyclically?
2. In which industries do prices move countercyclically?

Many researchers in industrial organization have studied the latter ques-
tion through emprical analyses. By studying the relationship between price
movements and concentration, Wachtel and Adelsheim (1977) found one of
probable facts. Using the U.S. data, they showed that prices are likely to
move countercyclically when concentration is high whereas prices move pro-
cyclically when concentration is medium or low?.

Rotemberg and Saloner provided an explicable answer to the former
question. But their explanation would not apply to the latter if the fact
that Wachtel and Adelsheim found was correct. In Rotemberg and Sa-
loner’s model, prices move procyclically when concentration is either high or
low, while prices move countercyclically when concentration is in the middle
range. This is because they assume that firms' cost functions obey constant
returns to scale. As a result, firms can adjust the output level freely without
incurring extra costs and the gain from deviation is greater as the number of
firm in the industry increases. Accordingly, under the condition that firms
collude, the possibility that prices move countercyclically is greater, the lower
is the degree of concentration. But in reality it may not be easy to increase

outputs for a short period and firms may incur extra costs in increasing

2Cowling (1983) also found that using the U.K. data.



outputs for various reasons. Thus some modification on the difficulty of ad-
justing the output level in Rotemberg and Saloner is needed to provide some
explanation to the former question. This paper considers this modification.
We shall introduce a capacity constraint and a capacity cost to measure the
cost of adjusting the output level.

In our model firms play an infinitely repeated game. Firms decide at
the first stage the size of a capacity to install. The demand curve at each
period in the second stage is determined stochastically. At each period in the
second stage firms set their prices after they observe the state of demand.
Then we shall find that countercyclical movements of prices are likely to occur
when capacities installed at the first stage are sufficiently high or costs to
maintain capacities are sufficiently low and procyclical movements of prices
always occur when capacities installed at the first stage are to some extent
small or costs to maintain capacities are sufficiently high. Furthermore we
shall find that countercyclical movements of prices are likely to occur when

concentration is high.

2 Model

In this paper we consider a situation in which there are n firms in a market
playing an infinitely repeated game. In the first stage firms set up their
capacity K, a value that is unchanged over time in the second stage. In the
second stage, they engage in an infinitely repeated game of price competition
given the capacity level chosen in the first stage. Firms can produce up to

K units of the product at zero marginal cost but cannot produce more than



K. And they must pay a unit cost of § for one unit of the installed capacity

at every period.

2.1 Demand

The demand curve takes a linear form for simplicity given as follows:
D (ﬂ!,’p) =&—=p,

or P(a;z) = D™Y(a;p) = a — z in the inverse demand form. Suppose « is
determined stochastically and the state of demand can be either high or low.
More concretely, the value of @ is @ with probability 5 and ¢ with probability
1 — 5 where @ > a > 0. At each period in the second stage, firms choose
their prices simultaneously after they observe the state of demand.

Now suppose the following efficient-rationing rule® that is, if { firms choose
prices strictly below p and m firms choose exactly p, then the demand it faces

when firm ¢ chooses p is given by:
D(p[a;pli *r oy Die1y Pitls '3pn) = max {0, (Q -p- lK)/m} N

where n > [ 4+ m.

2.2 Price competition

In this section we analyze the price setting stage. We suppose that every

firm in this industry sets up a capacity collusively and we call this variable

3See, e.g, Tirole (1988).



K* satisfying the condition that K¢ < & 4. We suppose that at some period
t, each firm chooses p°, a collusive price, as long as all firms have charged p*
in every period preceding ¢. Otherwise, it sets its price prevailing in a static
Nash equilibrium. We have two cases for p°® given K.

It is impossible that firms set their price below P{e; nJ(¢). Because they
can produce at most nK°. Figure 1 shows the range of the collusive price
when 51305 > K¢. In this case firms can charge their price above P(a;nK*),
but they don’t get more profits than charging P(a;nK*). Hence firms set
their collusive price at P(a;nK*), then there is no excess capacity in the
industry and they get the maximal profits K{°(P{a; nK*) — 8).

On the other hand figure 2 shows the other case: %a < K° When firms
set their collusive price in [P(a;nK¢),nK*], they get more profits than when
they charge P(o;nkK*) because of the definition of the demand function.
However firms never charge their price in [§,n/*|. This is because there is
a price in [P(a;nK*), §] which gives them the same collusive profits as the
price in [§,nK°] but with less incentive of cheating. Hence firms choose a
collusive price in [P(a;nK*), %] and they get the profits =p°D(a; p°) — 6K°.

We summarize the collusive price and profits. The collusive price is as

follows:

4If K° > @, K° — @ is of no use. Thus we may restrict our collusive capacity to the

range [0, @]



And the collusive profits is as follows:
(it K = { K(P(a;nK®) - 8), if La> K"
1p¢D(a;p°) — 0K, if 30 < K©.

Next we consider the per period profit earned by firm ¢, denoted by
7 {(c; p°, K¢) when the state of demand is @ and firm 7 optimally deviates
from p°. And let the net gain by deviation be denoted by NG(¢; p°, K¢)°.

Suppose all firms charge p°. We have three cases on zf*(:) given K°.
When %D(a; p°) > K*, each firm produces at full capacity. Hence his optimal
deviation provides no net gain.

The case when 1K° < %D(a;pc) < K°1s shown in figure 3. Suppose
any firm will deviate and cut his price by a small amount, then he gets all
demand. However he produces at most K°. Hence his optimal deviation is
that he charges a slightly lower price and produces at full capacity level. Then
he gets approximately K°(p°—§). Hence the net gain is p*{ K — 2D(o; p%)}.

The case when D(a;p®) < K* is shown in figsure 4. A firm also gets
all demand by cutting his price and has enough K to fill it. As p° < §,
cutting his price lower yieldes less profits. Hence his optimal deviation is
that he charges a slightly lower price and produces D(a;p°). Then he gets
approximately p°D(a;p°) — 8 K°. Hence the net gains is “T_lpcD(a; P°).

Therefore we summarize the above net gain NG(a; p¢, ) as follows:

0, if D{a;p®) > nK¢;
NG(eyp® K%)= p*{K*— LD(e;p%)}, if K° < D{e;p°) < nK¢
p*{2=LD(a;p)}, if D(a;p°) < K°.

$That is, NG(a; p%, K¢) = 7°"{a; p°, K°) — 7°(e; p°, K°).
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Let 7¥(a;p"(c; K¢)) denote the per period profit earned by firm ¢ in a
static Nash equilibrium when the state of demand is o®. Let 7° and pf denote
the cartel prices when the demand is high and low, respectively, and let §
denote the discount factor.

From now on, we investigate {7°,p°} so as to maximize expected profit
subject to incentive constraints. Noting that the temptation to undercut
the cartel price depends on whether the realized state is high or low, such a

problem can be described precisely as follows:

max Br(a; p°, K°) + (1 — B)r(q; p°, K°)
p*.pe -

subject to
é
NG(a; p°, K°) < T3 (1)

for the high demand state; and
)
NG(eip’, K) < 7—V; (2)
for the low demand state, where
V = B {n*(m 7, K°) — v¥(a K°)}
+1-0) {WC(Q; P, Ky — (e Kc)} .

In these inequalities (1) and (2), the left-hand sides are the short-run gains
by deviating from the collusion and the right-hand sides are the long-run

losses. As the discount factor increases, the payoffs to be sustained as a

8The value of 7% (e;p™(c; K°)) is determined as in the theorem by Davidson and

Deneckere (1990). See appendix A.



collusive equilibrium become bigger. On the other hand, the bigger were
the short-run gains or the smaller the long-run losses, the discount factor to
sustain a collusive equilibrium would have to be larger to satisfy the incentive
constraints.

If firms set the same price in both state of demand in Rotemberg and
Saloner’s model, the temptation to deviate is always bigger when demand
is high than when demand is low. But this is not necessarily true for our
model, because the incentive to deviate can be larger when demand is low.,

Our interest is in the relationship between firms’ pricing'behavior and
capacity constraints. But firms’ pricing behavior depends not only on K°
but also on é. Moreover, if J{¢ changes, V also changes. Therefore, the set
of § satisfying the incentive constraints depends on K for any given (7%, p).
It is not very simple to describe the relationship fully. Fortunately it turns
out to be sufficient that we analyse NG;(-) to investigate the relationship
between the pricing behavior and capacity constraints.

Suppose that n and K* are given. Suppose, in addibR tion, that p° = p (a
constant value). Then we can draw NG;(-} as in figure 5 where the horizontal
axis shows a. NG,(-) is linear and increasing when a € [2p,p + K¢]. (
This is shown by the segment AB.) It is also linear but decreasing when
a € [p+ K¢ p+nK€. ( This is shown by the segment BC. ) And it is not
defined when a > p + nK*° because firms cannot produce above nk®. Qver
p + K¢, the profits when a firm deviates is limited by capacity constraints.
Hence a kink is at the point B. Next we investigate the effect of the change of
K¢ on NG;(-). This is shown in figure 6. we suppose that the values of @ and

« are given as in figure 6. The kinked curves ABE, ACF and ADG correspond
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to NG(a; p, K¢), NG(«; p, K ) and NG(a; p, K°) respectively where K¢ <

~ C

~

K < K¢ and NG(g; p, I{’C) = NG{z;p, I:{c) That is, the graph shifts
rightward as K¢ increases. Furthermore NG(w; p, K¢) < NG(g;p, K¢) for
K< d and NG(&; p, K¢) > NG(g; p, K¢) for K¢ > k. Tn other words K
is the watershed whether the net gain by deviation at high demand is bigger
than at low demand under the condition that firms charge the same price
at both demand. From these arguments we can obtain the next proposition

about the critical value K whether prices can move countercyclically or not:

Proposition 1
Prices can move countercyclically when K° € [f(c,a], while prices move

procyclically when K¢ < K¢, where

K= ~(a+
n

Proof:  To compare NG(g;p, K¢) and NG(@; p, K¢) let us consider
NG(g;p,K°) — NG(g; p, K¢). Note that @ < p 4+ nK*°. Then there are
two cases to be considered. If D(gq; p) > %D("o‘:‘; £), then

NG(@, p,K°) — NG(g; p, K°) =

lo(e-am), ifD(yp
p{Ke — (@—p)} - 2dpla—p), if D(@p
rlp@—g), if K> D(@p).

If D(a; p) < +D(a@; p), then

NG(@; p, Ky — NG(a; p, K°) =

11



p{Ee = L(@—p)} =T p(a—p), i D(®@p)2 K2 ;D(@p);
olp(@—a), if K°> D(@p)
In both cases NG(@; p, K¢) -~ NG(a; p, K¢) is increasing on K*°. And it is
negative when K* is small, while it is positive when I{¢ is large. Therefore

there is fiﬁ'“ such that for every K° such that K¢ > Ix e
NG(@; p, K%) > NG(q; p, K°)

, and for every K* such that K¢ < Ié' c
NG(wm, p, K°) < NG(g; p, K°)

where
ac 1
K =—(a+{n-1)a-np)
n
~C
Note that K is minimum when p° is maximum or £, i.e.,

n—2

fe 1,
K _;(a+ a)

This proposition has the following economic implications.

1. Countercyclical movements of prices can occur if firms set up suffi-
ciently larger capacities. On the other hand, procyclical movements of

prices always occur if firms set up sufficiently smaller capacities.

2. When = increases, nJ° increases. Hence if n/A° does not change so
much regardless of its concentration, then the movements of prices will

be procyclically as n increases.
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The reason why the first sentence of the economic implication 2 issues is

the following. When p° is §, they must have excess capacities in collusively

charging § at high demand so that 7° can be lower than % ( in other words,

they can charge their collusive price countercyclically ). How large excess
capacities do they need for charging p° lower than £ at that time? Excess
capacities at high demand are smaller than ones at low demand in charging
the same price at both demand. If each firm has less capacity than %, it is
capacity constrained even at low demand when it undercuts its price slightly.
As a result, NG(g; 5, K°) > NG(7; 5, K€) for K¢ < £ and any n. Thus
all firms have more capacities than $ so that 7° can be lower than £. Then
each firm always gets an extra demand of almost 2=1(£) if it deviates at low
demand. For the above reasons firms can charge p° lower than % if they have
n=l(g

excess capacities more than ==(3) when they all charge § at high demand.

That is, the minimum capacity level of one firm when they can charge their

collusive price countercyclically is as follows:

1, ¢« n—-1a

;(ﬂ' - 5) n ("2")

ﬁ'—/_ Mo et
active capacity excess capacity

Hence the minimum capacity level in the industry is as follows:

Q o
T-= + (n—U§
. T
active capaclty excess capacity

While the term of the active capacity is constant, the term of the excess
capacity increases with increasing number of firms,
One of our major interests is on the relationship between firms' pricing

behavior and the degree of concentration in the industry. In order to answer

13



this question it remains to analyze the choice of capacity firms choose. We

shall analyze this in the next section.

2.3 Incentives at the first stage

In this section we analyze the capacity choice. In our model, in order for
firms to collude in the second stage they must set up their capacities so that
the collusive profit in the future may be greater than the noncooperative

profit in the second stage. This relation can be expressed as follows:”
ETS(a,o; K°) — §K° > El;(a, o; KY, KV, 0), (3)
where

Eli(@, o; K¢) = fri(e; p°(@, K°)) + (1 — B)ni(e; p(a, )

The left-hand side is firm ¢'s ez-ante per period profit when all firms behave
collusively. And the right-hand side is the one when they play the static

Nash equilibrium strategy in the price-setting stage. 8

2.3.1 Capacity choice when firms don’t behave collusively in the

price-setting stages

Let us consider A7 and the per period profit in choosing K", that is,

ETl; (@, o; K¥, K%, 8). To analyze this profit we shall employ the theorem

—i

"We don't consider mixed strategies, but only pure strategies on capacity choice in the

first stage.
8Let K denote the capacity in equilibrium which is installed by firm i when it plays

the static Nash equilibrium strategy in the price-setting stage.
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due to Davidson and Deneckere (1990).° As their theorem indicates, firm
1’s profit is distinguished in several regions when the state of demand at the
period is realized. Here note that o can be either @ or @ and all firms charge

their prices after observing the state:
Ell}(@,o; K, K_;,0) = Bl (@ K, K_;,8) + (1 = B)a¥(e; K;, K_i,6)

We only consider a symmetric capacity choice: K; = K for all i. Then there

exists a symmetric static Nash equilibrium for the capacity choice given by

v | =@ if (@ — ) 2 6;
—lfe+(1-pe -0}, iff@-a)<b;
as is shown in Appendix B.

In this model all firms are to decide their capacity level cooperatively no
matter how they behave in the price setting stage. That is, if the inequality
(3) is satisfied, then they are to cooperate one another and if not, they all

agree to choose K¥. So we don’t have to consider punishments in the first

stage.

2.3.2 Capacity choice when firms collusively behave in the price-

setting stage

By investigating the inequality (3), we can find that there exists 9 such
that there cannot be countercyclical movements of prices if § > § and there

can be countercyclical movements of prices if 6 >8>0 Andé wil be

9See appendix A.
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determined by the next equation:

prs(w; %) +(1 = B)nS(e; =) — 6K° = EllNw, o; KV, KV, 6)

nofIR

When prices can move countercyclically, the value of FII{(&, ¢; K¢) is max-

o . . . . o
imum at p° =p° = ? And the value of K¢ is minimum when K¢ = K*.

Hence, § must be determined by the above equation.

b2 —

Table 1 exhibits the value of § which we calculate for the case when 8 =

and @ = 10. The following features are found in table 1.
1. The value of & decreases as the difference between @ and ¢ increase.

2. The value of § is miximum at n = 3 or 4. And it decreases with

increasing n.

The former means that there is a small possibility of countercyclical move-
ments of prices in the industry where the difference of demand between booms
and recessions is larger. This is because countercyclical pricing makes firms
lose larger profits at booms as the difference is larger. The latter demon-
strates that the possibility of countercyclial movements of prices increase as
concentration increases. This result is consistent with the empirical analysis

by Wachtel and Adelsheim.

3 Concluding Remarks

This paper considers the effect of capacity cost to capture the cost of
adjusting the output level in firms' collusive pricing behavior. We have shown

the following results. If the capacity cost is sufficiently low, firms can set

16



up sufficiently large capacities and prices can move countercyclically. While
prices move procyclically if the capacity cost is sufficiently high. Furthermore
prices are more likely to move countercyclically as concentration is higher.
However there may be a question we should further consider. It is about
the capacity choice. We have assumed that firms only compare the collu-
sive profit and the noncooperative profit when they choose their capacity
level. But the capacity choice is influenced by various ( in particular, exoge-
nous) factors. In addition, we have assumed the existence of a symmetric
equilibrium to evaluate the noncooperative profit. Thus our results in this
paper should be considered tentative. We would like to carry out further

investigation to make our results more appropriate.
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Appendix

Appendix A

On the Bertrand-Edgeworth duopoly, Kreps and Scheinkman (1983) de-
rived the profit function given capacities. Davidson and Deneckere (1990)
modify it for linear demand case. And we modify their result applicable to

the n firms case.

Theorem
Firms except for ¢ are supposed to choose the same capacity level K. For
each pair (X;,K), where £ means all firms except ¢ choose K, and for any
o, the static price-setting game with capacity constraints has a unique static

Nash equilibrium:

1. If (n—2)K + K; > e or K > =%, the equilibrium is in pure strategies,
all firms charge p = 0 and firm i gets —4K; and another firms get —0K.

2. If K; < @ —nkK and K; < }{a — (n — 1)K}, the equilibrium is in
pure strategies, all firms charge p = o — K; — (n — 1)K and firm ¢ gets
K{oa—6—K;—(n—1)K} and another firms get K {a — K;—(n—~1)K}.

3.IfK; > K and (n — 2)K + K; < @ and K; > ${a — (n — 1)K}, the
equilibrium is in mixed strategies and firm ¢ gets +{a—(n—1)K}*—8K;

and another firms get Z‘%{a —(n-1)K)?-8K.

4. fK; > Kand K < Z-and K; > o - nI<, the equilibrium is in mixed
strategies and firm i gets £i{a — (n — 2)K — K;}* — 0K; and another

firms get t{e — (n — 2)K — K;}? - 6K.

18



Appendix B
As we mentioned in subsection 2.3.1, we only consider a symmetric capac-
ity choice. K¥ is not below %—;{-. This is because, if K¥ < {a—0—(n-1)K},

then any firm ¢ can get more profit by increasing its capacity. ( Note that

dmi(aiK; K 0)

o _=a—(n+1)K -6 >0if K; < 222} Therefore it doesn’t

K=K
choose in such a region.

I{; is not above f—:_f, either. This is because when K = =51 then

M2 (o3 K1,K,0 .

g_E_,_(ng_l i = —0- As a result firms cannot get more profit by in-
i L=

a a—0

creasing their capacity. Therefore it chooses K € [m, wTTl

n-1?
QBN:(T, o; K, K, 0)
OK;
Andif £ < K < 5,
OET;(a, o; K1, K, 8)
oK,

i e

= pla-(n+ 1)K -0} +(1-B){a—(n+1)K -6},

Ki=R

=p{a— (n+ 1)K — 0} + (1 — BY—0K).

[\’I'=K’!
Hence if
OFEI; (@, ; K, 25,0+, 25,0
‘z(a & n—1 n—1 ) Z 0,
6.[(, Rl":IET
then g—:[_'f < KN <2 and
1
N — _ —
KV = {pa+(1-Bla—0}
And if
OEN; (@, a; K, 255, -+, 251, 0)
n * <0,
31’&; [{(._...E_.
then -£; < KV < % and
1 7
N _ =
K = 2n(a [3)'
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Table 1

n\a 8 7 6 5 4
2 | 0467 | 0.431 | 0.319 | 0.112 -
3 | 0.561 | 0.567 | 0.506 | 0.347 | 0.033
4 | 0.362 | 0.577 | 0.525 | 0.364 | 0.000
5| 0.538 | 0.551 { 0.492 | 0.309 -
6 | 0.507 | 0.513 | 0.441 | 0.220 -
710475 ] 0472 | 0.384 | 0.112 -
8 | 0,443 | 0.431 | 0.323 - -
9 | 0.414 | 0.392 | 0.263 - -

10 | 0.386 | 0.355 | 0.204 - -
11 | 0.361 | 0.320 | 0.146 - -
12 | 0.338 | 0.287 | 0.089 - -
13 | 0.316 | 0.256 | 0.034 - -
14 | 0.300 | 0.228 - - -
15 { 0.278 | 0.201 - - -
23 | 0.171 | 0.033 - - -
24 | 0.161 | 0.019 - - -
25 | 0.151 | 0.002 - - -
26 | 1.142 - - - -
55 | 0.003 - - - -
56 | 0.001 - - - -
87 - - - - -
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