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1. Introduction

Since Weber’s classic paper, a great deal of research has been done on single facility location
models. The purpose of these madels is to decide where to locate a facility in such a way
that any social objective function is minimized. However, from a practical viéwpoint,
it is difficult to directly apply these models to urban facility planning. This is becaunse
decision-makers have to comsider carefully many constraints such as land use regulations,
trafic management and so on. In addition, they often have to incorporate subjective
factors into the Ioca,tional‘a.-na.lysis.

In order to take the above considerations into account, the optimal location point,
which is obtained by solving a single facility location model, has to be examined by em-
ploying & contour map. Contéur lines (also called 1so-cost lines) consist of a set of lines
which give constant objective-function value on the plare. That is, locating a new facility
at any point on a given contour line represents the same objective-function value. Conse-
quently, the contour map expresses, at a glance, the cost penalty associated with the choice
of a non-optimum location. That 1s, the contour map enables immediate comparison of
alternative proposed sites. Therefore, a contour map assists decision-makers in choosing
an appropnate location for the new facility.

Francis and White(1974) showed the procedure for constructing a contour map of the
minisum model in which the travel cost is defined by the rectilinear distance and the
squared Euclidean distance. However, it 1s known that exact mefhods for delineating
contour maps are not available for the Euclidean distance minisum model except for the
simplest cases where there are at most two facilities. Brady and Rosenthal{1380) and Love,
Morris and Wesolowsky{1988) discussed briefly the contour map of the minimax model.

But to our knowledge, there is no study to present the algorithm for constructing the
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contour map of this model and to examine the characteristics of the contour lines.

The purpose of this paper is therefore two-folds: a) to show the procedure for con-
structing contour lines of the minimax model, b) to examine the properties of the degree
of locational freedom. To draw contour lines, the Voronoi diagram, a classical mathe-
matical object, 1s revived. The degree of locational freedom 15 defined as the area where
the objective-function value is equal or less than constant value. The degree of locational
freedom in a neéighbourhood of the optimal point i1s important for decision-makers. This
is because 1t represenfs the size of alternative sites which the decision-makers may select
in place of the optimal point. The larger the size is, the easier for the decision-makers
to make facility planning. Although the degree of locational freedom is data-dependent,
we shall represent the lower and upper bounds on the degree of locational freedom. Also,
we sh‘all show that in general, the degree of locational freedom where the optimal point
15 determuned by two demand points, 1s greater than the one where the optimal point is
determined by two demand points.

This presemtation 1s erganized as follows. In section 2, a procedure for constructing
contour lines of a single facility minimax model is described. The computational complexity
of our method is O(NlogN + KN), where N is the number of demand points, and &
represents the ﬁumber of contour lines. In section 3, first, the lower and upper bounds are
developed. These bounds are represented by the diameter and the number of the demand
points on the convex hulI.‘ Second, the approximation of the degree oflocational freedom in
& neighbourhood of the optimal point is shown. Section 4 1s devoted to the applications of
the degree of locational freedém to numerical examples using Japanese prefectural data. 47
problems are solved. In the final section, the paper concludes with several results obtained

in this paper.



2. Contour lines and degree of locational freedom

2.1. Single facility minimax model

Suppose that a set of N(( o0) demand points Py = (:z:l,yl),"' Py = {zy,ynN) are
distributed in the Buclidean plane. The transportation cost is given by an increasing and
continuous functior of the Euclidean glistance. Then, the single facility minimax model is
introduced to find the location of a facility so as to minimize the maximum transportation
cost from demands points to the facility. Minimax formulation implies equity consideration
since the poorest service is made to 'be as good as possible. Therefoze, this kind of model
is sometimes encountered in the determination of ‘Lhe location of emergency services such
as hospitals, fire and police stations, as well as television and radio transmitters.

- Mathematically, this model is to minimize the following objective function with respect

to P={(z,y):

F(P) = max ([P — A)), (2.1)
where J = {1,--+,N}, C{-) is the transportation cost function, and || - [| is the Euclidean
norm.

This model is also familiar in Computational Geometry as a enclosing circle problem: -
see Shamos and Hoey (1975). It is obvious that the optimal solution is the center of the
minimum-radius disk contalning points Py, -+, Py. We shall denote the boundary of the
disk by SEC{P,---,Px}. So, the optimal location point, which is called a center, is
unique. T‘he optimal value of the objective function is called a radius. As a notational
convénience, the center will be denoted by P*, and the radins will be denoted by F*.
Moreover, this model has a strongly marked combinatorial feature. The center is the
circumcircle of some three points of the set, or defined by two of them as a diameter.

It should be noted that although the contour map depends on the transportation cost
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C{-), the center 15 independent of C{-). Many solution methods to solve this model have
been proposed. Elzinga and Hearn (1973) suggested a solution method, which is made up
-of simple geometric procedures, in O(N?) time. Shamos and Hoey (1975) exhibited an

O(N log N} time resolution method by use of farthest-point Vorono: diagram.

2.2. Construction procedure of the contour map
For: = 1,--+, N, the farthest-point Voronot polygon, denoted by V;, for the demand

point F; is defined by

Vi= () {PeR|IP-P|2|IP-Fl} (2.2)
jer-{i}

That 1s, every point in farthest-point -Voronoi pongo.n V; 1s farther to P; than to any other
Pj, (7 #1). These N regions partition the plane into a convex net which we shall call the
farthest-point Voronoi diagram. We call each edge of this diagram a farthest-point Voronot
edge. We call each vertex of this diagram a farthest-poini Voronoi vertez. An extensive
survey of Voronoi diagram can be found in Okabe, Boots and Sugihara (1992). The convex
hull of Py, -+, Py is defined as the smallest convex set containing P, -+, Py. We shall
denote its boundary by CH{Py,--+,Py}. As is evident from definition, CH{Py,--- ,PN}
is located within SEC{Py,---, Py}. We shall refer to NSEC and NCH as the number of
the demand points on SEC{P, -, Py} and the number of the ones on CH{Py, -, Py},
respectively. It should be noted that this diagram is determined only by demand points
on CH{P,,-+-,Py}: see Shamos and Hoey(1975). Examples of the farthest-point Voronoi
diagram a._l_:é shown in Figures 1 and 2. The data in Figure 1 1s the location of 87 munici-
palities in the Ibaraki prefecture in Japan. The data in Figure 2 show the location of 59
municipalities in the Iwate prefecture in Jé.pa,n. In each figure, the smallest enclosing circle
is also delineated. Each figure also shows the demand points on the boundary of the convex

hull as bullets. In Figure 1, the center, indicated by an asterisk, lies on a farthest-point
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Voronoi vertex. In contrast to this, in Figure 2, the center lies on a farthest-point Voronoi
edge.

By the definition of farthest-point Voronoi polygon demoted by (2.2), the farthest
demand point for any points in V; is the i-th demand point. For this reason, the value of
the objective function at P in the polygon V; is C(||P — F;[|). Hence, & contour line in V; is
a circular arc emerging from F;. Thus, a contour line in the plane consists of circular arcs.
Figures 3 and 4 illustrate contour maps for the demand sets in Figures 1 and 2 in the case
where C{|| - ||) = || - ||. The contour lines shown correspond to the z-values ranging from
0.1F* to F* at 0.LF* intervals. Th;ase ﬁé;ures are computer generated.

Let us now state the procedure to consiruct the contour map.

(al) Delineate the farthest-point Voronoi diagram for N demand points.

(a2) Find the center P* and calculate the radius F*.

(a3) For constant velue of a contour line 2, find the intersection points between a circle
with its center at P; and with a radius C~!(z) and the farthest-point Voronoi edge
in V; forz € 1.

(a4) Draw these two intersection points by a circular arc.

Shamos and Hoey (1975) showed that the farthest-point diagram can be delineated in
Q(N log N) time by use of divide and conquer technique. They also showed that the center
can be found in O(N) time, provided that the farthest-point diagram is given. That is,
the procedure from Step 1 to Step 2 can be done in O(N log N) time. As the number of
farthest-p;int Voronol edge is O(N); Step 3 can be done in O(N) time. Accordingly, for
the number of contour lines /', the procedure to construct the contour map can be carried

out in total time O(Nlog N + K N).

2.3. Calculation procedure of degree of locational freedom
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Mathematically the degree of locational freedom, denoted by S(z), can be expressed
as follows:
S(z) =| {P € R? | F(P) < z} |, Ve > F*.
Provided that the contour map and the farthest-point Vorono: diagram are given, the
procedure to compute S(z) is as follows:

(b1) For constant value , calculate S(&) within V; by subtracting the area of the polygon
determined by F; and fartilest-point Voronoi edges from the area of the sector
determined by the circular arc emerging from P; with a radius C~1(2). This is
illustrated in Figuze 5.

(b2) Sum up S(x) in each farthest-peint Voronoi polygen.

3. Theoretical results
3.1. Bounds on the degree of locational freedom

We shall call the dema,ild set 2-regularif all demand points are located at two distinct
points and at least one demand point is located at these two points. For 3 < m < N,
we shall call the demand set m-reqular if all demand points are located at these vertices
of an m-regular polygon and at least one demand point is located at each vertex of the
polygon. Therefore, the smallest enclosing circle for an m-regular set is circumscribed
around the polygon. It should be noted that the demand points located at an identical
point can be considered as one demand point without changing the shape of the contour
map. In Eigurés 6, 7 and 8, the contour maps are depicted for 2-regular, 4-regular and
8-regular séts, respectively. As each farthest-point Voronol polygon is a convex cone with
its vertex at the center, contoﬁr lines are circular arcs over each cone. Contour lines for
the .m—regular set will always canverge to become circles as m — oo. As m decreases the

contour lines become more elongated: see Figures 6, 7 and 8.
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Property 1. When Py.---, Py Is m(> 2)-regular, for Yo (> F~)

! s . R 2 ki g T LR
S (z) —m{T—n—&rcsm(—;—-sm(E))}r mR sm{; arcsin( - sm(m))}r. (3.1)

where Sy (z) is the degree of locational freedom for the m-regular set, r = C~1(z) and
R* = C1(F*).

Proof. See Appendix A.1. O
The following characteristics of Sp(z) can be easily seen:
(c1) As special cases, we have

* R*

Sa(z) = mr? — 22 a,rcsiﬁ(R—) —~ 2R*r cos(arcsin(—)); (3.2)
. _ r
V3R* 7r V3R

) - 3R*r sin(g — arcsin{

), (3.3)
D (3.4)

S3(z) = mr? — 3r% azcsin(
r

2R*. . . 2R
Vi ) —4R*r sm(% - &rcsln(\/_

= Z

Sy(z) = mr? — 427 arcsin

Seo(z) = x(r — R*)%.

(c2) Sm(z) is a decreasing function of m.
Applications of Property 1 will be shown in the following properties.
To compute S{x) exactly is complicated. Thisis because, we must delineate the contour
map. However, we can evaluate S(z) roughly without using a computer by using the

following property:

Property 2. Lower and upper bounds on S(z) are given as follows:
Snvecn(z) £ S(2) < Sa(z),  Ve(> FY). ' (3.5)

Proof. See Appendix A.2. D
From a practical viewpoint, 10 compute these bounds of Property 2 is easy. This is

becanse the upper bound is given by (3.2), and to compute the lower bound it is only
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necessary to identify NCH and to compute (3.1). The decision-makers do not often have
access 1o the location of the demand set from which the model (2.1) was obiained. In this

case, although we cannot identify NCH, we have the following property:

Property 3. Lower and upper bounds on S(z) are given as follows:
Seslz) < S{zx) < Sa(), Vae(> F*). (3.6)

Proof. We obtain the inequality (3.6} directly from the characteristic of (c2) and Property
2.0

The most useful characteristic of Property 3 is that only if we know F'*, we can evaluate
S{z). The behaviour of the objective function in a neighbourhood of P* depends. on
NSEC. However, when we use the actual demand points, they are in general positions,
so that no degeneracy occurs. That 1s, P* 15 defined by only either two or three demand

points and the set is not 3-regular. In this case, we have the following property:

Property 4. When no degeneracy occurs and  — F* is significantly small, we have
Sslz) < S(2) < Sal), V(> F). (3.7)

Proof. We can consider only the case where N = 2 and the case where N = 3. Hence, we
obtain the inequality {3.7) directly from Property 2. O
- As S(%) represents the size of alternative sites when ¢ — F* is small, it is important

for decision-makers to evaluate tlus size. Property 4 is useful to evaluate roughly the size.

3.2. Approximation to the degree of locational freedom
In the case where P* 1s determined by three demand points and their set is not 3-
regular, how much does S{z) become? To answer this question, we approximate S(a) by

the use of the Taylor-series expansion, provided that z — F* is significantly small. The
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Taylor-series expansion of S{xz) about F* allows us to construct a simple approximation to
S(z) in a neighbourhood of F*. As S(F*} = 0, ignoring all but the linear and quadratic

terms of the Taylor series gives:

S(F* + A) = S(F*) + S'(F*)A + Al

S”(F*)
2

"vH(F-h)
2

= §'(F*)A + ———=A% (3.8)

Let <1, ¥2 and ¥3 be these vertices of the angles of the triangle which 1s determined

by connecting these three demand points, as shown in Figure 9. In this case, we have
SHF*) = 0; (3.9)
Rt S Wi
SR = e t—. 3.10
( ) O;(F*) gco 2 ( )
The derivation is given in Appendix A.3. Substituting (3.9) and (3.10) into (3.8) gives

st = S

Dividing both sides by A? yields

* * 3 fa4
SE+a) B SN

=~ . 3.11
A? CHF") 2 (3.11)

i=1
It should be noted that the right-hand side of (3.11) attains its minimum when 3] = ¢y =

P3 = . In this case, we have

S(F*+A) _ B
T g \/E. (3.12)

For comparative purposes, we evaluate S(F* 4+ A} in the case where P* is determined by

two demand points. Differentiating (3.2) gives

L * ZR* \W

——{27r — 4r a.rcsin(R ) —2R* cos(arcsm( V) +
r r

5 = s
1 R 4R* S'(z)
o {27r — 4 arcsm(—-—-) + \{/,.2 = R*?} — Tiz)

S”(:‘L‘)
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By noting that 0 < C'(F*) < oo, we have

S'(F*) =0;
SYF*) = co.
- Substituting these into (3.8) yields
S(F* + A)

We shall make a comparison (3.11) with (3.13). In (3.11), we see that the smaller ¢;, the
larger ﬂ%"I;A—) In particular, when ¢; =0, g F‘:H}‘ goes up to infinity. This 1s 1dentical
with the 2-regular case. However, the value of (3.11) is finite, provided that ¢; > 0.
Moreover, the function of the cotangent takes an enormous vaiﬁe only for 4; sufficiently
né&r 0. Therefore, it can be concluded that S(z) for NSEC = 2 is conéi'dera.bly greater

than the one for NSEC =3 when & — F* is significantly small.

4. Empirical results

From pr.operties 2, 3 and 4 obialned in the previous section, we see that the lower ana
upper bounds on S{2) can be theoretically expressed. First we shall confiim how these
bounds are effective using 47 locational data sets from the 47 prefectures in Japan.

In addition, the analyses using Taylor expansion state that S(z) for NSEC = 2 is
greater than the .one for NSEC = 3 when z — F* 1s significantly small. Second we shall
examine whether this property holds or not when the z-value moves farther from /* using
ihe 47 locational data sets.

Japan consists of 47 prefectures, and each prefecture cc-mprises a number of localities
(i.e. municipalities and cities). The 47 prefectures were selected for this study mainly be-

cause the location of the principal facilities such as hospitals, police stations and television
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stations are determined at the prefectural level. Furthermore, prefectures represent the
basic administrative, economic and cﬁlt_uml units of the country. The data only includes
these localities situated on areas in the mainland and those connected by bridges to the
mainland. We obtained the position of these localities from the Ministry of Construe-
tion, Japan (1992). The data illustrated in Figures 1 and 2 were examples of these data
sets. The following calculations and geometrical constructions are performed by a personal
computer. In addition we consider the situation where C(|| - |[) = - |l

- The first column of Table 1 gives the names of the 47 prefectures. The second and
third columﬁs of this _‘La,ble give the dimensions of ea:ch prefecture such as the number of
localities(N), the diameter(D), which is defined by the distance between the two munici-
pality points which are farthest apart. In addition, the forth, fifth and sixth columns of this
table give the radins(F*), the number of locality points determining the cen'ter(NSEC),‘
and the number of locality points on the convex hull(NCH). Of course, these results were
obtained by solving the model (2.1).

To facilitate comparison with the lower and upper bounds obtained in Seciion 3, we
shall define the normalized degree of lacational freedom as o(z) dof %—)— and op(z) 4ef
S—”‘T(;T{fl—l Evidently, the normalized value becomes unity when S(z) is identical with the
area of the smallest enclosing circle. Th;a 47 plots of o(x)’s against = for the a-values
ranging fro;:n F* 10 1.1F* at 0.01F* intervals are shown in Figure 10. The contour map of
all prefectlnes can be found in Ohsawa, Koshizuka and Imai(1995). In order to compare
o(z)’s for NSEC = 2 and o(z)’s for NSEC = 8, o(z)'s for NSEC = 2 and a(z)’s for
NSEC = 3 are given in Figure 10(a) and (b), respectively. The prefectures in Table 1
are arranged first on NSEC and secondly on ¢(1.1F*). According to the third column of

Table 1, 21 prefectures in 47 becomes NSEC = 2, that is, the percentage for NSEC =215
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about 45. In order to examine o(z) when z is large, the 47 plots of &(2)’s for the x-values
ranging from F* o 2F* at 0.1F* intervals are also given in Figure 11. Similarly as for
Figure 10, o(z)'s for NSEC = 2 and o(z)’'s for NSEC = 3 &;:e given in Figure 11(a)
and (b), respectively. In these four figures, the highest, second highest and lowest dotted
lines represent o2(z), o3(x) and oefx), respecfively. The second lowest lines in Figure
11 represent o4(z). In these four figures, the medians, which 13 a conviment measure of
central location of the distribution, are alsn connected by lines. The median 1s defined
to be the middle order statistic if the number of the data is odd, and the average of the
middle two order statistics if the number of the data is even. Therefore, in our data, the
11-th largest value is used as the median for NSEC = 2, and the average of the 13-th and
14-th largest values are used as the median for NSEC = 3. On the other hand, in order
1o evaluate S(z) in the case where # — £'* 1s significantly small, we deﬁn;a-
1et | 575 iz cot L i NSEC =3
- oa, if NSEC = 2.

From (3.11), (3.12) and (3.13), it follows that p expresses how S(z) times S3(x) when
@ — ' is significantly small. The criterion p is also given in the last column of Table 1.

Generally speaking, Figure 10(a) and 11(a) indicate that for NSEC = 2 although the
difference between ¢(z) and ap(z) is small when x 1s small, as = increases, the smaller the
rate of growth‘of o(e) as compared with the one of op(2). We also see from Figure 10(b)
and 11(b) that for NSEC = 3 although ¢(z) is greater thg.n o2(2) when z is small, as =
increases, the smaller the rate of growth of o(z) as compared with the one of o3(z). This
1s beca,us.e as & increase_s, so does the numbef of the demand points which affects 1he shape
of the contour map.

There are two important observations that can be made upon c&reful‘considemtion of
Figures 10 and 11, and Table 1. First, although the spatial configuration of demand points

12

&



significantly influences 5(2), an observation of these figures tells us that these bounds
presented in Section 3.1 make a reasonable approximation. In addition, inspection of
Figure 10 leads to the conclusion that when z is below 1.1F*, o(z)’s of all prefectures,
except that of the Saga prefecture, exceeds o3(z). The contour map for the Saga prefecture
is shown in Figure 12. Moreaver, it is interesting from Figure 11 to note that although
when z is bel-ow 2F*, o(z)’s of all prefectures are greater than c¢(z). Thus, the empirical
results state that when 2 is small, S3(z) can be used as the lower bound on S(z), and
when 2 is large, S¢(2) can be used as the lower bound on S{z).

Secondly, comparison of Figure 10(a) with (b) and Figure 11{a) with (b) clearly indi-
cates that o(z)’s for NSEC = 2 are distributed close to ¢2(z), and o(z)’s for NSEC =3
are distributed close to o3(x). This result becomes clearer when 2 is below 1.1F7*. In
addition, comparing the medians, we see that the median for NSEC = 2 1s considerably
greater than the one for NSEC = 3. Also, the results in the last column of Table 1 tells
us that p’s take at most 5.21 and p's of 22 prefectures out of 26 prefectures are below 2.0.
The contour map for the Mie prefecture, where a maximum of p 15 attained, i1s shown in
Figure 13. This means that when z — F* is significantly small o{z} for NSEC = 3 are
considerably smaller than o (z) for NSEC =2 although their sets are not 3-regular. We

can conclude that o(z)'s for NSEC = 2 are frequently greater than o(x)’s for NSEC = 3.
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5. Conclusions

Contour lines provide a useful means of evaluating alternative locations for the new facility.
In this article, the size of the alternative sites in a single facility minimax model were
examined. On the basis of what we have examined, we are in a position to state our main
contributions.

The first main asset of this study is that three types of the lower and upper bounds
on the degree of locational freedom are theoretically presented. The first type can Dbe
calculated by the diameter and the number §f the demand points on the boundary of the
convex hull. The second type can be calculated only by the diameter. The third type 1s
useful to evaluate the degree of locational freedom in a neighbourhood of the center. The
application 'to Japanese prefectural data revealed that these bounds make a reasonably
good approximation. In particular, we see empirically that with few exceptions the degree
of locational freedom for a 3-regular set can be used as the lower bound when = 15 small,
and that the one for a 4-regular set can be used as the lower bound when @ 1s large.

The secon.d main contribution of this work 1s that in general the normalized degree of
locational freedoms in the case where the center is determined by two demand points is
greater that the ones in the case where the center 15 determined by three demand points.

This conclusion is more apparent when r nears to F**.
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A. Mathematical Appendix
A.1. Proof of Property 1.
Let 8;(r) denote the angle which defines Sy (2) within V;, as shown in Figure Al, where

Vi 1s shown hatched. Taking advantage of symimetry of V; with respect to P*F; gives

& . . . 8ilr)
Sm(:c)—izz;—z—ﬁ,(r)—-R 7 sin( 7 ) (A.1)

Let A; be the angle of the vertex of V;. Making use of the sine formula yields

7 _ R*
sin(r — é_') sin(mw — a—',gi)- — {7 — 35'-))
7 R
% . A

Ai o Bilr) R_: A
. 5111(2)

d
B
g
I

*

Sfi(r) =X -2 Mcsin(ﬁ— sin(%i)). (4.2)
r

The insertion of A; = 2£ in (A.2) yields

2 *

:(r) = e 2 a.rcsin(-T— sin(%)).

The substitution of this into (A.1) yields

. R* .. . . B,
2 — mr? aresin(— sm(f—)) — mR*r sm{zr—- — arcsin{ — sm(l))}
7 m m 7 m
s R* .3 5 3 R* T
=m{— — in{— sin{— - mR*sin{— — in(— sin(— .0
‘m{m arcsin( - sm(m))}r m.R* sin{ - arcsin ; Sln(m))}""

Sulz) =mr

A.2. Proof of Property 2.

A few notations that are used in the proof need to be defined. Fori =1,---, N, define

(="
i,

i

[ e {P:‘, if P; is on SEC{Py,---, Px};
P =
P*  otherwise;
po Lt f[ﬁ,.':_:}?-‘ﬂ'Pi, if Piis on CH{Py, -+, Py}
.‘ =
P, otherwise.
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as shown in Figure A2. The definition of PP states that for B on CH{Py,---, Py}, PP is
the intersection of the extension of OF; and S'EC"{Pl,k- -+, Py}. The definitions indicate
that NSEC demand points of PII, e ,P;{v align on & commeon circle, and NCH demand
points of P2, -+, P{ align on a common circle. It should be noted that both the center of
P{, cee P}{v and that of PIO, o ,P§ are identical with the one of Py, -+, Py. The following

Lemmas Al and A2 prove that Property 2 1s true.

Lemma Al.
SO(r) £ 8(r) £ S'(r), V(> R, (4.3)

where SI(»} represents the degree of locational freedom for P{,--- PL and SO(r) repre-

sents the degree of locational freedom for Plo, e ,Pﬁ.

Proof. We shall show that
_pr _p P — PP 2
max ||P — Pi || < max||P = Pyl < max[|P - F I‘I, ¥P(€ R%). (A4)

This means that

RI(r) D2 R(r) 2 R°(r), r(>R"),

where, RI(7) o {P | maxyer|lP — PE|| < #}, R(») o {P | maxer[JP — Pl < r}, and
RO(r) et {P | maxgcr |P — PY|| < 7}. Obviously, this relation of inclusion means that
(A.3) is true.

First, we shall show that the first inequality of (A.4) is true. Let I5FC be {k |
Py on SEC{Py,---,Py}}. Fori ¢ IEC, Pl is not on CH{P{, .-, Pf}. This means
that when the f&rthegt-point Voronoi diagram of P, -+, P4 is delineated, the farthest-
point Voronoi polygon associated with Pf is empty. This is equivalent to maxgcy ||[P —

P{|| = maxpersse |JP — Pf||. On the ather hand, from the definition of PJ, we have
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maxzesec [P — P || = maxpepssc [|P — Pyl As maxperssc ||[P— Pk" < maxier [P = Byl
combining these equations. gives the first inequality of (A.4).

Second, we shall show that the second inequality of (A.4) is true. Define JCH-5EC =
{k| P, on CH{Py,-- , Py} }—I%8C. For the farthest-point Voronoi diagram of Py, - = , Pr,
define V5EC = Ujerssc Vi and YCH-SEC Ujerer-sec V. Of course VSEC |y yCH-SEC -
R? and V3EC nVCH-SBC — 4  There are two caseé, corresponding as to P € V5FC
or P € VEH-SEC [ the case where P € VI8C, maxpcr||P — P|| = maxgersse ||P —
Pyl = maxierssc ||P — PP||. Combining these equations with maxgersse |P — PPl <

maxcy [P ~ PP|| gives
x||P - Bl < max||P - PP||,  VP(e V5EC), A5
max |2 — Pyl < max 1P - PP ( ) (4.5)

We turn to the case where P € VCHE-SEC, We assume that P € V;,i € JCH-5EC,
Since P; does not determune the ceﬁter, there exist P4 and Pg such that both P4 and
Pp determine the center and /FP;P4Pp is & non-acute angled (> ). Define ¥y = {P |
|2 =Bl > \P = Pall, |P— Pi|| > ||P = Pgl||}- The situation is shown pictorially in Figure
A3, where Vp 15 shown h&tcﬂed. Hence the circumcenter of this triangle, that is the vertex
of Vg, denoted by Py, lies on the opposite side of the line connecting P4 and Pg from F;.
Let Iy be a line perpendicular to the line P*B; and passing through By.

We shall show that VP € V4, I[P — B < ||P — BP||. Let € be the convex cone which
is generated by P;P4 and P,Pg and whose vertex is P;,. Let Ij be the perpendicular to
P*P; at P;. Let V{ be the set which consists of the points such that the line connecting the
point and P; makes a non-obtuse angle (< ) with the line connecting any point within @
and P;. This is' illustrated in Figure A4, where 2 1s shown horizentally hatched and V is
shown vertically hatched. As the half-line fiom P to P* lies in , making use fo Farkas’

theorem of alternative: see Panik (1993), VP(€ V) lies on the opposite side of I from

17



P,fo. By noting th#t V{ is formed by making a parallel translation of Vj, and i is formed
by making a parallel translation of {3, we see that YP(€ Vj) lies on the opposite side of lg
from P;. As a result, VP(€ V) lies on the opposite side of the line through the midpoint
of PP/ and pa.ra,llelito lp, denoted by I, fr:;'m PY: see Figure A5. This means that for
VPEV, P~ Bl <[I2 - PP

As V; C W, it follows that for YP € V;, [|P — Bi|| < [iP — P2 .Therefore, we have

0 0
ngcllp =Bl = |lfP - Rl <|iP-F £ r{}gf‘tlp —-FP7ll, VP(eW).
This states that
- — P, " _ pO CH-SEC n
max |P — Pyl < max||P — Pl VP(EV ). (4.6)

The inequalities (A.5) and (A.6) yields the second inequa.lity.of (Ad). D

Lemma A2, When Py, -+ ,Py licon CH{P, -+, Py}, for any r > R*, the maximum of
S(7) is attained if and only if the demand set is 2-regular, its minimum is attained if and

only if the demand set is m-regular.

Proof. Without loss of generality we can assume that Py, -, Py are arranged in clockwise
order. Define ,u.;' = %LP;_1P*P;. This is illustrated in Figure A6. Let Q4 and QB. be the
intersection points of the circular arc with a radius »(> R*) which is emerging from B,
and the boundary of V. Define §; = LP*P;Q4 and o; = LP*P;@p. This definition is
illustrated in Figure A7, where ¥; is shown hatched.

As /IPP*Q = = Hit1, making use of the sine rule gives

r _ R* o - 7 _ Foad
SIn(LRP*Qu)  sin{LPQuP*) 7 sin{m — piga) T sinpigr = Bi)

*
< sin(pipq — Fi) = - SIN fhig1
*

© B = pip1— a,rcsin(T sin pign).

18



Likely, as LP;P*Qp =7 — p;, we have

7 R 7 _ R*

= = — = -
sin{{BP*Qp)  sin(L{P@pP*)  sin(m — )  sin{pi — ;)

*

& sin(pi — o) = - sin p;
Ri

& aj = p; — arcsin(—sin ;).
7

It is evident from Figure A7,

R* . rR*

sin f3; — SIT Q.

m
?'
E:?ﬁl+a!
i=1

2
As o; = 3;_1, we have

m
r) =Y rla; —rR*sinoy. (A7)
i=1

Defining ¢(o;) = r¥a; —rR*sinay;, (A.7) indicates that $(r) is considered to be the sum of

the identical functions. Differentiating ¢(o;) one and two times with respect to p; yields

Snf v B
d‘# (Ql) = ?'(T - R* COs a'l.)ﬁ > 0; (.'4.8)
u; Bui
2 f o 52 B -
M’iﬂ = r(r — B* cos o)) az + 2 R* sin ¢ a') > 0. (4.9)
6[.11 &!- ﬂ't

This 1s because as 0 < a; < 7 and r > R*, we have

Seavg R*cos pg
ik L >0
Bpi \!./1'2 — R*?sin?
& oy _ 1 R*%sin i cos?

/ 2
= - (R" sin piyf 2 — R*¥sin? pt; — )
3#? (r? — R*?sin’ ) iy f \/,.2 — R*?gin? i

__ R'sin pi(r® — R**sin? ni — R*? cos? Bi)
(r? — R*¥sin’ #-,‘)'\/rz — R**sin?

_ R*(r? — R**)sin p

B (r2 — R*? 5in? ”5)\/"2 — R*¥sin®

> 0.

The inequalities {A.8) and (A.9) indicates that ;(#) is increasing and convex. Hence,
it follows that on the condition of /%, u; = w, S(») attains its minimum if and only if

i = %, that is, the set 1s m-regular.
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On the other hand, the smallest enclosing circle is determined by at least two points.

Therefore, it follows that on the condition of 372, u; = 7, S(r) attains its maximum if

and only if the set is 2-regular.

A.3. Proof of Equations (3.9) and (3.10)

As we consider the case where & — F'* is significantly small, we can consider the case

where the demand set consists of three demand points, P;, P, and P;. Let A; be the angle

of the vertex of V. Let J; be the middle point of F; and P;y1. This 1s illustrated in Figure

9. We see from this figure that /Q;P*Q;_1 = 7 —4; by using the fact that the sum of the

four a,nglesloi' a quadrangle 1s 2w, It follows that \; = = — 9;. Let f;(») denote the angle

which defines the length of the contour line within V;. Similarly as for the equation (A.2),

1t follows

Bi(r) =m — o ~ 2a.rcsi11(-?-sin(w _21[”))

= -t — 2'&Icsi11(;~' cos(%"))-

Hence, we have

P2

2

3 g;(r
8:(r) —+R* z sin( )

e

S5(z) =

..
1l
HA

Differentiating S(2) with respect to » gives

3 Y
6?;5_1) Z - R Z sin( )+ = T(? - S(G,(r)

= i=1
&S(=)
T a2

zij (r)+Z?r—R*cos ))6!(x)

i=1

st

9:(")

as
ar

(0 + 530 - B oSt )

=1

It should be noted that

by 2R* coq(ﬁ)
Bi(r) = =
ryfr? — — R*?cos?( ’)

)8i(r).

(4.10)

(A.11)



9R* aosl Yi b 2
9(r) = —2F cosly) (-J r? — R cos? (L) = ——L .
7207 — R con? (%)) ) T A R et (0
_ 2R" cos(%)(ﬂ"2 cosz(%i) -2r%) '
r2(r? — R*? cos""(-’fé—"))\fr? — R*? cosz(%) ‘
Therefore,
ooy ¢i

g:(R*) =2 cot(-o—); (A.12)
6/(R") < oo. (4.13)

Substituting (A.12) into (A.10) and (A.11), and noting (A.13) and (R*) = 0 gives

85(z) —0.
7 e=p+ -
& 5(e) S i
= 2R* 1—.
8r? lg=pe ; “rta

By noting that 0 < g—:’;—

—_ 1 .
o T < oo, we have

=

gy =25 o

ar a=F* O |z=F+ ’
SY(F) = aS(z)) o a5(2)] &

67'2 =+ be ";:F'. or a=F" 82’2 x=F*

2R A

= C«"(F"‘) z;cot ?.EI
=
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Figure 1. Farthest-point Voronoi diagram in the Ibarki prefecture
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Figure 2. Farthest-point Voronoi diagram in the Iwate prefecture
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Figure 3. Contour map of the Ibarki prefecture



o Y
. . e -0
4 -—'
s ’ LT PR
y

R
’, ’ -

-
’

et o
‘ ‘ -7
.

SR EETP

-
.
N
d
\
\
\
\
\
\
A
\
\
il
Voo
Vo
o
Vo
o
o
N
I r
.
B .
,
!
h
L '
:
]
.
4 .
’ ]
0 T
N I Y S ) )
AT . s
- - -
e eaa P - “
S .

0

e . B
10 20 30 40 S0km

Figure 4. Contour map of the Iwate prefecture



Figure 5. Construction procedure of the preferable locational area
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Figure 6. Contour map for a 2-regular set
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Figure 7. Contour map for a 4-regular set



Figure 8. Contour map for an 8-regular set



Figure 9. Definition of the angles (%1, 92, ¥3)
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Figure 12. Contour map of the Saga prefecture
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Figure Al. Illustration of the proof of property 1



Figure A2. Definitions of P/ and PP
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Figure A3. Definitions of /; and ¥}
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Figure A4. Definitions of €, ly and V{



Figure A5. Definitions of I
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Figure A6. Definitions of p;



Figure A7. Definitions of Q, Qp, «; and Bi



Table 1. Data and results of the 47 prefectures in Japan

prefecture N D(km) F*{(km) NSEC NCH p
Nagano 121 212 106 2 9 o0
Okinawa 53 85 43 2 7 oo
Iwate 59 181 a1 2 12 o0
Tokyo 64 71 35 2 6 o0
Miyagi 76 146 73 2 7 o0
Toyama 35 84 42 2 6 o0
Kocht 53 165 82 2 9 o0
Niigata 112 225 112 2 7 o0
Kagawa 43 72 36 2 6 )
Ishikawa, 41 154 77 2 6 o0
Shiga 50 75 38 2 9 00
Yamagata 44 123 61 2 8 oo
Miyazaki 44 149 75 2 & 00
Fukuoka 111 112 506 2 9 (%!
Fukushima a0 165 82 2 9 oo
Gunma 70 102 51 -2 7 oa
Nagasaki 79 106 53 2 8 00
Hiroshima 93 121 60 2 12 o0
Totton 39 108 54 2 5 o0
Yamaguchi 56 136 68 2 8 o
Kanagawa 60 71 35 2 7 oo
Shimane 59 177 89 3 7 3.92
Mie 69 166 83 3 5 5.21
Kumamoto 94 142 71 3 13 3.21
Kyoto 55 136 68 3 6 2.67
Tochig 49 96 48 3 7 1.72
Osaka 68 79 40 3 ] 1.65
Shizuoka 74 151 75 3 9 1.73
Kagoshima 96 133 67 3 3 1.66
Hyogo 100 132 66 .3 8 1.11
Nara 47 83 42 3 6 1.46
Wakayama 50 101 51 3 11 1.39
Saitama 92 86 43 3 9 1.31
Fukui 35 110 55 3 6 1.24
Ehime | 70 154 78 3 6 | 1.42
Akita 69 152 76 3 7 | 1.38
Okayama, 78 106 53 3 12 1.26
Gifu 99 159 70 3 10 1.09
Chiba 86 124 67 3 4] 1.04
Tokushima 50 84 43 3 8 1.02
Hokkaidou 221 503 262 3 6 1.03
Aichi 104 101 52 3 9 1.04
O1ta o8 112 56 3 10 1.08
Aomernl 67 144 79 3 8 1.00
Yamanashi 64 76 42 3 8 1.00
Ibaraki 87 120 66 3 7 1.00
Saga 43 68 35 3 8 1.02
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Figure B7. Contour map of the Fukushima Prefecture
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Figure B10. Contour map of the Gunma Prefecture
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Figure B11. Contour map of the Saitama Prefecture
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Figure B22. Contour map of the Shizuoka Prefecture
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Figure B31. Contour map of the Tottori Prefecture
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Figure B37. Contour map of the Kagawa Prefecture
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Figure B39. Contour map of the Kouchi Prefecture
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