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In a queueing system with preemptive loss priority discipline, customers disappear from
the system immediately when their service is preempted by the arrival of another customer
with higher priority. Such a system can model a case in which old requests of low priority are
not worthy of service. This paper is concerned with preemptive loss priority quenes in which
customers of each priority class arrive in a Poisson process and have general service time
distribution. By extending the existing analysis, we obtain the distribution of the number of
customers of each class in the system (queue size) at an arbitrary time, and the distribution
of the time that a customer of each class stays in the system (sojourn time). While the
mean queue size and the mean sojourn time are given explicitly, their second moments can
be recursively calculated. We also consider systems with server vacations.
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1. Introduction

Most chapters in textbooks and papers on priority queues treat systems with nonpreemp-
tive, preemptive resume, and preemptive repeat (identical and different) priority disciplines
(Conway et al. 1967 (chap. 8); Gaver 1962; Jaiswal 1968; Takagi 1991 (chap. 3)]. As far as
the authors know, only Gnedenko and Kénig [1984 (sec. 6.3)] and Klimow [1977 (sec. 3.2)]
show brief results of analysis for preemptive loss priority queues, In such queues, customers
disappear from the system immediately when their service is preempted by the arrival of
another customer with higher priority. They can model a situation in which old requests of
low priority are not worthy of service when a new request of service with high priority arrives.
It is our observation that the analysis of preemptive loss priority queues is not widely known,
partly because the above-mentioned references are in German.

In this paper, we are concerned with preemptive loss priority queues in which customers
of each priority class arrive in a Poisson process and have general service time distribution.
We elaborate the existing analysis and extend it in several ways. Our new results include (1)
the marginal distribution, the mean, and the second moment of the number of customers of
each class present in the system (queue size) at an arbitrary time, (2) the second moment of
the time from the arrival to the service start (waiting time) of a customer of each class (the
mean waiting time is given in Gnedenko and Konig [1984 (sec. 6.3)] and Klimow [1977 (sec.
3.2)]), and (3) the distribution and the mean of the waiting time for several server vacation
models. We also correct the expression for the distribution of the time that a customer of
each class spends in the system (sojourn time) given in Gnedenko and Kénig [1984 (sec.6.3.3)].



2. Model and Notation

Specifically, our model is as follows. A queueing system with customers of multiple classes
is served by a single server. Customer classes 1 through P are priority classes such that class
p has priority over class ¢ if p < ¢. Customers of class p arrive in a Poisson process at rate Apy
where p = 1,2,..., P. The aggregate arrival rate of customers of class 1,2,...,p is denoted
by

[
)\;,I' = Z AL (2.1)
k=1

The distribution function (DF) and its Laplace-Stieltjes transform (LST) for the service time
of a customer of class p are denoted by Bp(x) and Bj(s), respectively. The service discipline
is preemptive loss as defined in Section 1.

Our objective is to obtain the distribution for the number L, of customers of class p
present in the system (queue size) at an arbitrary time, and the distributions for the waiting
time W, and the sojourn time T}, of a customer of class p. The waiting time W, is the
interval from the arrival to the service start of a customer of class p. The sojourn time
T is the interval from the arrival to the service termination (either by completion or by
preemption) of a customer of class p. As preliminaries, we analyze the actual service time Ty
for a customer of class p, the completion time C, for a customer of class p, and the length
0;' of a busy period generated by customers of class 1 though p. Note the relation

L=W,+7 (2.2)

where W + p and T, are independent. The completion time C, is the interval from the start
of service to a customer of class p to the first moment after the service termination at which
no customers of class 1 through p — 1 are present in the system.

We consider only the steady state. Because of the preemption mechanism, the arrival of
customers of class p 4 1 through P does not influence the queue size of customers of class
p and the waiting and sojourn times for a customer of class p. The stability condition for a
subsystem consisting of customers of class 1 through p is therefore given by

AP (23)
k=1

In Section 10, we consider systems in which the server takes vacations when there are no
customers in the system at the end of a service completion (server vacation models). The
vacation generically represents a period in which the server is not available even when there
are customers in the queue. In systems with server vacations, the arrival of customers of class
p+1 through P does affect the queue of customers of class p because the vacation process de-
pends on all customers. See, for example, Takagi [1991 (chap. 2 and chap. 3)] for a treatment
of server vacation models of nonpriority, nonpreemptive priority, preemptive resume priority,
and preemptive repeat priority systems.

3. Actual Service Time

We first consider the service time Z, actually received by a customer of class p. Let z,
be the original service time of a customer of class p. If no customers of class 1,2,...,p —~ 1



arrive during z,, then 7, equals z,. Once any customer of class 1,2,...,p — 1 arrives during
Ty, the service is terminated. Therefore, we have

Ele~"r|z,) =e ’\g-i"”’e“’”” +/ A :—-l” e *dx
3.1
/\+ 1 + se (s+’\p—1)xp ( )
s+ )\p_l
Removing the condition on 2z, in (3.1), we get the LST _XH;(S) of the DF for T, as
+sBy(s+ A))
e _ M 4 2
P(s) S+ /\p..l (3 )
From (3.2), we have
By(\1)
E[z,) = TL (3.32)
21 B*(A _1)] _2E[x e"’\:—l“"?’]
E[z,%) = 2 (3.3b
P O P )
1— BX()\ =31t 3E[p2e” Yo%
pia9) < L= B 0Bfayeumr] _ 3B[ae ) 539
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Note that X(s) = B}(s), because the service of customers of class 1 is never preempted.
Accordingly, E(Z1] = b, E[7:1?%] = b( ), and E[T’ = b1 , Where by, b?), and bf;) are the
mean, the second moment, and the thxrd moment of the service time for a customer of class

1.
We can condition the actual service time on the disposal of customers. Namely, the LST
of the DF for ¥, for a customer of class p whose service is completed is given by

e - g
/ e “'p1%e d.Bp(-'E) B*(s'i"/\p_l)

O = 3.4
.[0 e"Ap—l"""dBp(m) B; (/\ 1) ( )

X(s|completed) =

where By(A}_,) is the probability that the service time z, is not preempted. From (3.4), we

have N
Elzpe™p-177]

Elz leted) = 3.
Fplcompleted] = =227 (35)
The LST of the DF for %, for a customer whose service is preempted is given by
=] X,
. / dBp(m)/ ’ A "\:—1" e *"dz
X,(s|preempted) = <2
/ dB (z)j AY je” gy
, 0 (3.6)

_ 1[1“5*(3‘}"\ _1)]
(3+A 1)[1—3()‘ )




from which we have .
1 E[:vpe—)‘?— 7]
’\;'-1 1- Bx(Af )

E[Z,|preempted] = (3.7)

4. Completion Time

Let us also consider the completion time C, for a customer of class p. If no customers of
class 1,2,...,p — 1 arrive during the service time «, of a customer of class p, C, equals Tp.
If any customer of class 1,2,...,p~ 1 arrives during z,, C} is extended by the length equal
to ©_;. Therefore, we have

E[e“CPImp] =e Ag‘-!”Pe‘”P -+ ®+ l(s)f /\"' —A7 -1% e~ gy _
(4.1)

_(3+’\p—l)xl’ + _At._l_ + (s)f1 - e"‘(-"f"\:—:)"-‘p]
sea, Y
Removing the condition on z, in (4.1), we get
+
C3le) = By Aoa) + - 5=0F 1 ()1 = Bylo + ML) (42)
From (4.2), we have
B(Gy] = { 3+ Eo} 11} [1- B3O (4.32)
E[c?] = |—2 E1051] E[(©}F_ )| [1 - By(A
[ p] - (/\ 1)2+ ,\;-_1 + ( 1)] ( p-—-l)
(4.3b)
-2 [ i+ Elo) 1]] Blspe™3-+7]
6 6E[0;,]  3E[(0;.1)")
o = [(A AR el TR RS
-3 7 21)2 + 2 )E+ e + B[(67,) ]] A7) (4.3¢)
[ ot o
From (3.3) and (4.3), we note that
E[Cp] = (1+ A, B[0]_,]) E[7,) (4.42)
E[C7] = (1+ M B[O, ) E[7,"] + A} E[(9F_, )] El=) (4.4b)

E[C7] = (1+ AL, B[07_ D E[Z,] + 5 /\ _1 Bl(07_1 ) 1E[m,%] + N El(O], )ElR,) (44c)



5. Busy Period

We next consider ®+(s) the LST of the DF for the length O} of a busy period generated
by customers of class 1,2,...,p. The arguments for O"‘(s) for the preemptive loss priority
queues is formally the same as those for the preemptive repeat priority queues given by Chang
[1965] and Jaiswal {1968 (sec. IV.7-2)].

Because of the preemptive discipline, the presence of customers of class p+1,..., P does
not influence 0;' . It is initiated by a customer of class 1,2,...,p that arrives when the server
is either idle or serving a customer of class p+1,..., P. Furthermore, the set of customers of
class 1,2,...,p—1 can be grouped to obtain the distribution of O . If the arriving customer
is of class p (which occurs with probability )\p/)\"‘) the busy period O+ is equal to a busy
period, denoted by ©,, for customers of class p that have the completlon time Cp as the
service time. The LST ©;(s) of the DF for ©, satisfies the equation

07(s) = Cols + Ap — 2,03(s)] (5.1)

If the arriving customer is of class 1,2,...,p — 1 (which occurs with probability A /A,
the busy period @“‘ is equal to the delay cycle with initial delay O _ generated by customers
of class p. Therefore we have

+ A '\31 + .
07 (8) = 15 95(s) + 50, _1[s + Ay — A,0;5(s)] (5.2)

From (5.1) and (5.2), we get
A E[Cp] + A 1E[® 1)

+
E[Op] - /\+(1 _ )\ E[Cp]) (5.33.)
Ap(1+ X, B[O} ) E[C? 1 E[(0},)?
E[(O;)zl = P( ++ p=-1 [ p—l])3 [ p] + [( ) ]2 (5.3b)
Ap (1 = M E[C,)) Ap (1 ’\PE[CP])
’ f\; A= HEG) T (1= MEC,IF
(5.4¢c)
,\;_1 B[(0;1)°] | 3AE[(0F)IE[C]]
(1= A E[Cp]) (1 = Ap E[Cp])!
By combining (5.3) with (4.3), we can find the moments for ©F recursively.
From (4.4a) and (5.3a), we get the relation
! e\ EE) (5.4)
I+ M B0 ] 1+ afERF] T TP -~
which is a recurrence relation with respect to p. Thus we get
E[0}] = _”P__ (5.5)
P A+(1 _ )
where
Z MEZ] = Ay + E A+ —[1— BR(A_))] (5.6)

k=1



Substituting (5.5) into (4.3a), we get

E [xp]

5.7)
1- pp-——l (

E[Cy] =

According to Gnedenko and Konig [1984 (sec. 6.3)] and Klimow [1977 (sec. 3.2)], we have

M + P, M1 — i) Elzi?]

E[(0} ] = e 5.9
Using (5.5) in (4.4b), we get
7 2
BICH = N POV IElE,] + 1ot
(5.9)

()\15(2) + £22 Ml — o) ElEk ]) [Z5] + E[Z,%)
(1=pia)? 1=rpa

The third moments E[(@;)°] and E[C3] can be calculated recursively by (4.4c) and (5.3c).

6. Queue Size

We proceed to find the queue size distribution of customers of class p, following the
treatment of Chang [1965] for the preemptive repeat priority queues. Let II(z) be the
PGF of the number of customers of class p present in the system at the Markov points
embedded at service completion times of customers of class p and at the ending times of busy
periods generated by special customers of class 1,2,...,p — 1. These special customers of
class 1,2,...,p — 1 are those that arrive and find no customers of class p in the system and
thus initiate a busy period 0;‘_1. Considering the events that occur between two successive
Markov points, we have

(2} — I +
! )z L ;\\+ P(O) Cp(Ap = Ap2) + )‘p_l HI(O)@ 1A = Apz)  (61)

H;)(Z) =
Solving (6.1) for II(2), we get

oz = ACH(Mp — Xp2) + A_1207 (A — Ap2)

HI z Hl 0 . 6.2
( ) ( ) /\+[Z _ C;(/\p - ApZ)] ( )
From the normalization condition II(1) = 1, we can determine the unknown II;,(0) as
1-2
I’ (0) = = PE[fP] (6.3)

Let II,(2) be the PGF for the number of customers of class p in the system (queue size)
at the departure time of a customer of class p. By considering only those cases when the



Markov point is the departure of a customer of class p in the events that led to the r.h.s. of
(6.1), we can express II,(z) as

M :i (0| X (Ap = Ap2)
I,(z) = (6.4)

1 - II,(0) + Ai IT;,(0)

Substituting (6.2) and (6.3) into (6.4), we get

(L= 2Bz = A+ AL, 08 (A = M)XK (0, — Mp2)
Ap(L+ A7 E[O 1])[z = C5(Ap — Ap7)]

I,(z)
(6.5)
_ (1 = pf)Ap2 ~ AF + )‘;'—10:—1()‘? — Ap2)] X (Ap = Xp2)
%z~ C3 (0 = A7)

Note that II;(2) in (6.5) is also the PGF for the number L, of customers of class p in the
system at an arbitrary time. This comes from PASTA (Poisson arrivals see time averages)
and Burke’s theorem on the process with unit jumps (Cooper [1981 (sec. 3.2 and sec. 5.3)])
applied to the number of customers of class p present in the system.

The mean queue size of customers of class p at an arbitrary time is given by

- _ /\f,E[C;] Ap ,\+ 1E[(®p-1)2]
(Lp] = 2(1 — AL E[Cy)) 2(1+/\ _1E[07_,])

+ A E[7p]

(6.6)
A (1 - ph)2E[(07)?)

2(1- P;-—1)

where we have used (5.3b) and (5.7). Substituting (5.8) into (6.6) for E[(©})2], we get

+ A E[Z,)

Ao (M) + TR ML - pf_1) ElEY))
21— pE (1= )

The second moment of the queue size of customers of class p at an arbitrary time is given

by

E[L,] = + A E[7,] (6.7)

E[L2] = X2 E[T?] (6.8)
where E[sz] is the second moment of the sojourn time of a customer of class p, to be given
in (8.8).

7. Waiting Time

If W5 (s) denotes the LST of the DF for the waiting time of a customer of class p, we have
the relation

p(z) = Wy (Ap - ’\PZ)Y;(AP — Ap2) (7.1)



The 1.h.s. of this equation is the PGF for the number of customers of class p that arrived
while the customer of class p was in the system. From (6.5) and (7.1), we get

(1= A E[CoD)ls + ATy = A7107.4(5)]

W) = T BT Dl - by + MCi6)

P

(7.2)
_ (= pD)s+ At = 251054 (s)]
s = A+ ApCh(s)

which has the same form for the preemptive resume and repeat priority systems [Chang 1965;
Jaiswal 1968 (sec. IV.7-4)]). We note that W;(s) in (7.2) can also be derived from

(1= LEIG)L - 0f4(s)]
: E[O;j—l][s - Ap+ APC;(‘S)]

Wy(s) =1~p}+ 0}

(7.3)
_ 1 (1= XEC])1 - CF(s)]
+ME[E,] P
Ao BT~ + 153000
From (7.2), we have the mean waiting time
AE[CE] ML E[(0F_ 1))
E(W.] = 4 p p=1 p~1 7.4
R R W (A M CER - Ry e
By comparing (5.3b) and (7.4), we get
M1 =2E[CoPE[(0)?] M1 - ph)PE[(0F)?
sy = SO BB EOR] G = 1P B0 5
2(1 + ’\p—lE[Op—l]) 2(1 - pp——})
From (7.4) and (7.5), we obtain a recursive relation [Conway et al. 1967 (sec. 8-7))
Ay E[CY E[W,_1]
EW,| = o—2—2 7.6
Wl 2(1 = ALE[Cy]) T 1= A1 E[Cpun] (7:6)
By substituting (5.8) into (7.5), we get
MY + TE (1~ o)) Bl
E[W,] = = 7.7
” 2L~ P~ £7) (1)
The second moment of the waiting time of a customer of class p is given by
M E[C3 A, E[C2))?
P o N
3(1 - ’\pE[Cp]) 2(1 - ’\pE[Cp])
(7.8)

A-1E[(0F_1)°) Apd s 1 E[CTIE[(05_,)]
3(1+ N1 E[074]))  2(1= ME[G)(L+ A Bl(0F,])




8. Sojourn Time

The LST of the DF for the sojourn time T, of a customer of class p whose service is
completed is given by

T;(s|completed) = Wy(s)X,,(s|completed)

_Q=pPs+ N - ML 0k Bis+ Ay G
58— Ap+ A C5(s) B;(A;-_l)

which yields
Mab? + TRy (L= AL )EE] | Elsye™31%7
2(1 - py_1)(1 = pf) By(35_1)

The LST of the DF for the sojourn time T}, of a customer of class p whose service is preempted
is given by

E[T,|completed] =

(8.2)

T, (s|preempted) :W;(s))_(';(ﬂpreempted)

W=l A~ A0, ()] ALll- B+ AL B
- s — 2 + 2G5 (5) s+ N - BT

which yields

A1bg2) + Lo A1 = 93—1)-'5‘[51:2] 1 _ E[xpe“A:"lzP]
2(1 - pj_)(1 - A¥) A 1= B3(0)

E[T,|preempted] = (8.4)
The LST T;(s) of the DF for the unconditional sojourn time 7}, of a customer of class p
is given by 1
T3(s) = W3(s)X}(s) (8.5)
Hence we get
M + S M1 = ot )E(E

E[T,) = + E[Ty) 8.6)
’ 21— pE )1 - 53) ” (
which confirms Little's theorem
E[Ly] = A E[T) (8.7)
The second moment of the sojourn time is given by
E[T?] = E[W?] + 2E[W,]E[z,] + E[z,]] (8.8)

9. Numerical Examples

For numerical examples, we consider a system with P = 5 classes of customers. We
assume that the parameters of the arrival and service processes are identical for all classes,
and that the service times are exponentially distributed with unit mean. Namely,

A 1

'Gnedenko and Konig [1984 (sec. 6.3.3)] give Wy (3)Cp(s) as the LST of the DF for Tp, which is incorrect,
because the completion time Cp includes a busy period G):'_I after the service for a customer of class p is

preempted and therefore it has disappeared.




where A is the total arrival rate,

In Figure 1, we plot the mean actual service time E[Z,] for p = 1,2,..., P against A. As
noted in Section 2., we see that E[Z;] = 1, independent of A, because the service to customers
of class 1 is never preempted. For p > 2, each E[Z;] is monotonously decreasing as A grows.
This is because the service is more likely to be preempted at a greater arrival rate. In this
example, we also have the relation

1= E[Z] > E[Z3) > --- > E[Tp] (9.2)

because the service to customers of lower priority classes are more likely to be preempted by
the arrival of a customer of high priority.

In Figure 2, we show the mean waiting time E[W,] for p = 1,2,..., P against A. We see
that each E[W,] is monotonously increasing as A grows as a result of queueing and by the
effects from customers of higher priority. We also note the relation

EWi] < E[Ws] < --- < E[Wp] (9.3)

which discriminates the customers of different classes.
In Figure 3, we show the mean sojourn time E[T}] for p = 1,2,..., P against \. We see
again that each E[Tp] is monotonously increasing as A grows and that

E[T1] < E[T3] < --- < E[Tp] (9.4)

The discrimination in the mean sojourn times for customers of different classes is milder than
that in the mean waiting times, because the mean sojourn times are favorable (small) for
customers of low priority.

10. Vacation Models

Server vacation models of the systems with preemptive loss priority discipline can be
handled similarly. We present only the results for the LST W,(s) of the DF and the mean
E[W,] for the waiting time W, for a customer of class p for three vacation models. The LST
T35 (s) of the DI for the sojourn time T, for a customer of class p in these systems is given

by (8.5) with Y;(s) given in (3.2). For the convenience of notation, we define

P P
pi= Z AE[T] pp = Z Ar BT (10.1)
k=1 k=p+1
and
gp-1 =8+ Al —AF 01 [ (s) (10.2)

In the multiple vacation model, the server takes vacations if the system is empty at the
end of a service. If the server returns from a vacation to find the queue not empty, it starts
to work immediately and continues service until the system becomes empty again. If the
server returns from a vacation to find no customers waiting, it begins another vacation im-
mediately, and repeat vacations ir this manner until it finds at least one customer waiting
upon returning from a vacation. The lengths of successive vacations are assumed to be inde-
pendent and identically distributed, and also independent of the arrival and service processes.

10
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Figure 1. Mean actual service times in a preemptive loss priority queue.
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Iigure 2. Mean waiting times in a preemptive loss priority queue.
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Figure 3. Mean sojourn times in a preemptive loss priority queue.

Let V*(s) be the LST of the DF for the length V of each vacation. The LST W (s) of
the DF for the waiting time W, in the preemptive loss priority system is given by

1-—- V*(O'p_l)
EV]
3= Ap+ ApCy(s)

(1-p) + Py Op-1

Wy(s) = (10.3)

The mean waiting time for a customer of class p is given by
1 - p)E[V?] 29 |, - —
g o+ - ot Bl

E[W,] = ket (10.4)
2(1- P;-—l)(l —P7) -

In the single vacation model, the server takes exactly one vacation if the system is empty at
the end of the service. If the server returns from a vacation to find the queue not empty,
it starts to work immediately and continues service until the system becomes empty again.
If the server returns from a vacation to find no customers waiting, it becomes idle until a
customer arrives, and the starts service immediately. For the single vacation model, we have

(1 = p)AL = V*(op-1)] + {(1 — o1 )V*(N) + p; AE[V]}0p1

Wo(s) = (V*(A) + XE[V])[s - X, + z\pC':;(.s)] (10.5)
a (1= p)AE[V?]
1— p)AL OIS i
st = L)+ ABV] F b +,§2Ak(1 - pi-1)BIE .
el = 21 - A (1= p¥) (10:6)
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Yor systems with setup times, we assume that a setup time § is needed before starting the
service to the first customer that arrives when the system is empty. Let S*(s) be the LST of
the DF for §. We then have

“(o) = 1-7 \A+(0p-1—2A)5"(0p-1) Pp Tp-1
W(s) = (1 n AE[S]) PR WorT ) BERPIOS weriy wir oy SR
and , »
1 - p)AE[S*] 4 2E(S
L= pJOASLEZPCD b + 3 - p ) Bl
B, 1+ AE[S] = (105)
’ 21 - o)1 - o) '
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