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Abstract Suppose a hunter starts hunting over certain given ¢ periods with ¢ bullets in kand. A distribution of the
value of each appearing target and the hitting probability of a bullet are known. For shooting, he takes 2 strategy
of shoot-look-shoot scheme, implyiné that if a bullet just fired does not hit the target, then the hunter must decide
whether or not to shoot an additional on'.e‘f At the end of each period, it is allowed to replenish a given number
of bullets by paying a certain cost. The oﬂb:jective-here is to examine the properties of the optimal policy which
maximizes the total expected net reward. We get the following results: the optimal policy for shooting is monotone
in the number of bullets in hand if it is always optimal either to replenish a certain number of bullets every period
or not to replenish them at all; if only one bullet can be replenished per period, then both the optimal policies for
shooting and replenishment are monotone in the number of bullets in hand; if more than one can be replenished
per period, then there exist examples where the optimal policies for shooting are not monotone in the number of

remaining bullets.

1. Introduction

Consider a problem of allocating countable resoﬁrces to investment opportunities appearing one
by one over a given planning horizon. At the beginning of each period, an opportunity comes
with a certain value which is a random sample from a known probability distribution. Assume the
resources are allocated to the opportunities pursuant to shoot-look-shoot policy, implying that, if
investing one unit of resource results in unsuccessful, then it is decided whether or not to invest
one more at once. At the end of each period, the resources can be replenished by paying a certain
cost; it must be decided whether or not to replenish m units of resources then. The aim is to
maximize the total expected reward obtained from the successful opportunities minus the fotal
cost for replenishment.

In general, there exist two kinds of policies in sequential allocation problems: shoot-look-shoot
policy [2,3,6,7] and wolley [1,3,4,5,6]. In volley policy, it must be decided how much resources to
invest in salvo. Mastran and Thomasg [3] treat the problem as a target attacking one in which the
computational method to obtain the optimal decision rules for the both policies are showed. Kisi [2]
considers a model of shoot-look-shoot policy and examines the relation between the approximate
solution and the exact. Sakaguchi [8] investigates the continuous-time version of [3]. Namekata,
Tabata and Nishida [4] deal with a model of volley policy where there exist two kinds of targets in a

sense that the necessary number of resources to get them are different. They also examine problems



with volley policy in [5] and [6]. In [5], it is discussed how to allocate perishable resources, and in
[6], a case with a random planning horizon is investigated. Derman, Lieberman and Ross [1], and
Prastacos [7] deal with the problems as investment ones with volley policy. In [9], a problem with
shoot-look-shoot policy, in which the search cost must be payed to find an investment opportunity,
is discussed, and it is derived that the critical value, at which investing or not become indifferent
in the optimal decision, is not always decreasing’ in the number of remaining resources.

In models such as stated above, if all of resources are spent before the deadline, then later
chances, which may be more attfactive, will be unavailable. However, if the resources can be
replenished by paying a certain cost, then he can continue investing activities in order to gain the
total expected reward. In this'.'pa'.pexj, we discuss the problem where such replenishment is assumed.

_ In the following section, we exacﬁy define our model and formulate fundamental equations. In
Section 3, properties of the optimai-.i)olicy are derived. In Section 4 and 5 that follow, a cases
that it is optimal to replenish the resources every period and a case that not to replenish at
all are investigated. The case that only one unit can be replenished per period is considered in
Section 6, and a case for more than one bullet is examined and some numerical examples are shown

in Section 7. The conclusion obtained are summarized in Section 8.

2. Model and Fundamental Equations

Now using the following hunting problem, we shallle}_cpla.in the model treated in this paper. Suppose
a hunter starts hunting over a given planning horizon ¢ with < bullets in hand. At the beginning of
each period, he goes to hunt and can find only one target. The case that he cannot find any target
is regarded as that he finds a target of value 0. The value of a target, w, is a random variable
having a known probability distribution function F(w) with a finite expectation p, continuous or
discrete where F(w) =0 forw <0, F(w) < 1forw < 1, and F(w) =1 for 1 £ w. The distribution
does not concentrate on only a point, 7.¢., Pr{w) < 1 for any w. The values of successive targets
are assumed to be stochastically independent.

He observes the value of a target as soon as finding it and has to immediately decide whether
or not, to shoot. If the value is rather small, then he may decide not to shoot and come home with
no profit. Suppose the value is favorable and he decides to shoot a bullet. Then the bullet will hit
the target with hitting probability g. If not hitting, then two cases are further possible: either the
target disappears immediately with escaping probability = or still remains without any defense. If
it stands still there, then he has to decide whether or not to fire an additional bullet. Assume that
repeated firings waste no time. If he decides not to shoot any more, exactly speaking, if he decides

not to shoot any more at the present target, need not shoot (get it}), or cannot shoot (it escapes

Throughout this paper, the following terms are used in order to avoid the expressions of double negatives;
“increasing (decreasing)” means “nondecreasing (nonincreasing)”.



or ¢ = ), then he comes home. On his way home, he must furthermore decide whether or not to
replenish m bullets by paying a cost a; it is not permitted to supply more or less than m bullets.
Thus, the period ends and the next comes. The objective is to maximize the total expected net
reward over t periods. The flow of the decision"process is illustrated in Figure 1.

Now we shall formulate the fundamental equations of the model. Let points of time be numbered
backward from the final point of the planning horizon as 0, 1, and so on; an interval between time
t and time ¢t — 1 is called period Z. We define u(i, w) to be the maximum of the total expected net
reward starting from time % when ¢ bullets are in hand and a target of value w is found, and v;(%)

to be its expectation in terms of. w, that is;
B ) 1
w) = [ wOFE), t20. (2.1)

Furthermore, (1) is defined as the Iaximum of the total expected net reward starting from time ¢

START

) decision
Uy (l, w)

t .-+ point in time

) decision i -+ the number of bullets

replenish - (i) in hand
T w .- value of a target
pay a & -+ cost for m bullets
Ve rtm m -+ the number of bullets
]‘— replenished per peried

te—t—1

Figure 1 Flowchart of the Decision Process
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when he decide not to shoot at the present target any more, provided that ¢ bullets remain. Then

we have the following relations:

uy(f, w) = max{z(3), ¢(w+20G—-1))+ (1 - g(rz(E— 1)+ (1 - r)u( - 1,w))}

= max{z; (3}, pu(i— Liw)+tqu+ (1-p)z(i-1)}, t>0,i>1, (2.2)
ue(0,w) = v:(0) = z(0), 20, (2.3)
z(1) = max{fvi-1(3), Pu-1(i+m}—a}, £21,i20 (2.4)

where p = (L —g}(1 —7) € [0,1) and B € (0,1], a discount factor. The first (second) term inside
the braces in the right hand Sid:e‘ of (2.2) represents the maximum of the total expected reward
when it is decided not to shoot at thé present target (to shoot at the present target), and the first
(second) term inside the braces in the right hand side of (2.4) denotes the maximum of the total
expected reward when it is optimal not to replenish m bullets (to replenish m bullets). Further,

we immediately have the following final conditions:

i

ug(d, w) = qu + pug(i — 1, w) = T}%qw, i>1, (2.5)
. 1-p .

vo(2) = ~———qu, 121, 2.6

0(8) = = e (2.6)

(@) =0, i20. . (2.7)

Here (2.5), hence also (2.6), hold for < > 0.

Below, we examine the properties of fundamental equations.

Lemma 1.
(a} ue(s, w), vs(3) and z(1) are increasing in t for any i and w.

(b) Ifp >0, then u,(3, w), vi(i) and z(3) are strictly increasing in i for any t and w ezcept z(1)

and up(2,0). If p =0, then they are increasing in i for any t and w.

(¢) (i +1,w)—w(i,w) < g for any t, 1 and w where the equal sign holds only for i = 0 and
w = 1. In addition, v,(i +1) — (1) < g and (3 + 1) — 2:(3) < ¢ also hold for any t and 3.

(d) wi(z,w) is increasing in w for any t and 4.
Proof: (a) Since vp(i) = (1—p'}qu/(1—p) > 0 for any i, it follows that z;(3) > Bug(i) > 0 = z(3).
Using (2.2), we get for any ¢
ur (i, w) 2 pu1 (i = Lw) +qw+ (1 —p)a1(i — 1) 2 pur(i — 1,w) + qu. (2.8)

Therefore we have

up (2, w) 2 plpur (i — 2,w) + qu) + qu



. 1—pt
2 pua(0,w) + -i-%qw

l—p"

qu = up (i, w), (2.9)

leading to v (%) > uy(Z) for any ¢. Assume v,(3) > v;_1(¢) for ¢ > 0 as the first inductive assumption

in texrms of ¢. Then we have for 1> 0

zpp1(2) = max{ﬁ?:(i), Buy(i+m) —a}
> max{fvi-1(2), Bur—1(i +m) — a} = z(3). (2.10)

Accordingly we get u;1(0, w) = lz_H.l (0) > (0} = 1;(0, w). Furthermore, suppose u;41{1 — 1, w) >
wy(t — 1, w) for any w as the second';iﬂnductive assumption in terms of <. Then the following can be

¥

obtained; o

uprt (5, w) = max{z1(2), pup1(t — L w) +qw + (1 — p)zp1(i — 1)}

> max{z/(z), pu(i — L, w) + qw + (1 — p)z:(t — 1)} = u, (3, w), (2.11)

which yields v;41(¢) > v(2). Thus, it is proven by double induction that u.(s, w) is increasing in ¢
for any 7 and w, so also are v (%) and z(i) for any 1.
(b) When p > 0, it is obvious from (2.5) that ug(i,w) is strictly increasing in ¢, so also is vg(s).

Let v;—1(3) be strictly increasing in 4. Then, we get for any ¢

z(t) = max{Bvi—1(3), Bvi—1(t + m) — a}
> max{fvi-1(t — 1), fre-1(i + m — 1) —a} = z(i — 1), (2.12)

which yields
wy(L,w) > 2(1) > 2(0) = 1,(0, w). (2.13)

Furthermore, assuming wu; (¢, w) > u¢ (¢ — 1, w) for w > 0, we have u(z + 1, w) > u; (%, w) from (2.2),
so v;(4 + 1) > v(2). Thus, it is proven by double induction that u;(Z,w), v,(Z) and z,(2) are strictly
increasing in ¢ for any ¢ and w except uo(¢,0) and z(z).

For p = 0, the proof is almost the same as above.

(c) It is clear that zg(z + 1} — 29(%) = 0 < ¢. From (2.5), it follows that
up(d + 1, w) — up(4, w) = plqw < ¢ (2.14)

where the equal sign holds only for ¢ = 0 and w = 1. From this, we get vo(z + 1) — vo(3} < ¢ for
any 7. Now suppose 2 (i + 1) — z:(2) < ¢ for any 7. Then, we easily obtain from (2.13)

ug (1, w) — u (0, w) = uy{1, w) — 2 (0) = max{z, (1} — 2,(0), gqw} £ ¢ (2.15)



where the equal sign holds only for w = 1. Furthermore, assume u;(i, w) — u(¢ — 1,w) < ¢. Then

we have
u;(?. + 1, 'UJ) - 'U.t('l:, UJ) _<_ ma.x{zt(i + l) — 2 (2),
p(u(i, w) —w(i—Lw)) + (1 —p)z() —z(i—1))} < g (2.16)
using the general formula
max a; — max b; < max (a; — b;). (2.17)
0<i<k 0<i<k 0<i<k

Thus, we get u;{i 4+ 1, w) — ut(z:, w) < g for any ¢ and w except for ¢ = 1 and w = 1, which yields
vy (2 4 1) — v (2) < ¢ for any 1. From above, it follows that
241 ('& -+ 1) - zt-i—l(i) Sﬁ max{vt(i + 1) - v,(z’), 'Ut('l: + 1+ m) - ‘Ut('l: + m)}
<Bg<q. (2.18)

By double induction, we come to the statement.

(d) It is easily proven by induction. |}
Using these properties, in the next section, we shall discuss the structure of the optimal decision

policy.

3. Properties of Optimal Policy

Now define g,(¢, w) and -¢(z) as follows:
g, w) =pus(i — Lw) +qu+ (I —plza(i— 1) —2(), :2>1,¢2>0, (3.1)
$:(1) = plop—1(G+ m) —v—1(i)) —a, ¢20,t21 (3.2)
Then, the lemma below holds true. .
Lemma 2.
(a) Fort> 1 andi> 1, g;(2,w) is strictly increasing in w, which is also true for t — co.
(b) g:(¢,w) = 0 has a unique solution w = h,(z) € (0,1) forp > 0(€ [0,1) for p =0).
Proof: (a} It is immediate from Lemma 1(d).

(b) Assume p > 0. It can be easily proven by induction that u¢(¢,0) = 2(7) for any ¢ and 1.
Accordingly we get

9:(2,0) = pu; (i — 1,0) + (L —p)ze(i—1) —2:(2) = z:(s—1)—2z(?) <O (3.3)
from Lemma 1(b). In addition, it is obvious from Lemma 1(c) that
a{1,1) = pruy(t— 1, 1) g+ {(1-p)z(i—1)—2z(2) > g+2z(i—1)—2:(z) > 0 (3.4)

fori> 1andt > 0. From (3.3), (3.4) and the continuity of g,(, w} in w, it follows that g,(7,w) =0
has a unique solution h(¢) € (0,1) for p > 0. For p = 0, the proof is almost the same as above. 1
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Remark: We call hy(z) a critical value when the hunter has 7 bullets and ¢ periods remain. From
Lemma 2, the optimal decision policy for shoot becomes as follows; if g;(z, w) > 0 (w > h¢(%)), then
fire, or else don’t fire. The optimal policy for replenishment becomes as follows; if ¢¢(z) > 0, then

replenish m bullets, or else don’t replenish them.
Because g;(7, hi(z}) = 0, it follows that

0= gi(4, he(d)) = pua(i = L, m(2)) + ghu (i) + (1 — p)ze(i — 1) — 2:(3)

2 gha(d) + 2(i = 1) = 2(3), (3.5)
from which we get
M) < (i) - G — 1)/ (3.6)
In particular for i = 1, it is true frofii'- (1, ht(l)) =0 that
hi(1) = (z(1) — 2:(0))/q. (3.7)

The following lemma describes the relation between h;(2) and z,(5) more detailed.

Lemma 3.
(a) If p>0, then fori> 1 andt > 1,

he(3) > (<) (i +1) = hi(i+1) = (<) (2 + 1) — z(d)) /-
When p =0, it always holds true fori 21 and t > 1 that hy(i+ 1) = (z(i + 1) - 2(2))/q.

(b) Fort>1andp >0,
m@ {3} m@ = 220) - 20 - 20) {3 } 0

() For giveni>1 andt> 1, if hu(6) > (=) hi(i+1), then 22,()—z(i—1)—z,(+1) > (2)0.
(d) For given i>1 and t> 1, if 22,(i)—z(i—1)—2,(i+1) < 0, then hy(s) < hy(i+1).
(e) Assume hy(i) = (2(4)—2z{i~1))/q for givent > 1 and t > 1. Then

22;(1) — 2z (i+ 1) — 21 - 1) > (=)0 = h(2) >(Z)he(i + 1).

Proof: (a) It is immediate from (3.6} and Lemma 2.
(b) Using (3.7), we have
9:(2, he (1)) = pu(1, he(1)) + gha(1) + (1= p)2e(1) — 20(2) = 22,(1) — 2. (0) — 2:(2), (3.8)

which yields the statement.

{c) From the assumption and {3.6), we have
0 <(=) @i+ 1, hu(3)) = qhe(D) + 2:(1) — (i + 1) < 22(2) — z(i — 1) — (i + 1). (3.9)

(d) The statement is the contraposition of (c).



(e) Because gh;(i) = z;(i) — z;(i — 1) for i > 1 from the assumption and ghy(i+1) < 2z (14 1) — 2(3)
from (3.8), we have
0< (=) 2Zt(2) —zi(2+1) - z(1—1)
= qhy(3) + z(2) — 22 +1) < g(he(7) — (2 + 1)), (3.10)

from which we get the statement. R

In the next lemma, a condition for (i) being decreasing in ¢ for a given ¢ is revealed.

Lemma 4. The critical value hy(3) is strictly decreasing (decreasing) in i for a given i if and only
if foralli 2 1 2a(i) = nli— 1) = @G 1) > (2)0.

Proof: If hy(t) is strictly decreasiﬁ-g in 4, then 22;(3) — (i — 1) — (i +1) > 0 for all ¢ > 1 from
L;amma 3(c). The sufficient conditic;i; can be proven as follows. From Lemma 3(b), A:(1) > A:(2)

holds true, hence we have
hy(2) = (2:(2) = 2:(1))/q (3.11)

due to Lemma 3(a). Accordingly, we get he(2) > hy(3) using Lemma 3(e), so
he(8) = (2.(3) — z:(2)) /4. (3.12)

Repeating the same procedure, we obtain h;(2) > k(i + 1) for all ¢ > 1. In a similar way, we can
prove the case that h;(¢) is decreasing inz. -

Next, we clarify the relation between h:(z) and v,(5).

Lemma 5. If hi(z) is strictly decreasing (decreasing) in i for a given t, then for all1> 1
2uy(7) — (2 = 1) —we(i+ 1) > (2) 0.

Proof: We only prove the case that A;(z) is strictly decreasing in 4. For the case that h.(7) is
decreasing in 1, it can be proven in a similar way.

From Lemma 3(a) and the assumption of this lemma, we get (¢} = (2:(2) — z,(2 — 1))/ q for all

i > 1. Hence, we can express 2v;(1) — v¢(t — 1) — v;(2 + 1) as follows;

he(i4+1)
Ay

. fa(i) 1
20(1) — (i = ) —w(i+1) =f0 (,8)dF(¢) +fh (iﬁ)z(i, OAFE) + | (g':(i,f)dF(é) (3.13)

where
Au(i, &) = 22,(8) — (i — ) — z(i + 1), (3.14)
Bi(3,€) = 22(3) — 246 — 1) — (p2e8) + g€ + (L = Plaud)) = () — m(i— 1) —g&,  (3.15)
Cy(3,8) = 2us (3, &) — wy (2 ~ 1,8) — (pws(3,€) + € + (L — p)z: ()
= 2= p)pui(i — 1,€) + ¢f + (1 = (i — 1)) = wls ~ 1,€) — gé— (1~ p)(3)
= (1= pY2uy (s —1, &) + (1—p)gé — (1= p)z.(5) + (2~ p)(1 - p)z(i - 1). (3.16)
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From Lemma 4, we get A;(7,&) > 0for 0 < & < hy(z+1) and B;(3,€) > 0 for hy(z +1) < & < hy(2).
Below, using induction, we shall verify C}(3,£) > 0 for h(i) < { < land alli > 1. If i =1,
then we get for (1) < € L1

Ci(L,€) = =(1 - p)?u(0,€) + (1 — p)gé — (1 — p)z(1) + (2 ~ p)(1 — p)z(0)
> —(1 = p)?2(0) + (1~ plghe(1) = (1 ~ p)ze(1) + (2 — p)(1 — p)z(0)
= (1 —p)(ghe(1) +2:(0) — z(1)) = 0. (3.17)
Assume Gy(i— 1,€) > 0 for hy(i — 1) < € < 1. Then, we have for he(i— 1) <& <1

Cll ) = ~(1 - PP(pU(i = 2,8) + g€ + (1 = P)ai — 1)
+H1-p)gg = (1= p)ali) + 2 - p)(1-pali-1)
=pCi(i — 1,6) + ("= p)2zli— 1) — 2(i — 2) — z(3)) > O, (3.18)

Further, we obtain for k(1) < £ < hy(t — 1)
Culi,€) = —(1 = p)’z (i — 1) + (1= p)gf — (1 = p)z (&) + (1 - p) (2 — PG — 1)
= (1-p)(g€+z(i - 1) — 2(2)) > 0. (3.19)
Therefore, we get C;(3,€) > 0 for hy(z) < £ £ 1 and ¢ > 1. In addition, it follows by direct

calculation that By(Z, h:(2)) = Ci(, he(2)) = 0. Finally, from the fact that the distribution does not
concentrate on only w = hy(i), we get 2v,(i) —w(e— 1) —v(6+1)>0fori>1. 1

We have investigatéd the basic structure of the optimal decision policy for shooting. In the

following sections, the properties of h;(7) for some special cases will be discussed.

4. Case that Replenishing Every Period is Optimal

In this section, suppose ¢¢(z) > 0 for all ¢ > 1 and ¢ > 0, implying that it is always optimal to
replenish m bullets. Then we shall clarify the monotonicity of h(¢) in ¢ and the condition for
¢e(i) >0forallt>1ands >0.
Theorem 1.

(a) On the above condition, the critical value h;(3) is decreasing in ¢ for any t > 1. Particularly

Jor p > 0, it is strictly decreasing in 1.

(b} It holds true if and only if a =0 that ¢;(?) > 0 for anyt > 1 and i > 0.

Proof: (a} We only verify the case for p > 0. The proof for p = 0 is almost the same as below.

Since ¢:(z) > 0 allt > 1 and 7 > 0, z(2) = Bvi—1(i + m) — a always holds true. Therefore, using
(2.6), we get for i > 1

221(2) — 216 — 1) =216 + 1) = B(2uo (2t + m) = vo(i — 1 4+ m) —vp( + 1+ m}} > 0. (4.1)



Hence it follows that 2v1(¢) = v1(z — 1) —v;(i +1) > 0 for all 7+ > 1 due to Lemmas 4 and 5.
Accordingly we obtain

220(1) — (- 1) — G+ ) =82 E+m)—v(f-14+m)—-vi(i+14+m)) >0 (4.2)

for all ¢ > 1. Repeating the procedure above yields 2z(¢) — z{t — 1) —z(t+ 1) >0 forallt > 1

and ¢ > 1. Hence h4(%) is strictly decreasing in ¢ for any £ > 1 from Lemma 4.

(b) Now suppose ¢;(¢) > 0 for all ¢ > 1 and ¢ > 0. Because the number of targets the hunter gets
over the whole planning horizon is at most ¢ + 1, v(¢) is upper bound for any ¢, implying that v,(z)
converges as 1 — co. Hence wﬁé get

- W ;152; $u(i) = —a > 0. (4.3)

Therefore, it must be that a = 0. To go the other way, if a = 0, then ¢,(¢) = B(vi—1(z + m) —

vi-1(3)) > 0 for all ¢ > 1 and i > 0 since v(3) is increasing inz K

5. Case that Not Replenishing is always Optimal

Next, suppose ¢;() <0 forall £ > 1 and 7 > 0, implying that it is always optimal not to replenish
m bullets. The case is the same as the model in [7] with ¢ = 0, in which the conclusion that h,(3)
is strictly decreasing (decreasing) in i for p > 0 (p = 0) is obtained. Using the fact, we examine

the condition for which it is always optimal not to replenish at all.

Theorem 2. Iffmg < a, then ¢:(1) <0 for allt > 1 and ¢t > 0. In particular for $ =1, ¢¢(2) <0
Jorallt > 1 and ¢ > 0 if and only if mg < a.

Proof: Now, we define the limits of (3}, 2:(¢), ¢1(¢) and ‘hi(z) as t — oo, if exist, by v(z)}, z(¢),
#(3) and h(z), respectively. Using Lemma 1(c), we obtain v;(i + m) — v;(¢) < mgq for all ¢ and 1,
from which we get for allt > 1 and i >0

¢:(3) = Blvi—1(E +m) —v—1(i)) —a < frng - a < 0. (5.1)

Thus, the former part of the theorem, which is also the sufficient condition for the latter part, is
proven. Now assume 8 = 1 and ¢;(1) < 0 for all ¢ > 1 and 7 > 0. Then, noting 2z(7) = v(%), we get
for:>1

1
v(1) = /0 max{v(), pu(t — 1,&) + ¢ + (1 — p)v{i — 1) }dF(£)
k(i) 1
= [ v@aP@© + [ (puti=1,6) +a8 + (1~ )i~ D)FE) (5.2)
which is rewritten

1 1
fh " v(i)dF(§) = A (i)(pu(z —1,8) + gt + (1 — pw(i — 1))dF(£). (5.3)
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Now suppose h(z) < 1. Then from Lemma 2(a), we obtain v(3) < pu(z —1,6) + ¢+ (1 —plu(i —1)
for k(i) < € < 1, which contradicts (5.3) because of F(w) < 1 for w < 1. Therefore, A(Z) must be

equal to 1. Thus, it follows from Lemmas 3(a) and 4 that

1= h(1) = (2() — 2(: — 1)) /q

=@+ —-v(@))/g, i21, (5.4)
which yields v( +m) — v(2) = mg for any 7. Thus, we have

(i) =v(i+m) —v(E) —a=mg—a <0, (5.5)

that is, mg <a. 1

6. Caseofm=1 ’.

Now suppose that only one bullet can be replenished each period. Then, the following property
can be said.
Theorem 3. When m =1, both ¢,(3} and hi(z) are always decreasing in i for any t > 1.
Proof: It is clear for m = 1 that ¢,(2) is decreasing in ¢ for any ¢ > 1 if and only if 2v;{2) — v, (7 —
1) —w(¢+1) > 0 for any t > 0 and £ > 1. From (2.6), it is true that

2v0(i) = wo(i = 1) —w(E+1)=(1-pp"lgp20 i2 (6.1)
accordingly for ¢ > 1,

221(8) ~21(i — 1) —z1(e + 1) : ‘
= 2max{Bvy(z), Bvo(i+1)—a} —max{Bug (i — 1), fvo{t) —a} —max{Bug(z+1), Buo(i+2)—a}

[ B(2vg(3-+1) —vp(d) —vo(i-+2)}, 0 < a < Bup(i+2) ~vp(i+1)),
2(Buo(i+1)—a)—(Bvo(d) —a)—Bup(+1), _
= { Blvo(i42)—vp(i+1)) £ a < Blwo(i+1)—wo(3)), (6.2)
2Bvo(2) — (Buo () —a)—Puo(i+1), Bluo(E+1)—uo(s)) < a < Blvo(s) —vo(i—1)),
[ BRuo(d) —vo(i—~1)~vo(i+1)), Blwo(t)—wo(i—1)) L a.

From (6.1) and (6.2), we get 221(z) —21(t — 1) — 21(¢ + 1) > 0 for any a and 7 > 1. Hence it follows
from Lemma 4 that k) (2) is decreasing in ¢ for any a. Now suppose 2z(2) —z (1 — 1) — (i +1) > 0,
so hy(7) is decreasing in 7 and h;(2) = (2:(1) — (3 — 1))/g. Accordingly, it follows from Lemma 5
that

20y(i) — (i~ 1) —w(i+1) 20, i>L (6.3)
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Hence we have fori > 1

22441(1) — 2131 (1 — 1) — 2 (2 + 1)
= 2max{Bv:(?), fv:(i+1)—a} —max{Buv: (i =1), Bvi(f) —a} —max{Bu; (i4+1), fv, (i4+2) ~a}

B(2v(i+1)—v, (1) — v, (+2)), 0 < a < fu(i+2)—ve(i+1)),
_ ) Blulitl)—uli))—a, Blui(i+2)~v:(i+1)) < a < Blui(i+1)—w.(3)), (6.4)
—B(u(i+1)—vi(i))+a, Blvi(i+1)—v: (1)) < a < B(vi(8)—ve(i~1}), '

B2vi (D) —ve(i—1)—ve(i+1)), Bv(i)—v(i—1)) < a.
From (6.3) and (6.4), we have :225.;.1(3') — 2¢41(3 — 1) — zg4.1(2 + 1) > 0 for any a. Thus by induction
in terms of ¢, we obtain 22;'(&) —z(i—1) —z(i+1) 2 0foranyt > 1,4 > 1and a > 0,
$0 hy(i) is decreasing in 4. On the:.f«_'other hand, since it is also verified in the above proof that
2v(2) —ve (2~ 1) — v (3+1) > 0 for a,ny t>0,7> 1and e > 0, it also follows that ¢;(¢) is decreasing
in:. [

The monotonicity of hy(7) in ¢ for any ¢ and a is characteristic to the case for m = 1, however,
this does not always hold true for m > 2. By the way, the property that ¢:(z) is decreasing in %
leads us to the conclusion that, for a given £, the critical point for replenishment in terms of « where
(i — 1) 2 0 > ¢(?) is at most one. Concretel-y speaking, if it is optimal to replenish m bullets
with 1 bullets in hand, then it is also optimal to replenish m bullets with j(< £) bullets in hand.

7. Case of m > 2 and Numerical Examples

Here we shall demonstrate an exarople that h(Z) is not always decreasing in 2 for m > 2. Let p > 0,

m = 2 and a = B(1 + p)pgp. Then, we get

21(0) = max{Buo(0), Bvo(2) - a} = fuo(2) — a = B(1 - p°)qp, ' (7.1)
z1(1) = max{Bug(1), fvo(3) — a} = Buo(1) = Bqp, (7.2)
21(2) = max{Bup(2), fro(4) — a} = fuo(2) = B(1 + p)gu. (7.3)

Accordingly we have
221(1) ~ 21(0) — 21(2) = =B(1 — plpgu < 0, (7.4)

which means hy(1) < 21(2) due to Lemma 3(d).

Below, we depict the results of several numerical examples where a discrete uniform distribution
function with 101 mass points equally spaced on [0, 1] is used.
(a) When m = 1, h,;(3) is decreasing in i even for @ > 0 (Figure 2(a)).

(b) The non-monotonicity of A;(#) in ¢ is shown in Figure 2(b,c,d}, which also lead us to the
conclusion that A;(7) is not always increasing in ¢. In [9], the monotonicity of h,() in ¢ has

been proven only for the case that it 1s always optimal not to replenish at all with 8 = 1.
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{¢) So far we have not investigated the relation of k(i) to parameters a, ¢ and r; it is quite
intractable to reveal them theoretically. Al of numerical examples we calculate show that
hi(?) is increasing in e and r and decreasing in ¢. Figure 2(e) is an example of the relation of
hi(3) to a. )

(d) Figure 2(f) tells us the fact that h;(7) is not always monotone in 8. We also get examples

where h;(2) is not monotone in m.

By the way, such a non-monotonicity of k;(¢) in ¢ for m > 2 may fit our intuition in the following
case where, for a certain 7, ¢¢(%) 2 0if ¢ < j orelse ¢;(7) < 0. First, suppose the hunter has j bullets
in hand. If it is decided not.to-sil_oot, then he needs not replenish m bullets at the period, or else
he must replenish them according tb‘-‘ the oppimal policy for replenishment, Therefore, his behavior
for shooting may become a little paé's'i‘ve, that is, hy(7) becomes a little high., Next, suppose he has
7 — 1 bullets. Then, his behavior may be more or less active since it is already decided to replenish
the bullets at the period whether he decides or not to shoot, so h{j — 1) becomes a little low.

On the other hand, let us consider the optimal policy for replacement. It has been clarified that
if m = 1, then the critical point for replenishment in terms of 4 is at most one. However, it has not

been verified that whether the above property holds for m > 2 or not,

B 70 JE B(i)

0.6 . 0.4

0.4 0.4
t=1
/ =2
/ =3
0.2 0.2]
" =20
0 0 7 1 0 0 70

(a) B=1.0,q=0.8,r=0.6,m=1,a=0.1 (b} B =1.0,q=0.8,r=0.6,m=2,a=0.2 (¢) B=1.0,g=0.8,r=0.6,m=4,2=0.4

hi) h(i) h(i}
0.8
0.6 o
0.6
a={.8
0.4 0.4 a=0.6
a=0.4 0.1
2
0 0.2 a={),2
a=0,14_
n:o-\‘
) 0 ! 0
{d) B=1.0,q=0.8,r=0.6,m=20,a=2.0 (e) B8 =1.0,4=0.8,r=0.6,m=2,t=5 (0 q=0.8,r=0.6,m=2,a=0.2

Figure 2 Numerical Examples
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8. Conclusion

We have considered a discrete-time sequential allocation problem with countable resources which

can be replenished each point in time, and the following conclusions are obtained:

(a) The necessary and sufficient condition for ¢;(z) > 0 for allt > 1 and ¢ > 0 is a = 0, for which
hi(2) is always decreasing in 2.

(b) If fmg < a, then ¢,(z) < 0 forallt > 1 and ¢ > 0, that is, it is optimal not to replenish at
all. In particular for # =1, ¢;(¢) €0 forallt > 1 and ¢ > 0 if and only if mqg £ a.

(c) If m = 1, then hs(i) is e_i.lWa.ys decreasing in 7 and the critical point for replenishment is at

most one, i.e., if i* such as $¢(i* — 1) > 0 > ¢(3*) exists, then it is unique.

(d) Ifm > 2, then k() is not alwiays decreasing in 7 as well as not always monotone in ¢.
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