No. 632

A Push/Relabel Framework for
Submodular Flows and Its Refinement
for 0-1 Submodular Flows

by

Satoru Fujishige and Xiaodong Zhang

June 1995

A Push/Relabel Framework for Submodular Flows
and Its Refinement for 0-1 Submodular Flows

Satoru Fujishige! and Xiaodong Zhang?

Juue 1995

Abstract We counsider the submodular flow problem of Edinonds and Giles.
A submodular flow is a flow in a network satisfying capacity constraints
aud flow-boundary constraints given in terms of the base polyliedron of
a submodular system. A cost scaling franiework is constructed by using
Z-optimality concept associated with dual variables of a flow, originally
cne to Tardos and Bertsckas. The framework is a generalization of Gold-
berg and Tarjan’s push/relabel algorithm for minimum-cost flows and also
a generalization of Fujishige and Zhang's algorithm for the submodular
intersection problem. Each phase of the cost scaling. called procedure Re-
fine, Improves a 2z-optimal submodular flow to an c-optimal submodular
flow. Furthermore. we devise a faster hybrid algorithm of procedure Refine
for the 0-1 submodular flow problem which is a natural generalization of
Fujishige and Zhang's algorithm for the independent assignment problem.
For a network with n vertices, m arcs and integer arc costs bounded by T,
an optimal 0-1 submodular flow can be found in O(/mn?log(nl')) time by
onr algorithm under oracles for the dependence function and the exchange
capacity of the given submodular system.

1. Introduction

In this paper we consider the submodular flow problem of J. Edmonds and R. Giles
[4] and construct a cost scaling framework for the problem as a generalization of
the algorithun for the minimunr-cost flow problem devised by A.V. Goldberg and R.
E. Tarjan [17]. Furthermore, we apply this framework to the 0-1 submodular flow
problem and give a Lyhrid-version algorithm for it. :

The submodular flow problem includes as special cases many combinatorial op-
timization problems such as the ordinary minimum-cost flow problem, directed cut
covering problem [19, 5], the orientation problem [3, 6], the dijoin problem [5, 7]
and the intersection problem of two submodular systems [3, 9] (also see [11]). Poly-
nomial and strongly polynomial time algorithms for the submodular flow problem

Institute of Socio-Economtic Planning. University of Tsukuba. Tsukuba, Ibaraki 305, Japan.
2Computer Science Program. University of Texas at Dallas. Richardson. Texas 75083-0688 USA.

have been presented in {2, 8, 12, 21, 23] (also see [11]). Efficient algorithms for 0-1
submodular flows were proposed by A. Frank [6] and H. N. Gabow [13]. Recently, a
cost-splitting algorithm for 0-1 submodular flows has also been given by M. Shigeno
and S. Iwata [20].

2. Definitions and Preliminaries

We give some definitions and basic preliminary results related to submodular systems
(also see [11]). Let 17 be a nonempty finite set and D be a collection of subsets of 1
which forms a distributive lattice with set union U and intersection N as the lattice
operations. join and mecet, i.e., for each X, ¥ € Dwe have YUY, XNY € D. Let
R be the set of reals and f: D — R be a submodular function on the distributive
l[attice D, ...

VX, Y eD: X))+ AY)> AN UY)+ (X NY). (2.1)

If 0, Ve D aud f{#h) = 0, we call the pair (D, f) a submodular system on 1.
Function f is called the rank function of (D, f).
Define a polyhedron B(f) by

B(f)={r|ereR", 2(V)= AV). VX € D: 2(X) < A(X)), (22)

where RV = {0 | vV = R}, 2(X) = T.cy 2(e) for cach X € D and 2(f) = 0.
We call B(f) the base polyhedron associated with submodular system (D, f). Also
a vector in the base polyhedron B(f) is called a base of (D, f).

For any base .r € B(f) and v € ¥ define

dep(r.e) =X v e X €D, «(X)= f(\)}. (2.3)

We call dop: B(f) x V7 — 2V the dependence function.
Directly from the definition of the dependence function, we have

Lemma 2.1: For a base + € B(f) and w, v, w € V', if u € dep(x,v) — {v} and
0 € dep(a, w) — {w}. then we have u € dep{a. w) — {w}. O

For any » € B(f). ¢ € Vand u € dep(x,) = {¢} the exchange capacity &(w, v, u)
is defined by

acvyu)y=min{f(X)—2(X)|reXNeD, u¢g X} (2.1)

For a nounegative a, we have v+ o\, —\,) € B(f) if and only it 0 < o < ¢{x, ¢, u),
wltere for any s € E \, € RY is the unit vector defined by \4(s) = 1 and \,(s') =0
for " € 17— {s}.
The following lenuna is obtained by a direct adaptation of the results shown in
[9] for polymatroids (see [11] for a detailed proof).
2

Lemma 2.2: For any . € B(f) let w;, v; (i = 1,2, q) be 2q distinet elements of
17 such thar
up € depla. ey} (i =1.2,--- . q), {2.5)
wp ¢ dep(ar.vy) (1<i<j<q). (2.6)

For any a; (¢ = 1.2.-++ g} satisfving 0 < «; < & u;) (i = 1,2,--+,q) define a

vector y € RY by
q

y=a+ > i\ =) (2.7)
i=1
Then.
y € B(f). (2.8)
|

Lemma 2.3 ([11, p. 119}): For an arbitrary @ € B(f). let v, ¢ € E. 0 < a <
cla, v u) and y € B(f) be such that

u € deplr), y=u+a(\,.— \u) (2.9)

Suppose that there exist w, s € V" such that

w & dep{r.s), w € deply, s). (2.10)

Theu we have
w € dep(r,s), w € depla, r). (2.11)
(]

Next, we introcuce a fundamental operation. called the contraction by a vector,
on a submodular systewr (D. f). For a submodular system (D, f) and a vector
+ € RY such that there exists a base = € B(f) satisfying r < z, define £, : 2" - R

by :
fAX)=min{f(Z)-2(Z-X)| X CZeD} (2.12)

for each X C V. The function f, 15 a submodnlar function on 2Y. We call the
submodular system (2Y,) the contraction of (D, f) by vector .. Define

B(f).={ylyeBlf) y>ur} (2.13)
Tlien we can show that B(f.) = B(f),. Therefore, we have

Lemma 2.4: For cach = € B{f,.). we have = — a2 > 0. O

Given a submodular system (D, f) on 17 and a weight fuuction v : V7 — R.
consitder a linear optimization problemn described as

(P}) Minimize > w(v)a{v) (2.14)
rel’
subject to o € B(f). (2.15)

Theorem 2.5 (see [11}): A base w € B(f)} is an optimal solution of Problem (P}
if and onlv if for each u, v € V" such that v € dep(x, u) we have w(u) > w{v). O

In our algorithms presented in the sequel we assume oracles for the dependence
function and the exchange capacity associated with the given submodular system.
Also, we asswe that f is an integer-valued function.

3. The Submodular Flow Problem and the Optimality Condition

Let G = (¥, A) be a directed graph with a vertex set ¥V (|V] = n) and an arc set 4
(jAl = m). Alsolet #: A — Z (the set of all integers) be an upper capacity function,
¢ A= Z be alower capacity fuuction and v @ 4 — Z be a cost function. Let
(D,) be a submodular system on 17 with an integer-valued rank function f such
that f(17) = (. Donoto the thus defined network by NN = (G = (V. A). ¢, &, v. (D, f).

Define é*v = {a | a € 4,0%a = v} and 6 v = {¢ | « € A,07a = v} for each
v € V7. where, 0Fa denotes the initial vertex (or tail) of an arc ¢ and 8-« denotes
the terminal vertex (or head) of «. Let v 1 A — R be a flow in A, The function
d7: 1V —= R defined by

> owla)= >0 pla) (vel) (3.16)

acste agé~ v

15 called the boundary of o
Now, the submodular ﬂow problem of Edmonds and Giles [4] is described as
follows.

(P,) Minimize Y 3(a)p{a) (3.17)
ac.d

subject to (S () (n (0 € A). (3.18)

&2 € B(f). (3.19)

A flow ¢ satisfying (3.18) aud (3.19) is called a submodular flow in N'. An optirnal
submodular flow is an oprimal solution o of Problem (P,). When ¢ =1 (ie., &(a) =
L(e € 4)), ¢ =0 (ie. ¢la) = 0 (a € 4)) and f is an integer-valued function,
Problem (P,) is called a -1 submodular flow problem.

Since the capacity functions take on finite real values, the set of all the feasible
solutions of Problem (P,) is a hounded polyvhedron. It follows that there exists an
optimal solution of Problem (P,) if the problem is feasible.

We adopt a theorem in [11]. which shows an optimality condition for submodular
flows, Any function p: 17— R is called a potential.

Theorem 3.1 ([11. p. 136}): A submodular flow o : A — R for Problem (P,) is
optimal if and ouly if there exists a potential p : 7 — R such that. defining v, -
A—=R by

Ypla) = (a) + p(dFa) — p(d~a) (a € A), (3.20)

we have for each a € A
@) > 0= p(a} = (), : (3.21)
ple) <0 = o(a) = &(a) (3.22)

and such that the houndary 8¢ : V' — R is a maximum-weight base of B(f) with
respect to the weight function p. ie..

Z ple)de(e) = 111&1.}:{2 pleye(e) | v € B(f)}. (3.23)
re}’ eV ’
|

Let A = (¢0,2) be a pair of a flow ¢ : 4 — R, satisfying (3.18). and a hase
2 € B(f). We call such A = (0, 2) a submodular pseudoflow. Note that a sub-
modular pseudoflow A = (2, 2) gives a submodular flow ¢ if d,2 = z. We define
the auwiliary network Ny = (Ga = (1. 44), ca.va) associated with a submodular
pseudoflow A = (2, 7) as follows. G4 is a directed graph with vertex set ¥~ and arce
set Ay defined by

4y = 4,UBLUC,, (3.24)
A = {ala€ d pla) <)}, (3.25)
B, = {i|ned pa)>cla)} (4:areorientation of a), (3.26)
C. = {(w.e)|u,velV, wedep(z,r)—{r}}. (3.27)

The capacity function ¢ : Ay — R is given by
cla) = (a) (o€ A.)
cala) =4 (@) — (@) (n€ B, @ (€) :arcorientation of a) {3.28)
¢z, e u) (= (u,v)eC.)
and 74 : Ay = R is the length function given by
va) (a € Ay '
walay =< —{a) (e € B,, a{€ 4): areorientation of «) (3.29)
0 {a = (u. vy e C.).

Theorem 3.2 ([11. p. 137]): A submodular flow ¢ : A — R for Problem (Py) is
optimal if and oulyv if there exists no direcred cvele of negative length. relative to
the length function 4 5. in the auxiliary network Na = (Ga = (V, 4a), ca,ya} where
A= (p2) with 2 = dp. 0O

Using tlhie auxiliary network My = (Ga = (V. 44a).¢a,7a) and Lemma 2.5, we
can rewrite the optimality condition given hy Theorem 3.1 as follows.

Theorem 3.3: A submodular flow ¢ : A — R for Problem (P,) is optimal if and
only if there exists a potential p: V' — R such that, defining ya,, : Aa — R by

yapla) = sala) +p(0%a) — p(d~a) (a € Aa). (3.30)

we have qa,(0) 2 0 for cach a € A, where A = (0, 2) with 2 = Jy.)

For any positive real number ¢ we define the s-optimality for a submodular pseud-
oflow A = (v, z). This concept is fundamental for our cost scaling algorithm.

Definition 3.4: A submodular psendoflow A = (p,2) is said to be ¢-optimal if
there exists a potential p: V" — R such that v5 ,{a) > —< for all n € A4, For such
a potential p we say that A = (2, z) Is s-optimal with respect to potential p. O

Put I' = maxee, |5{a)]. Then, we have

Lemma 3.5: Anyv submodular pseudoflow A = (y, =) is c-optimal for & > T' and
any s-optimal submodular flow with ¢ < 1/n is an optimal submodular flow.

Proof: The first part of the lemma can be verified by taking p = 0. For the
second part of the lenuna, we see that if ¢ < 1/n, then there is no negative directed
cyele in My = (Ga = (1744),ca.va) for A = (i, 2), since the length Toer yale) =
Loaee 1apla) of each eyele ¢ is an integer and is greater than or equal to —zn > —1.
Heuce, the optimality of the submodular flow follows from Theorem 3.2. 0

4. A Cost Scaling Framework

I owr cost sealing algorithm we execute a procedure called Refine which converts
a 2z-optimal submodular flow to an s-optimal submodular pscudoflow and then
converts it to an s-optimal submodular flow. Two basic operations called Relabel
and Push arve performed in procedure Refine. Given a submodular pseudoflow A =
{, 2) and the associated anxiliary network AMa = (Ga = (V, Aa), ca.7a), suppose

that we have a potential p : 17 — R such that A is z-optimal with respect to p. For
eaclh 0 € 17 let e(v) = z{v) — dp2(v), which is called the ezcess on v. If e{v) > 0.
then o is called an active vertew.

For an z-optimal submodular psecudoflow A = (2, 2) with respect to a potential
pooan are a € Ay is called an admissible are in Na = (Ga = (V, Ax) ca,ya) if
—2 < qap(a) < 0. Note that in our algorithm given below p(v)/z for any v € V' is
alwayvs an integer, and hence for cach @ € C. a is an adinissible arc if and only if
Af;\.p(”) =&

The relabeling operation on ¢ € 1V is defined as follows.

Relabel(r): Applicability: ¢ € V7 and for any a € A, with ¥ = v we have
ﬂhﬁ.,u(“) 2 0:
Action: p(v) « plr) —:.

The push operations Pushl{«) and Push2(a) for « € A4 are defined as follows.
Here, @ denotes a veorientation of «.

Push1(a): Applicability: @« € A, U B, e(d%a) > 0 and va () < 0:
Action:

If a € A., then («)
It « € B.. then (@)

— () + min{e(dFa), cal{a)).

— (@) —min(e(dTa), eala)) for @ € A.
Push2(«): Applicability: « € ., e(d%a) > 0 and ya ,{a) = —&;
Action: = 2 4+ a{\y-q ~ \o+a) Where o = min(e(d%a), eafa)).

We can casily see the following.

Lemma 4.1: If v is an active vertex. then cither a push for some a € Ay with
OFa = v or a relabel of v is applicable. a

An algorithm for the minimun-cost submodular flow problem is described as fol-
lows. The integer L given in the input can be any positive integer at the moment
and will be appropriately determined in the next section.

Algorithm Submodular Flow

Input: N = (G = (V.). & c.7. (D, f)), a positive integer L, a potential p = 0 and
z=T =max{|y(«)] | « € A}.

Output: An optimal submodular flow ¢ in .

Step 1: While ¢ > 1/n, put z + /2 and perform procedure Refine(e, L, p).

(End)

-1

Procedure Refine(z. L. p). _

Input: =, L, and p such that there exists a 2:z-optimal submodular flow ¢ with
respect to p.

Output: A potential p and an z-optimal submodular flow ¢ with respect to p.
Step 0: For the current p. find an integer vector zp in B{f) such that

> ple)zp(r) = max Z' ple)="(e). (4.31)

rel”

Put : « zp. For cach « € A4, if y,{a) < 0 then put

la) — &a),

otlierwise put

la) —cla).

Put A « (42, 2).

Step 1: While there exists an active vertex ¢ € ¥ (satisfying e(v) > 0) that has
been relabeled less than L times, choose one such vertex v and do the following
(1-1)~(1-3) (if there exists no such vertex, then the procedure terminates and let
the current o2, £ aud p be the output):

(1-1) Applicability: For any « € Ay with 0%« = ¢ we have 4 ,(a) > 0;

plu) & plv) — =,

(1-2) Applicability: For some a € A, U B, with d%a = ¢ we have ya,,(a) < 0;
Perform Pushl(a). -

(1-3) Applicability: For some ¢ € C'; with 0Fa = v we have v, ,(a) = —¢;

Perforin Push2(n).

(End)

It should be noted that we can easily find a minimun-weight hase 2 with respect
to the weight function p by a greedy algorithin (see [11]).
We have the following lemmas.

Lemma 4.2: The submodular pseudoflow A obtained in Step 0 of procedure Refine
is O-optimal with respect to the potential in the input,

Proof: The fact that ya,(a) > 0 for each @ € A, U B, directly follows from the
definition of w. Also we have ya,,(@) = 0 for each « € C'. from Lemma 2.5. a
Lemma 4.3: The relabeling operation in procedure Refine keeps the c-optimality

of A = (¢, 2) with respect to the updated potential p.

Proof: Immediate from the definition of a relabel operation.)

Lemma 4.4: Doth fwo tvpes of push operations keep N = (0, 2) a submodular
pseudoflow and the s-optimality of N = (. 2) with respect to the current potential

.

Proof: Since the potential p is not changed, it is enough to prove that ya p(a) > —¢
for any new are generated by a push.

Suppose @’ is a new are with §%¢’ = w and 8~ = s after a push operation on
an admissible arc « € (', with 0%a = v and 9« = . By Lemma 2.3 we lLave
(i) « = s or there exists an arc) € C. with 8%, = v and &~ = 5 and
(ii) v = w or there exists an arc ay € C. with %ay = w and d~ay = v.

From (i) and (ii} we have p(u) — p(s} 2 —¢ and p(w) — p(v) > —&, respectively.
Hence,

plwy—=p(s)y 2 ple)—pls)y—z=plu)+z—p{s)—z > —=. (4.32)

It follows that va ,(w,s) > —¢

Furthermore, a push on an achnicseible arc a € A U B only produces a new arc
@, a reorientation of a, for which we have ')A(n) -i—p(() a) - p(d%a) > 0.

This completes the proof. a

Lemma 4.5: At the end of procedure Refine. if there exists no active vertex. then
@ in the output is an s-optimal submodular flow with respect to the then obtained
potential p.

Proof: The present lemma follows from Lemunas 4.3 and 4.4 and the fact that
Jp = z,sice D 2 2 (due toe(v) 0 (v € 1)) and (1) = f{V) = (V)= 0.0

Lemma 4.6: If for a current submodular pseudoflow A = (2, =) in procedure Refine
there exists v € V osuch that e(v) > 0 and {a |« € Aa,0%a = v} = 0. then Problem
(Ps) Is infeasible.

Proof: Under the assumption of the prosont lemma we (an casily show that =(v) 1s
equal to the minimum valwe {i.e., f(V)— f(37 = {v}))) for all hases = € B(f)
and that J2{v) is cqual to the maximum v dluo (i.e., .(6+1') —c_(é v)) of &'(v) for all
flows o' satisfving (3.18). Therefore, Problem (P,) is infeasible since z(v¢) > dp(v).

[

In the next section the L in the input will be appropriately given so that at the
cud of procedure Refine there exists no active vertex.

5. The Number of Relabeling Operations

Our cost scaling algorithm repeatedly performs procedure Refine. Obviously, the
iteration number of procedure Refine is O(log(nT)), without considering the validity
of the algoritlim. In this scction we give an appropriate value of L that bounds the
number of relabelings on each vertex in ¥ dwring au execution of procedure Refine
and that validates the whole algorithm.

We first give a lemna and its covollary where f(17) = 0 is not assumed. In fact.
the following lemma is wmeaningful only if f{17) > 0.
Lemma 5.1: For a submodular system (D, f) on V. let 2|, =3 be nonnegative bases

in B(f). Suppose that for a potential p : ¥V — R and a real ¢ > 0 we have
plu) —=ple) > —c forany v, e € ¥V owithu € dep(zy, v) = {v}. Then.

> pl)(z(e) = 2(e)) = —2f(V). (5.33)
rel’
Proof: Define a bipartite graph Gy = (V.17 4.) where V7 is a copy of V7 and the
are set is given by 4. = {{w. ') | w.v € Viu € dep(z,v)}. The upper capacities

of the ares in A, are assumed to be infinity and the lower capacities of the arcs
it A are assumed to be zero. For any subset U of Vet W= {w |w eV, v' €
U (w,d') € AL) Tt follows from the definition of A, and W that (W) = f(1V)
and U7 C . Hence, {l) < (W) < fII17) = (7). Consequently, from a
theorem in [16], there exists a function g : A,, — Ry such that

glétu) =z 1(u) (vel), glé~ vy = »(eh)y (W eV, (5.34)
where
§tu={{u,)| €V, At (5.35)
b~ ={(u) | uel, () € _4:,} (5.36)
and 2(¢') = () for ¢ ET"

Define p(v)-=1(:') for ¢/ € 17, Then,
2opledane) —a(e)) =3 aleplu) = 3 e)p()
uel’

nel’ el
= 3 g6 u)plu) = 3 g(67 ¢ p(e')
uel’ el
= 3 (p0Fa) — pld=a))gla)
agAy,
> =z). gla)
agdy
= — Z = (u)
ugl’
= —2 f(17). (5.37)

10

From Lemma 5.1 we can easily show the following,

Corollary 5.2: For any submodular system (D, f) on V. let z1,2 € B(f) and
d € RY De such that z1(e) + d(e) > 0 and z5(v) + d{v) > 0 for all v € V7. Suppose
that for a potential p: V" — R and a real £ > 0 we have p(u) — p(v) > —¢ for any
wor € Vowith w € dep(zy,) — {¢}. Then.

> p(e)(E(e) = za(v)) 2 = (F(V) + d(17)). (5.38)

rel’
0

Let A" = (/. 2" = 0,7) be a 2z-optimal subinodular flow with respect to pf and
A = (. 2) be an z-optimal submodular pseudoflow with respect to p, where ' is the
input of an execution of procedure Refine and A = (i,) and p are, respectively, the
current submodular pseudoflow and the corresponding potential in the execution of
procedure Refine. Define

ST = {veV] z{e)=d2(r) >0} (5.39)
57 = {veV | z(v) = de(v) <0}, (5.40)
Er = {{vr)y e A, [¢(u) > (v, v)}

U{(u,v) € B, | gl u) > (e u)}, (5.41)
E. = {{u.v)e Ay | ou,v) > (u,0)}

U{(w,v) € B | (o) > ol u)}. (5.42)

Note that p'{¢) = p(v) for v € §7 since we only relabel active vertices. Recall that
in tle following equations @ denotes the reorientation of an arc . Now,

2 W0 a) = po~a)(¢'(a) = p(a)) + 3> (p(@Fa) = pl&~a))(p(a) — (@)

agfipn.d . ac by np.

= — > p(e)(9p(v) = 05'(1))

rel’

== 3 p(e)(Dp(e) =2 pe)=(e) = (o))

Therefore, we have

Do qapla)(@) = la)+ DD qaula)e@) = F(@)

acFand, aclk NP,

11

= 3 @) =@+ 3 aale)e@) — S(@)

ac N, aC kLNl .
+ > {(pl@Fa) = p(0”a)) (¥ (@) — la))
[(f -y DN g I W
+ . (p0Ta) = p(0”a)((7) — (@)
a€lgnii .
= 2 @@ —ga))+ 3 yala)(#(a@) - (@)
aellyind a€ BN,
= 2 peNd(e) = 2(v)) = 30 ple)d(r) — = (v))
rest reS-
= > ple)((e) = (). : (5.44)
rel’

On the other hand, we have

Yo WOt = (o a))(wla) — L))+ S (0T a) = @ a))(E) — (@)

(lEf‘.‘-ﬂ.-lvrf (JEE_ﬂB '

Hewuee, we have

S qalae@ =A@+ Y qap(@) — ¢(@)

a€ Ii'..ﬂ‘-'l‘_,r ael_N B‘:f
= > galadpla) =S+ D a(a)(@(n) — (@)
aEF-NA aeBE_NB
+ > (1)'(0+(f-)“1)'(9_”-))(9(0-) —¢/(a))
agl_ N
+ > (,,(a‘r(,)_p(a a))('(@) = (@)
ag_Ni3
= > gafa)ele) =)+ >0 qala)(a@) — o(a))
ag o a€ N1
- > M) - - > VI — 0(0v))
reSTt reES™
= 2oV () = 2, (5.46)
retl’

12

From: {5.44) and Corollary 3.2,

>, walaF (@) = pla))+ D qalaH(@) = (@)

a€ N aceEy.NBD .
= 20 o)D) = (e)) = D ple)(@(v) — (v))
vESE ‘L'ES“
= Z 'I.l.p(”)('*r?l(”') - Lr?(ﬂ)) + Z nl-.l.p((")(‘r?(ﬁ) - P’(ﬁ))
a€fipan: . agELNB .
+ 2 ple)=(e) = () |
rel’
2 —d(V)—z{ > (Jla)=-pla)+ X (@) ~J(@)} (547)
nELLMA L acl nNB,

where d is a vector in RV such that = +d > 0 and ' + d > 0. Note that f(V7) = 0.
Also, from (5.46) and Corollary 5.2,

> qala)ela) = Jla)) + S vada)((@) — (@)

uGE..ﬂ.—l‘:f agll_NB
~ > M) - — > Ple)E(e) — dp(v))
ces+ e
= > aplada(a) =F@)+ Y el (@) — (@)
G€L-NA agE_NA
+ 3 PN () = ()
rel”
2 =2ed(Vy—2:{ 50 (ple)= (@) + Y (@)= (@)} .(5.48)
agE_nA A€E_NB .

Putting ¢ = max,ea{|¢(a)| + je(e)]) and adding the above two inequalities (5.47)
and (5.48). we have

SO e) = pleN=(e) = 82(r)) < 32d(17) + BemC, (5.49)

ve s+
where note that p(v) = p(e) for v € §~ and
ENAy={alec ELNB.}. E_NBy={alaeE.NA.} (5.50)
Jar(a) =7al) (o€ Ay). (5.51)

If = anrd 2 are integer veetors and procedure Refine terminates when each active
vertex is relabeled L (awn integer) times, then from (5.49) we have

S La< Y ey = pleN(z(e) = d(0)) < 3:2d(V) + GzmC. (5.52)

res+ resS+

Hence. if §* # §, then
L < (3d(V") 4+ 6mC)/|SH|. (5.53)

13

Theorem 5.3: If we choose L such that L > 3d{17) + 6mC and if each vertex is
relabeled at most L times. then procedure Refine terminates with (2,) such that

=02

‘Proof: It follows from the assumption and (3.53) that S* =@, ie., : = @ for the
output A = (. 2). _ 0O

Define a vector 1y € RY by ay(e) = —C|éte U ée] for each ¢ € 17, If Problem
(P,) has a feasible solution 2, then 2y < 8,0 € B(f). Let (2", f,,) be the contraction
of (D. f) by the vector.ry. Replacing f by £, in Problem (P,) does not change the set
of all feasible submodular flows. For given =, =’ € B(f,,} as above, we have :—ag > 0
and =’ —ry > 0 from Lemma 2.4. Then, since —rg(V) = Tper- Cl6TeUé™ 2| = 2mC,
putting o = —.ry, we have from (5.49)

D) = ple))(=(e) = B2(v)) € 12emC, (5.

reS+

st

4)

Theorem 5.4: If we take L = 12mC + 1 and relabel each vertex at most L times.

then procedure Refine terminates with (o, z) such that = = .
Proof: Put d = —uy, using gy defined above. The present theorem follows from
Theorem 5.3. m)

For the estimation of the number of pushes, we have ohtained an implementation
of procedure Refine which performs at most O(n*m (') push operations (see (22]),
but we do not get into its detail here. In the next section we shall consider an
efficient implementation of it for 0-1 submodular flows.

6. A Refinement for 0-1 Submodular Flows

In this section, for the 0-1 submodular flow problem we give a refinement of our
cost scaling algorithm Dy introducing a label for cach vertex in 7. We use a hybrid
version for procednre Refine, which consists of two subprocedures: PushRelabel and
SuccessiveShortestPatl.

From now o we assuine without loss of generality that the vertex set ¥ is indexed
as Vo= {o, rg - o0y} and that the nnderlying graph G = (17, 4) does not have any
sclfloops or any two arcs a, o’ € A such that {9%a,07a} = {07, 07 a'}. The latter
assumption ensures that for cach distinet two vertices vy, v there exist at most two
arcs from r; to ¢; in the auxiliary graph associated with any submodular pseudoflow
A = (@, 2). possibly one from A U B, and one from C.. For couvenience, we write
a = (u,v) for an arc « to mean that « is the initial vertex of the arc ¢ and v is the
terminal vertex of «.

Foreachi € {1.2.---, n} we have alabel #{/) that takes on values in {1,2,---, n}.

14

Algorithm 0-1 Submodular Flow

Input: N = (G = (174).5.(D. f)). a positive integer L, a potential p = 0 and
s=T =max{|7(a)|[| « € 4}.

Output: Au optimal 0-1 submodular flow ¢ in A

Step 1: While : > 1/n. put ¢ « /4, perform procedure Refine(s, L, p) and put

(Eud)

Ty

The input L can be any positive integer at the moment and will be optimized
later.

Procedure Refine(z. L.p}

Input: A, L. z. and p sucl that there exists a 4zs-optimal 0-1 submodular flow with
respect top. and v(i) =1 (i =1,2,---.n).

OQutput: A potential p and a 2z-optimal 0-1 submodular flow A = (2, 2) of N with
respect to p.

Step 1: Perform procedure PushRelabel(z, L, p, v).

Step 2: Perform procedure SuceessiveShortestPathic, p, A = (. 2)).

(End)

We first consider procedure PushRelabel for 0-1 submocdular flows.

Procedure PushRelabel(z, L, p,).

Input: =, L. and p such that there exists a 4z-optimal 0-1 submodular flow ¢ with
respect to p, aud a label v,

Output: A potential p and an z-optimal 0-1 submodular pseudoflow A = (2, 2)
with respect to p.

Step 0: For the enrrent p, find an integral vector zy in B(f) such that

Y ple)zoley = max S ple)z'(v). (6.

et HeBS) 57

it
Ut
—

Put =« zg. For each @ € 4, if 7,(a) < 0 then put

Sla) — 1,

otherwise put

Sla) « 0.

Put A — (2, 2).

Step 1: If there exists no active vertex relabeled less than L times, then output the
current poteatial p, -optimal submodular pseudoflow A = (2, 2) with respect to p
and label 7 and return to procedure Refine. Otlierwise, let o; be an active vertex
relabeled less than L times.

Step 2:

(2-1) If there exists an arc 0 € A4 such that « = (v;, v} and apl@) <0, then
perform Pushl{a) or Push2(a) according as ¢ € A, U B, or a € C,, and go to Step
1.
(2-2) If there exists 1o arc @ € Ay such that « = (v;, v,) or if for each such arc «
we have ya () 2 0. then

(2-2a) if v(i) < n. then put v(i) — v(i) + 1 and go to Step 1:

(2-2Db) if v(7) = n, then put (i) « 1 and p(e;) « p(e;) — 2 and go to Step 1.
(End)

Note that the greedy algorithm finds an integral =y satisfying (6.55). Also note
that at the end of Step 0, A = (i, 2) is a 0-optimal submodular pseudoflow with
respect to the current potential p and that during procedure PushRelabel the current
submodular pseudoflow A is always s-optimal with respect to the current potential

D

Lemma 6.1: Throughout the algorithm the following property (%) is maintained:
(%) For any vertex v; € V7 aud any arc a € Ax with a = (v;,v;) satisfving j < »{i)
for the current lahel (i) we have ya p{n) > 0.

Proof: Suppose that currently () holds and that the next basic operation is a
relabeling operation for a vertex u;. This operation does not generate any new arc.
Denote the current potential by p' and the one after the operation by p. Note that
Plw) 2 plw) (v € V7). For oy, the current label (7) is made equal to 1. Furthermore,
for any other label v(/) (j #) and auy arc @ € Ax such that ¢ = (vj,14) and
k< w{j) we have qa(a) + p/(0%a) — p(87a) 2 0, p{8Fa) = P{OFa) (= P'(v;)) and
P07 a) < p(07a). Hence. () holds after the relabeling operation.

Next, suppose that currently (#) holds and that the next basic operation is a
push for an arc a such that ¢ = (¢;, v;) with j = »(i). Note that potential p is not
changed by the push. Therefore, it suffices to show that after the push operation
any new arc & = (ep, ;) with /< p(¢) satisfies ya (@) + p(0*a) — p{0~a) > 0
wlhere -\ is the submodular pseudofiow obtained after the push on «. We first prove
this for the case when « € .. Suppose, on the coutrary, that some such new arc
= (vp,vp) with j7 < p(i') satisfies

plow) — plep) = —=. (6.56)
We show that (6.56) leads us to a contradiction. Recall that « = (v, ;) and

a = (vp,0p). From Lemma 2.3, before the push on are a = {(v;, ;) we have

(1) vi = vp or there exists an arc in C. front v; to vy and

(1) ¢y = vir or there exists an arc in € from vy to ¢
Therefore,
ple) = plegy 2 =2, ples) = ples) = =2, pled) = plog) = =20 pleg) = plog) = —=.

16

Note that the last equation in (6.57) is (6.56). Since from (6.57)
plui) = plep) — e < pleg) = pley) — & < plex). (6.58)

we have
-ple) = plep) = —s0 ples) = pej) = =2, (6.59)

It follows from (6.59) that
(i) 7 # vjr and henee there is an are ¢ € C, with ¢ = (v, vp),
(i) ¢j # vy and hence there is an are az € C, with az = (v, 05).
From the induection Lypothesis, (1) implies that j < j/, whereas (ii} implies that
J' L josince j' £ w(d’) and #(') < j by the induction hypothesis. Hence, we have
J = j ie. vj = vj. a contradiction.

For the case when « € A, U B, the only new arc & is a reorientation of «. Then
7;\',;:(&) = _7$.;)((’) > 0. U

In the above proof of Lemma 6.1 we have also shown the following.

Lemma 6.2: After a push operation, for any new are a = (o, vp) with ya(a) <0
we have j > v(i). O

As in Golberg and Tarjan [17] we define saturating and nonsaturating pushes as
follows.

Definition 6.3: A pusl on an arc @ € A with « = (v, @) is called a saturating
1 o
push it e(v) > cala). e, a = (v, w) satisfies one of the following two conditions:

(a) e € AU B,
(b) a € C. and e(v) > cala).

Here, recall that we are dealing with 0-1 submodular pseudoflows, so that a push
on auy arc n € A, U I, is saturating.

Definition 6.4: A push on (v, w) € Aa is called a nonsaturating push if it is not
saturating (L.e., o € C, with ¢ = (v, w0) and e(e) < ca{a)).

Lemma 6.5: The number of saturating push operations is at most 2u>L.

Proof: By asaturating push on an arc a such that a = (v, 0y;y) the arce @ disappears
from the current anxiliary graph and a possible new are o' = (v, ¢ Gy with v, ,(e") <0
we have j > v(i) for the current label #(7) due to Lemma 6.2, From Lenunas 6.1 and
0.2 we sce that between two successive relabeling operations on ¢; there are at most
2n saturating pushes on ares going out from ;. So the total number of saturating

17

pushes on arcs going out from ¢; (+ = 1,2,-+- . n) is at most 2nL. This proves the
lemma. a

For the estimation of the number of nonsaturating pushes, we define two subsets
of " for given A = (o, 2) and p by

Df ={r|3aeC.:da= v, p(0ta)— p(da) = =}, (6.60)

P
and
ap={v3ee .10 a= v, p(0Fa) — p(8~a) = —¢}. (6.61)

Lemma 6.6: If a submodular pseudoflow \ = (o,) is s-optimal with respect to
poteatial p. then we have DY N D3 , = 0.

Proof: Suppose on the contrary that there exists a vertex v & Dz_p NDg, It
follows that there exist two ares), a» € C. such that

Ota, = v, p(O0tay) — pl0~a)) = —e, (6.62)
and

O ay = v, p(0Fay) — p(8~ ay) = —=. (6.63)

From Lemma 2.1 and equations {6.62)~{0.63) there is ant arc az € C. such that a3 =
(% aa, 07 ay) with p{dFay)—p(0~ay) = p(OFTay)—p(~as)+p(0Fa)= p(0ay) = —2-=.
This contradicts the z-optimality of A. O

Lemma 6.7: The munber of nonsaturating pushes is at most (n — 1)nL +mL.

Proof: Let us deunote by 4%, the number of active vertices in DL,. e show
that a nonsaturating push reduce df , by at least one. Let a nonsaturating push
be performed on an arc (u,v) € C.. After the push, vertex u becomes inactive,
Suppose that the push has introduced a new are (w, s) satisfying p(w) — p(s) = —z.
In the proof of Lemma 6.1. we have shown that (w,) € C. and plw) — plv) = —=
before the push. This implies that w € DK'P before the push. That is, a push on an
arc in ', does not add auy new vertex to DL, (whether it is a saturating push or
not).

Ou the other hand, cach push on an ave in A, U B, may increase df , by at
most one. Therefore, between two successive relabeling operations, the number of
nounsaturating pushes is not greater than n — 1 ((IE_P < = 1) plus the number of
pusltes on arcs in 4. U B in the same period.

Consequently, the total munber of nonsaturating pushes during the execution of
procedure Refine is at most #(» — 1)L plus the total wumber of pushes on ares in
A UDB; in procedure Refine. The latter number is at most L, which can be shown

18

by an argument similar to the proof of Lemma 6.3, where recall that a push on an
are in A, U B, is saturating. 0

Starting with an z-optimal submodular psendoflow and the corresponding poten-
tial p at the end of procedure PushRelabel, we perforin procedure SuccessiveShort-
estPath described below. We get a 2:-optimal submodular flow at the termination
of proceditre SuccessiveShortestPath. In procedure SuccessiveShortestPath, the cost
function ~ and the potential p obtained at the end of procechwe PushRelabel are
modified into ¥ and 7 such that the initial submodular pseudoflow in procedure
SuccessiveShortestPath is 0-optimal with respect to § and 5. Through successive
shortest path augmentation steps, the given submodular pseudoflow is transformed
into a submodular flow.

Before describing procedure SuccessiveShortestPath we show the following.

Lemma 6.8: Let A\ = (2, 2) be z-optimal with respect to potential p and cost 5
Then. N = (2. 1) is O-optimal with respect to potential p and cost 5 given by

) = { ple)+z for v € DX (6.64)

ple) for v ¢ DA »
for ecach v € V7. and

<o) max{p(0~a) — pOta).y(a)} if o(a) =0 <
i(a) = { min{p(d~a) — p(@a), —y(a}} ifgla)=1 (6.65)

for each a € A.
Furthermore. defining % by 5(a) = |§(a)/z]e for « € A (|] is the largest integer
not exceeding x). then A = (2, ,) is also 0-optimal with respect to potential p and

cost 7.

Proof: For each « € €. with p{0%a) — p(0~a) = —:z. we have 0%« € D} » and
0~a ¢ DX . Tt follows that j(0%a) — p(O~a) = p(O0Fa) -+ — p(d~a) = 0 for c:ucll a.

For each a € C', with p{dTa) ~ p(0~a) = 0. we have by Lemuma 2.1 that if 8¢ €
D} . then d*a € D+ T this case p(dta)~p(0~a) = p(dTa)+z—(p(d~a)+e) = 0.
If 0 « ¢ DX . then p(0+n) — O a) > p(dTa) — p(d~a) = 0.

For cach & € C, with p(0*a) — p(8~a) 2 £, we have p(dFa) — pI~a) > p(dFa) —
MO~ a) > pldFa) — p(d~a)— =z > 0.

Therefore. for any « € . we have j(d%a) - p(0~a) > 0.

For cach @ € A (¢(a) = 0) we have

a(a) + poTay — pd~a)
= max {0~ a) — HITa), y(a)} + HOFa) — (I a)
> 0. (6.6G)

19

For cach n € B (p(a) = 1) we have

Fala) + pO%a) — pld~a)

= —3(a) 4+ plo a)—p(c’)*n)

= —wmin{p(d~a) — pd7a). —(a)} + o~ a) — p(d*a)

> 0. . (6.67)

For the second part of this lemma, we note that the relabeling operations keep
p(e}/z integral for cach ¢ € V7. This is also true for j. For each a € A, (¢(a) = 0)
we have 4(a) = 4(a) when

max{jH(d~a) — pd%a),y(a)} = P~ a) — p(dTa). (6.68)

If we have

wax{p(d~a} — p(dFa). A (a)} = 5(a), (6.69)
then from (6.66) we have
Fala) +p(da) = B0~ a)

(a)/e)e + p(OTa) — O a)
(F{e) + p(8Ta) — plo~a)))z)z

Il

(
3
U
0.

> (6.70)
Therefore, for cach @ € A (¢{a) = 0) we have
Fala) + p(0Fa) — pd~a) > 0. (6.71)
Similaily, for each « € B, (p(@) = 1) we have
Fala) + p(@Fa) — plo~a) > 0. (6.72)
O

Procedure SuccessiveShortestPath(s, p, A)
Input: A potential p and an z-optimal submodular pseudoflow A = (¢, z) with
respect to p.
Output: A potential p and a 2:-optimal submodular flow A with respect to p.
Step 1: Put

o) = { plo)+= for v € DY (6.73)

plv) for ¢ ¢ DA »

for cacl v € V. and compute 3{a) for cach « € A from ¥ as defined i1 Lemma 6.8.
i }
Similarly as (3.29) we define 44 : 4y — R in tenos of 4 instead of 4.

20

Step 2: For each a € Ay let {a) = Fa(a) + p(d1e) — p(d~a) he the length of arc
a. For ecach v € 17 let p{e} be the length of a shortest path from the vertex set

St = {v eV | z(e) > ()} to vertex v in V. (Here, for simplicity we assuine
that all p(v) (¢ € 17) are well defined and take on finite values.) If there exists no
vertex in §7 = {e € 17| ={v) < dy(v)} which is reachable from S*, stop (there is

no feasible submodular flow tu A7), Otherwise go to Step 3.

Step 3: Fiud a shortest directed path P in My from ST to S~ anud let w € S~
be the terminal vertex of 0 if more than one such path exists, choose one which
consists of the fewest nmumber of arcs. Denote the arc set of P by 4p. Put

1 if a € ."-lp
Ha) =< 0 ifaedp (6.74)
wa) otherwise

for each @ € A. Also, put

=1

[l [

o Z (\(’?‘a - \(')"'cz) (6

and p— H+ p.
Step 4: If St =, then put p «— p and stop. Otherwise go to Step 2.
(End)

Note that at the end of Step 3 p(v)/z is still an integer for any v € V. The rest
of this section is devoted to the proof of the validity of procedure SuccessiveShort-
estPath. The argument is similar to that of M. Irt and N. Tomizawa (18] {also see
[11. Section 5.3]). It should also be noted that the validity of the infeasibility check
in Step 2 can he shown by a standard proof techunique as in [11, Section 5.3].

Lemma 6.9: In Step 2. A = (. 2) is a 0-optimal submodular psendofiow with
respect to the poteutial p+ p and cost function 3.

Proof: By the definition of j we have p(d~a) < p(dta) +1{a) for cach ¢ € Aa, ie.,
Aala) + plota) + ploFa) — (PO~ a) 4+ p(d~a)) > 0. m]

Lemma 6.10: After an execution of Step 3 we have » € B{f).

Proof: From the definition of P we have H(07a) = p(0%a) + l{a) for any a € Ap.
It follows that
MO~ a) = pld*a) = 4a{a) (a € 4p), {G.76)

where j is the potential at the end of Step 3. Denote the submodular pseudoflow
A obtained at the begiuning of Step 3 by Ay = (0. Z0). Suppose that the are set

ApnCy s given by {ap.-- - a,} with «; = (w;.00) (i =1,--,¢). Since a(e) =0

21

for a € ApNC.,, we have Hlu;) = ple;) (F = 1,- -+, ¢) from (6.76). Also by definition,
at the end of Step 3

i
:=:U+Z(\l',‘_ \u,‘)- (677)
i=1
Without loss of generality let u;'s and ¢;’s be muubered in such a way that
Bl = ples) < pluy) = pley) (1< i< j< g (6.78)

and that if pla;) = ples) = plu;) = ple;) (7 <). then a; lies nearer to the initial
vertex of path P than a; along P. From these assumptions it is seen that there
exists no arc (u;, vy} in Cop with 1 €4 < j < ¢, due to the O-optimality and the way
of selecting P. Heuce, by Lemma 2.2 we have > € B(f). O

Lemma 6.11: After an execution of Step 3 A hecomes a 0-optimal submodular
flow with respect to the current potential p and cost function 3.

Proof: The notations are the same as in the proof of Lemma 6.10. We prove that
for each @ € Ay — Aa, we have Fa(a) + p(0%a) — Y0 a) > 0. Here,

Aa = Any = (A, UB,) = (Az UB,,)) U (Cs — Cy) (6.79)

For any @ € (A, U DB.) - (4, UB_) we have @ € 4p. From (6.76) we get
fala) + pO%a) — plO~a) = 0.
Next, cousider arcs in ¢, — C.,. Define

, .
=04 Y (Ve = V) (t=1,--.q). (6.80)
i=t

Then, from Lemma 2.2 z; = 21+ vy =\, 8 in B(f) for cacht = 1,.- -, ¢. Note that
zq = =. We prove by induction on ¢ = 0,- -, ¢ that for each ¢ =0,---,¢ and « € C.,
we have p(O%a) — p(0~«) > 0. This is true for t = 0 due to Lemma 6.9. Suppose
that it is true for f = F =1 (1 <k < q). Fort =k, let a = (w,5) € C., = C,,_,.
From Lenuma 2.3 we have

(1) vy =sor{u,s)eC.,._,
(if) oy = wor (w,v) € C,,_,.

Therefore, pluy) > pls) and plw) > p(u). It follows that plu) > p(s) since Hlu,) =
p(e). Hence, the induction ypothesis is true for ¢+ = &, which is the required
conclusion. O

From Lemmma 6.11, the are length I(¢) defined in Step 2 is nounegative for each
@ € Aa. Consequently. p{e) is well defined and can be computed efficiently by
Dijkstra’s algorithm.

22

Lemma 6.12: The ourpur A of procedure SuccessiveShortestPath is a 2z-optimal
submodular flow with respeet to the corresponding p and .

Proof: By the definitions given in Lemma 6.8 we have |a(a) — va(a)| < 2¢ for all
a € 4. Hence, the present lemma follows from Lemma G.11. O

Let p be the input of procedure PushRelabel, and p and N\ = (¢, 2) be the
outputs. Define wy(r) = —[67¢| for each ¢ € V. If Problem (P,) has a feasible
solution 42, then vy < 92 € B{f). Let {2V, f,,) be the contraction of (D, f) by the
vector @y. Replacing f by f., in Problem (Pg) does not change the set of all the

feasible submodular-flows. Since —ag(V) = ¥ a1 |67 0] = m., putting d = —xy and
C =1, we have from (5.49)
() = ple))(e(e) = Bp(r)) < 9=m. (6.81)
rest

Equation (6.81) implies that
L Z (z{v) —O2{0)) < 9m. (6.82)

eSSt
In each iteration of Steps 2 and 3 in procedure SuccessiveShortestPath, the value of
2ees+(z{v) = () is reduced by one. If we choose L = Qf/ni), then the number
of such iterations is O(/m} from equation (6.82). The computation of Dijkstra's
shortest path algorithm for finding j and the required shortest directed path requires
O(n?) times. Hence, SuccessiveShortestPath requires O /mn?) time.
Consequently. we have from Lemmas 6.5 and 6.7

Theorem 6.13: If we choose L = O(\/m). then the complexity of the 0-1 submod-
ular flow algorithm is O(/mn?log(nT)) with oracles for the dependence function
and the exchange capacity of the given submodular system. 0O

References

[1] W. Cui and S. Fujishige: A primal algorithm for the subutodular flow problem
with minimun-mean cycle selection. Journal of the Operations Research Society
of Jupan 31 (1988) 131-140.

[2] W. H. Cunningham and A. Frank: A primal-dual algorithm for submodular
flows, Mathematics of Operations Research 10 (1985) 251-262.

(3] J. Edmonds: Submodular functions, matroids, and certain polyliedra. Proceed-
wngs of the Calgary International Conference on Combinatorial Structures and
Their Applications (R. Guy, H. Hanani, N, Sauer and J. Schénheim, eds., Gor-
don aund Breacli, New York, 1970), 69-87.

23

[4] J. Edmonds and R. Giles: A min-max relation for submodular functions on
graphs. Annals of Discrete Mathematics 1 (1977) 185-204.

[3] A. Frank: How to make a digraph strongly connected. Cornbinatorica 1 (1981)
145-153.

6] A. Frank: An algorithin for submodular functions ou graphs. Annals of Discrete
Muathematics 16 (1982) 189-212,

[7] A. Frank: Augmenting graphs to meet edge-connectivity requirements. SIAM
Journal on Discrete Mathematics 5 (1992) 25-53.

(8] A. Frank and E. Tardos: An application of the simultaneous approximation in
combinatorial optimization. Combinatorica 7 (1987) 49-65.

(9] S. Fujishige: Algorithms for solving the independent-flow problems. Journal of
the Operutions Research Society of Jupan 21 (1978) 189-204.

[10] S. Fujishige: A capacity-rounding algorithm for the minimmm cost circulation
problem- A dual framework of the Tardos algorithm. Mathematical Program.-
ming 35 (1986) 298-308.

[11] S. Fujishige: Submodular Functions and Optimization (North-Holland, Amster-
dam, 1991).

[12] S. Fujishige. H. Rock and U. Zimmermann: A strongly polynoemial algorithm for
minimum cost submodular flow problems. Mathematics of Operations Research
14 (1989} 60-G9.

(13] S. Fujishige and NX. Zhang: New algorithms for the intersection problem of
submodular systews. Japan Journal of Industrial and Applied Mathematics 9
(1992) 369-382.

[14] S. Fujishige and X. Zhang: An efficient cost scaling algorithm for the indepen-
dent assigmnent problem. Journal of the Operations Research Society of Japan
38 (1995) 124-136.

[15] H. N. Gabow: A framework for cost-scaling algorithms for submodular flow
problems. Techuical Report No. CU-CS-661-93, Computer Science Department,
Uuiversity of Colorado, (1993).

[16] D. Gale: A theorem of flows in networks. Pacific Journal of Mathematics 7
(1957) 1073-1082.

[17] A. V. Goldberg and R. E. Tarjan: Finding minimum-cost circulations by sue-
cessive approximation. Mathematics of Operations Research 15 (1990) 430-466.

24

[18] AL Iri and N, Tomizawa: An algoritlun for finding an optimal “independent
assignment” . Jowrnol of the Operations Research Society of Japan 19 (1976)
32-57.

[19] C. Lucchesi and D. H. Younger: A minimax relation for divected graphs. Journal

of the London Mathematical Society 17 (1978} 369-374.

[20] AL Shigeno and S. Iwata: A cost-scaling algorithm for 0-1 submodular flows.
Discrete Applicd Mathematics (to appear).

[21] C. Wallacher and U. Zimmermann: A polynomial eyele canceling algorithm for
submodular flows. Preprint (1994).

[22] X. Zhang: Algoritluns for network flow problems with matroidal and submodu-
lar constraints. Ph.D. Dissertation, Institute of Socio-Economic Planning, Uni-
versity of Tsuluba (1994).

(23] U. Zimmermann: Negative circuits for flows and submodular flows. Discrete
Applied Mathematics 36 (1992) 179-1809.

3%
(13

