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Absiract  Suppose a hunter starts hunting over ¢ periods with 1 bullets. A distribution of the value of targets
appearing and the hit probability of a bullet are known. For shooting, he takes a strategy of a shoot-look-shoot
scheme. The objective in this article is to find an optimal decision policy which maximizes his total expected present
discounted reward. In the case with no search cost, the optimal policy is monotone in the number of bullets remaining
then, but not always monotone in the case with search cost.

1 Introduction

This paper presents a stochastic dynamic programming model of a sequential allocation problem
with search cost. In the problem, we invest some units of resource, one by one, for a present
opportunity whose value is a random sample from a known probability distribution. The one by
one unit investment is often called a shoot-look-shoot policy, implying that, if unsuccessful after
investing one unit, it is decided whether to invest one more unit or not. This problem can be
applied to the following examples.

¢ Hunting Problem Suppose a hunter sees a target of value w. Then, he must decide whether
to shoot it or not. If he decides not to shoot, then he must search for ancther target. On the other
hand, suppose he decides to shoot. Then, if the bullet hits, he can get the target, and if it does
not hit, the target may escape. When it does not escape, he must decide whether to shoot another
bullet or not.

e Advertising Problem Suppose a salesman visits different stores with ¢ samples to advertise
his new products. Customers who come to a store will try the samples. Seeing the customers’
responses, the manager of the store decides whether to sell it in his store or not. If the manager
decides to sell, then it may be regarded as a success and the salesman can obtain a profit w and
begin searching for another store, or else he must search for another store with no profit from the
previous store. It may be possible that the manager still has not decided even after some customers
have tried the samples. Then, the salesman has to decide whether to continue advertising in the
store or to quit and search for another store.

By the way, if an opportunity can be successfully achieved by investing only one unit of resource,
the problem can be reduced to an optimal stopping problem with no recall where 7 opportunities
can be obtained.

Sequential allocation problems have been discussed by many authors so far. Derman, Lieberman
and Ross[1], and Prastacos[7] considered them as investment problems in which the expected reward
depended on the amount of resources that were invested. Mastran and Thomas(5] treated them as
target attacking problems where the decision policy of a shoot-look-shoot scheme was discussed.
They showed the computation method for the optimal decision rule, but did not mathematically
verify its structure. Kisi[4] considered a similar model with a shoot-look-shoot policy where the
relation between approximate solutions and exact ones were mainly discussed. Sakaguchi[8] in-
vestigated the continuous-time version model of [5] in which a case of a shoot-look-shoot scheme



was also discussed. He derived the conclusion that the critical value, at which shooting and not
shooting become indifferent in the optimal decision, was nonincreasing in the number of remaining
torpedoes. Namekata, Tabata and Nishida[6] also dealt with a model similar to {5] where there
exist two kinds of targets in a sense that the necessary number of torpedoes to get the targets is
different. Revealing the structure of the optimal decision policy, they did not discuss about the
shoot-look-shoot policy. Now, it should be noted that in all of the models above, a search cost was
not introduced. However, among the variations of the above models there exist ones in which a
search cost must be assumed necessary.

The objectives of the present paper are to pose a general model in which a search cost is an
essential factor and to examine properties of the optimal decision policy.

One of the most distinctive results obtained in the present paper is that the critical value does
not always become nonincreasing in the number of remaining units of resource.

In Section 2 that follows, we define our model and in Section 3 its fundamental equations are
derived. In Section 4 the structure of the optimal decision policy is investigated. In Sections 5, 6
and 7, we state cases with no search cost, with search cost and with a sufficiently large search
cost, respectively. In Section 8 the case of an infinite amount of available resources is examined
and in Section 9 some numerical examples are given. In Section 10 the conclusions obtained are
summarized. Finally, some limitations of the present model are stated in Section 11.

2 Model

Throughout this paper, we shall explain our problem with the following hunting problem.
Suppose a hunter starts hunting over £ periods with < bullets. In order to go shooting at a certain
time, he must pay a search cost ¢ at the previous point in time. In the woods, he can find a target
with a probability # € (0,1], assuming that more than one target can not be found at any point
in time. The value of the target that is found is a random variable having a known probability
distribution function Fj(w), continuous or discrete, where Fi(w) =0forw <a < 1,0 < Fi(w) < 1
for0 <a<w<l1,and Fi{w) =1 for 1 £ w. The values of the targets that have been found
at the successive points in time are assumed to be stochastically independent. He can observe the
value of the target at the same time as finding it and has to irnmediately decide whether to shoot
it or not, If he decides not to shoot, then he comes back home, or else a bullet he fired hits the
target with a hit probability ¢ € (0,1]. The game that he bagged can be sold at a price w on his
way home. If the bullet does not hit, then the target runs away with a probability » € [0, 1], and
he comes back home with no game. When it does not escape, he must decide whether to fire an
additional bullet. Assume repeated firings occur at the same point in time.

His purpose is to maximize the total expected reward from the game that will be bagged over a
given planning horizon, that is, ¢ periods. Figure 1 illustrates the structure of the decision problem.

Now, since no target being found can be regarded as a target of value 0 being found, the
target appearance probability 8 and the target value distribution function F){w) can be combined
into a distribution function F(w) whose probability (density) function is f(w) = (1 — §)I(w =
0) + 0fi(w)l(w > 0) where fi(w) is a probability (density) function and I(S) = 1 if a given
statement S is true, or else I(S) =0 1. Let p = fol EdF(£). Finally we assume that

c < Bap, (1)

where 8 € (0,1] is a discount factor. The assumption implies that it is profitable to go hunting
even with one period remaining and only one bullet in hand. Later on in Section 7 we derive the
results of the case of ¢ > Fqpu.

tSee preliminaries of {2]
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Figure 1 Decision process of this problem

By symbol (¢, 1), we denote “ ¢ periods remaining and i bullets in hand”.

3 Fundamental Equations

Let points of time be numbered backward from the final point of the planning horizon as time
0, time 1, and so on; an inferval between time ¢ and time ¢ — 1 is called period £. The objective
here is to find an optimal decision policy which maximizes the total expected present discounted
reward by allocating the given ¢ bullets to the targets during the given ¢ periods.

Let u (%, w) denote the maximum of the total expected present discounted reward when there are
t periods remaining and the hunter is seeing a target of value w with ¢ bullets in hand. Furthermore,
let v;(z) denote the expectation of u;(%,w) in terms of w, that is,

1
wli) = [ wiOdFE, t20. (2)
Then, we have the following recursive relations by the principle of optimality.

w(t, w) = max{z(i), glw+z(— 1))+ (1~ g}rz,(t — 1) + (1 — r)u,(i — 1,w))}

= max{z (i), pu (i - L, w)+qu+(1-pz(E-1)}, t>1,i>1, (3)

where
p=01-g{1-r)€0,1), (4)
zt(i) = ma,x{ﬁv;__l(z') - ﬁzf-—l(i)}‘l t Pt 0. (5)

Here, p is a probability such that the bullet he fired just before does not hit the target and the
target still remains, and z;(2) implies the maximum of the total expected present discounted reward



when there are ¢ periods and ¢ bullets remaining, and he decides not to shoot any more at time £.
Furthermore, from the definition of the model, we have the following final conditions:

uf(oiw) = 'Ug(O) = 20(1) = Zt(O) = 0’ t 2 0’1’ 2 01 (6)
ug(z,w) = qw+ (1 — ¢)(1 — r)up(t — 1, w) = ll%zqw, i>1, (7)
wli) = 11—_;%9;5, i>1 (8)

Hereafter in this section, we clarify the properties of u;(%,w) and v, (7).
Lemma 1

(a) For any i and any w, both w,(4,w) and v;(t) are nondecreasing in t.

(b) If Bqu — ¢ > 0, then (i) = fu.(i) — c.

(¢) Whenp >0, bothu,(i,w) and v,(3) are strictly increasing tn i for anyt > 0 and w > 0. When
p =0, they are nondecreasing in 1.

(d) For anyt and any 1, u,(3, w) is nondecreasing tn w.

Proof:
e Proof of (a)
Using (5), we can rewrite (3) as follows. Because ¢ < Bqu, for any ¢, we have

z1(1) = ma.x{ﬁvg(i — ¢, Bzo(1)}

= meuc{ ﬁq# ¢, 0}
> -:Li;ﬁqp —c>0= zo(z) (9)

hence,

wi(i,w) 2 pui(@— 1) + qw+ (1 — p)zo(i — 1)
= pui{i — 1,w) + quw
> plpui(z - 2,w) + qw) + qw

> 11_—1;410 = ug(i, w) (10)
Immediately from above, we get v1(7) > vp(z). Now assuming v;(¢) > vi—1(2) and z,(z) > z,-1(2)
for all ¢ > 0, we have

max{fv,(i) — ¢, Bz(3)}
> max{fuv,_1(i) — ¢, Bzi_1(5}} = (3}, (11)

Zi41 (?-)

accordingly,

upt (1, w) = max{z+1(1), qw}
> max{z (1), quw} = u (1, w). (12)



Furthermore, assume u¢41( — 1,w) > % (¢ — 1,w) for any w, then the following can be obtained:

w1 (3, w) = max{z41(8), puyp1(f — Lw) + quw + (1 — p)z (6 — 1)}
> max{z(d), pue(t — L, w) 4+ qw + (1 ~ p)z(i - 1)}
= (i, w). (13)

Thus, it follows by double induction that (¢, w) is nondecreasing in ¢ for any given ¢ and w, so
also are (2} and z:(2) for any given <.

s Proof of (b)
Since fqu—c > 0, it is clear that fvg (i) —c—LBzp(z) = 0 for any ¢. Assume Bv,_1(i})—c~Fz—_1(i) >
0 for any 1%, that is, 2z;(7) = Bv;—1(¢} — c¢. Then, we have
Bui(i) — ¢ — Bz (i) = Bu(i) — ¢ — B(Bvi-1(2) — ¢)
> fu-1(8) — ¢ — B(Bur-1(8) — o)
= (1-B)(Bvi-1(i} — ¢)
> (1= B)(Buol) —¢) 2 0. (14)

Therefore, we get 2z;(¢) = Sv~1(i) —cforany £ > 1 and 7 > 1.
Consequently, it follows for ¢ > 1 that

. ] max{fv(3)—c, pu(i—1, wl+qu+(1-p)(Bvia(i—1)~c)}, 22,
i, w) = { max{ﬁv,_i(l)——c, qul, e g . ’ i=1. (15)

e Proof of (¢)

When p > 0, it is obvious from (7) that both ug(i,w) and vg(z) are strictly increasing in ¢. Let
v;_1(2) be strictly increasing in 7. Then, clearly u,(1,w) > w,(0,w) for w > 0. Furthermore, we
suppose that 1, (4, w) > u,{( — 1,w) for w > 0. Then we have

(i + 1,w) = max{Bv;—1(i + 1) — ¢, pwe(Z, w) + qw + (1 — p)(Bvi-1(3) — ¢)}
> max{fv;_1(t) — ¢, pu (i — 1, w) + quw + (1 — p}(Bvi—1(i — 1) — ¢}}

= uy(i,w), (16)
w(i+1) = / w(i + 1,)dF(€)
> [ wii, €)AF (€) = wy(3). (17)

Hence, if 11 (¢, w) is strictly increasing in ¢, so also are w;(¢,w) and v;(7). Thus, it is proven by
using induction that w,(¢,w) and v,(3) are strictly increasing in ¢ for any ¢ and w > 0.
For p = 0, the proof is basically the same as above.

¢ Proof of (d)
Easily proven by induction.

Using (2) and (15) recursively, we can calculate v,(z) starting with the final conditions (6), (7)
and (8).

4 Structure of Optimal Policy

Now define g;(z,w) as follows:

[ puli- Lw)Hqut (1= p) B G—1) — o) - (Bua () — o), 22
‘”(“”)‘{qwt—(ﬁw..l(l)—c), | o i=1.
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Lemma 2 For any givent > 1 and i > 1, gi(3,w) =0 has a unique solution w = hy(i) € [0,1).

Proof: It is obvious from Lemma 1(d} that g,(7,w) is strictly increasing in w. First, for ¢t > 1,
we have

9:(1,0) = —(Bv1-1(1) — ¢) £ —(Bwo(l) — ¢) £ 0. (19)
Suppose g;(z — 1,0) <0, that is, u,( — 1,0) = Bu—1( — 1) — ¢. Then, we have

9:(5,0) = pue(i — 1,0) + (1 = p)(Bve—1(i = 1) — ¢) — (Bue-1(3) — ¢)
= p(Bve-1(¢ — 1) = ¢) + (1 = p)(Bve—1(f — 1) — ) = (Bue—1(3) — ¢)
= p{ve-1(t — 1) —v1(3)) 0. (20)

Therefore, we obtain ¢;(¢,0) <O0forallt>1and¢ > 1.
Next, we shall show g;(7,1) > 0 for £ > 1 and 7 > 1. Since there exists a £ € [0,1] such that

(2, &) < (3, 1), it follows that
1 1
v(?) :]0 we (1, £)dF (£) <f0 w (4, 1)dF(§) = w (i, 1), ©2>0. (21)
Now, g1(1,1) = q(1 — Bu) + ¢ > 0. Let g;—1(1,1) > 0, so w,(1,1) = q. Then,
9:(1,1) =¢— (Bu-1(1) —¢) > g = fu1(L,1) +c=¢q(1 = f) +c > 0. (22)
Therefore, we have g;(1,1) > 0 for all £ > 1. Since u1(z —1,1) > Bvg(z — 1) — ¢ for 7 > 2, we have

91(6,1) =pu (i -1, 1)+ g+ (1 —p)(Buvo(i —- }) —¢) — {Bvg(i) — ¢)
> g+ Bluo(i — 1) —w(3)) = {1 - Bp"~ ') > 0. (23)

Suppose ¢;—1(3,1) > 0 for all 2 > 2. Then,

a4, 1) =pu(i—- 1L, 1)+ g+ A = p)(Br—1(i = 1) — ¢) — (Bvi—1(5) — ¢)
>pu(i—1,1)+ g4+ 1 —p)(BPri1(i - 1) —¢) — v,—1(3)
=pu(t— 1L, 1)+ g+ (1 -p)(Pv1(i—1)—¢)

— [max{Bua(i) - ¢, puici G = 1, + g€ + (L= p)Furcali — 1) = }F(E)
= [min{puli - 1,1) + ¢+ (L = P)Buiali = 1) = & = (Bue-ali) — ),
p((ueli = 1,1) = weea(i = 1,8)) +g(1 - ) }aF(€)
> [min{a1(i 1), 41 - O}FE) > o0. (24)

Hence, we get g,(¢,1) > 0 for any ¢ > 1 and ¢ > 1. Thus, we verify that ¢,(4,w) = 0 has a unique
solution w = hy(z) € [0,1). N

We call 2,(z) a critical value when the hunter has 7 bullets and ¢ periods remaining. In general,
gi(i, he(2)) = pmax{Bve—1(i — 1) — ¢, w (i = 1, ()} + qhu(d) + (1 — p)(Bui~1 (s — 2) — ¢)}
+ahi(?) + (1 = p)(Bui-1 (i — 1) — ¢) — (Bui1(3) — ¢)
2 qhy(2) + Bv1(E — 1) — v (3)), (25)

accordingly,

hi(?) < B(vi-1(8) —vi—1(i — 1)) /q. (26)
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The above inequalities (25) and (26} are often used in the proofs below.
Lemma 3 Whenp >0, foranyi > 1 andt > 1, the following hold true.

he(d) 2 Ri(i+1) & h(i+1) = B(v—1 (i + 1) ~ v (d))/g,

h(d) < he(i+1) & Re(i+1) < Blu—1(E+ 1) —v1(8)) /4.
When p =0, we get he(i + 1) = B(vi=1(E+ 1) —v—1(8)) /g for anyi> 1 and t > 1.
Proof: First, we shall verify the case of p > 0. If h;(3) > Ay (7 + 1), then we have

g+ LA +1)=gh(t+ 1)+ Bvim1(t+ 1) —ve1(2)) =0. (27)
Conversely, if (i + 1) = B(ve~1 (& + 1) — v;—1(3)) /g, then we get

98+ 1, he (0 + 1)) = pu (i, b2 + 1)) = p(Bvr1(2) — ) =0, . (28)

from which we have
w8, he(i 4+ 1)) = o1 (2) — c. (29)

Immediately, we obtain A,() < A(i+1) & h(i+1) < Bvi—1{2 + 1) — v;,—1(2)) /g from the above.
When p = 0, we can easily verify it because g;(i + 1, w) = w -+ f(vi-1(3) — vi—1 (¢ + 1)) for all
i>landt>1. 1

Lemmad4 Fort>1landp >0,

B2vi-1(1) = vi—1(2)) = > (=)0 & ~y(1) > (=) (2).

Proof: Because hy(1) = (Bv-1(1) — ¢)/q for t > 1, we have

g1(2, (1)) = ghy(1) — B(ve-1(2) — w1 (1))
= B(2v4-1(1) —v-1(2)) — ¢, (30)

from which we immediately get the statement in the lemma. N

Fort > 1 and p > 0, we can easily obtain 8(2v,—1(1)—v;—1(2)) —¢ < 0if and only if (1) < h,(2),
as a converse of the above lemma.

Lemma 5 Foragiveni> 1 andt> 1,

(a) h(@) > h(i+1) = 2u1(2) —vi1(E— 1) — v (B + 1) > 0,
(b) m(2) 2 (G +1) = 2v1(3) —vi—1(i — 1) — v £+ 1) > 0.
Proof:  First, we shall prove (a). If h(2) > hy{(z + 1), then

0< gt + 1 () = qhuld) — Bloe-1(E + 1) — vi—1(3))
< BRuy-1(2) —v1 (i + 1) —v1(i - 1)), 122, (31)

0 < g:(2,(1)) = qhy(1) — Blvi—1(1) — v:-1(2))
= B(2vu_1(1) —v;_1(2)) — ¢
< B(2v—1(1) = v;—1(0) — v;—1(2)). (32)

We can casily show (b) by replacing < with < in the proof above. 1
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From Lemma 5(b), we have the following corollary.
Corollary 1 Fora giveni> 1 andt 2> 1,
2?.?1...1(1’:) - 'U;_l(’!: - 1) - ’Ut_l('i -+ 1) <0 = hg(z) < ]Lt(‘&' -+ 1)

Lemma 6  If h(i) = B(vi-1(2) = vi-1(2 — 1)) /q for a given 1 > 2, then
01 (8) —ve1 (i + 1) —vea(E = 1) > 0 = hu(2) > ko2 + 1)

Besides, if 2vi—1(2) — v4—1(G + 1) —v;~1{ — 1) = 0, then h,(2) 2 h (i +1).

Proof: Clearly we have _ ] ]
0 < B(2v-1(8) —v—1 (¢ + 1) —vgr (i — 1))

= gh(3) — Blv—1(E 4+ 1) — vp-1(3)) (33)
< q(he(3) = R (i + 1)). (34)

Similarly, we can prove the latter half.
Theorem 1 The critical value hy(3) is strictly decreasing in © for a given t if and only if
B@vi_1(1) — v (2)) — ¢ > 0, (35)
and
20-1(3) —v—1(i = 1) — v (E+ 1) > 0, (36)

for all 1 > 2. In addition, hy(2) is nonincreasing in i if and only if B(2vi—1(1) —v-1(2)) —c >0
and 2v;—1(i) —vp1G— 1) — w1+ 1) 20 foralli > 2.
Proof: Now we shall show the former half of the theorem. If h,(2) is strictly decreasing in %,
then we can obtain

B(2v—1(1) = v1-1(2)) — ¢ > 0, (37)

from Lemma 4 and
20p1(3) — v (8= 1) — v, (i 4 1) > 0, (38)

for any given ¢ > 1 by using Lemma 5(a).
The sufficient condition can be proven as follows. From Lemma 4, we have h,(1) > h,(2) and

h(2) = B(vi-1(2) — ve-1(1)) /g (39)
By using Lemma 6, we get h(2) > h,(3), so
h(3) = ﬁ(‘f-’t—l(3) - Ut—l@))/‘]- (40)

Repeating the same procedure, we obtain b, (i) > hy(z + 1) for all 2 > L.
In a similar way, we can prove the latter half as in the proof above. 1

Theorem 2 If (i) is strictly decreasing (nonincreesing) in i for a given t, then

20,(5) —w(i=1) = w(i+1) > (2)0, i> 1.

Proof:  We shall only prove the case that h(2) is strictly decreasing in ¢. When A,(z) is nonin-
creasing, it can be proven by replacing > with > in the proof below.

From the hypothesis of the theorem, Lemma 3, and Theorem 1, the following can be said for a
given &:



(a) he(?) = Blu—1(B) —wi(i - 1)) /g, 122,

(b) A(2v—1(1) —v-1(2)) —c >0,

(e) 2v1(3) = Vg1 (G — 1) — w1 (4 1) >0, 22

Now, let 4,(%,£), B,(3,€) and C,(z,&) satisfy the following equations:

he(i) hy(i—1) 1
(i) = wi=1) ~ (4D = [TAGOFO + [ TBGOFO +[  Cl60aFE)
i>2, (41)
he(1) 1
2D = uf0) 0 = [T AQLOFO+ [ Bi1OIFE), (42)

First, we have for 0 <& < h,(1)
Ai(1,8) = 2(Bvp-1(1) — ¢) — max{B(ve-1(2) — ), pus(1,£) +¢§ + (T — p)(Bve—1(1) — c}}
= min{f(2v-1(1) = v-1(2)) — ¢, (Bre-1(1) —¢) — g€} >0 (43)
and for k(1) <€ <1
By(1,€) = 2¢¢ — (1 +p)g€ — (1 — p)(Bvi-1(1) — ¢)
> (1-p)(gh:(1) — (Bre-1(1) — c)) = 0. (44)
Besides, A;(1, hi(1)) = B;(1, hy(1)) = 0. Because F(w) does not concentrate on a single point, we
get 2v,(1) — v, (0) — v, (2} > 0.
Next, we consider the case of 1 > 2. If 0 < £ < hy(2), then
A (3,8} = 2(Bvi—1(3) = ¢) = (Bui—1 (i — 1) — ¢) — max{Bu1 (¢ + 1) — ¢, ¢§ + (Bur—1(2) — )}
= min{B(2vp-1 (&) v (- 1) —vi1 (i +1)), Bt () —ve-1(i—1))—g€} >0. (45)
If hy(2) < & < hy(2— 1), then
Bi(i,€) = 2(g€ + (Bu—1(z— 1) — ) — (Bui—1(t — 1) — ¢)
—~((1+p)gé + (1 = p)Buiy (3) + pBu—1(i — 1) — ¢)
= (1-9)(g€ - Bor1(6) — via (i - 1)) >0, (46)
If hy(i — 1) < € <1, then
Cli,€) = 2(5,€) — (i — 1,€) = (pua(i, &) + g€ + (1 = )(Buims(6) — 0))
= ~(1—pPw(i—1,6) + (1 —p)gt
~B(1 — plu1(8) + B2 — p)(1 — plu1 (i — 1) — (1 — p)c
= —(1=p)’pus(i — 2,€) + (1~ p)pgé — B(L — plvi-1(3)
+B(2 = p)(1 — p)vr-1(i — 1) = B(1 = p)uii1 (i = 2) = (1 - p)’pe
= pCi(i— 1,§) + (1 = p)Rui—1(i — 1) — w1 (i — 2) — vy (), 223 (47)
In order to verify Cy(,€) > 0 for a given ¢ and £ € (hy(¢ — 1), 1], we must prove Cy(z — 1,£&) > 0 for
hi(1—1) < € < 1. Now, we get for hy(i — 1) < & < hy(i — 2)
Ct(?‘ - 1»‘5) = 2”!(1: - 116) - ul("': - 216) - (Put('i - 135) + QE + (1 - p)(ﬁvt—l(z' - 1) - C))
= —(1-p)u(i—2,8) + (1 - p)gt
—B(1 = pvee1 (G — 1)+ B2 — p)(L = plue (i — 2) — (1 - p)%e
= (1= p)(g — Blor-1i = 1) —v-1(i—2))) > 0 (48)
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and for (1 —2) <& <1
Ci(i—1,8) =pCii —2,6) + B(L = p)2v—1(i = 2) = vy (i = 3) —ws1 (i — 1)), i2>4. (49)

Therefore, if Cy(i—2,£) > 0 for h(i—2) < £ <1, then we get Cy(i—1,€) > 0 for hy(z—2) < £ < 1.
Below, it suffices to show Cy(2,&) > 0 for k(1) < £ £ 1 by repeating the same procedure. For
he(1) < € €1, we obtain
Ci(2,6) = —(1 —p)*u(1,8) + (1 - p)gt
—B(1 - plue—1(2) + A2 = p)(1 — P (1) ~ (1~ p)e

> (1= ppghi(1) = B(L = p)vi-1(2) +B(2 = p)(L ~ plur—1(1) = (1 ~ p)’c

= (1= p)(BCu1(D) = vi1(2)) — ¢) > 0. (50)
Accordingly, we get Cy(2,€) > 0 for hy(2—1) <€ L 1.

In addition, A;(z, he(2)) = B:(3, he(7)) = 0. Because F{w) does not concentrate on a single
point, we get 2v;(z) — v (i — 1) — vy(s + 1) > 0 for a given ¢ > 2. Eventually, it follows that
2uy(2) — vyt — 1) — v (i + 1) > 0 for all 4 > 1 if hy() is strictly decreasing in<. &

5 Case with No Search Cost, i.e. ¢=0

Lemma 7 Ifp > 0, then hy(i) is strictly decreasing in ¢ for allt > 1, and if p = 0, then
nonincreasing in t.

Proof:  First, we shall prove the case of p > 0. Then, it is obvious that
2vp(2) —wo(i — 1) —vo(z + 1) > 0, (51)

for all 4 > 1. From Lemma 4, h1(2) < k1 (1), so h1(2) = B(ve(2) — vo(1))/q. By using Lemma 6
repeatedly, we can show that h(7) is strictly decreasing in 7. From Theorem 2, we get

201(7) — v (- 1) — v (2 +1) > 0, (52)

for all 2 > 1. Repeating this procedure in ¢, we obtain that h(Z) is strictly decreasing in ¢ for any
given t > 1.

When p = 0, it is clear that 2up(z) —vg(i—1)—vo(+1) > 0 for all ¢ > 1, so h;(2) is nonincreasing
in 4. From Theorem 2, 2v1(z) —vi(i— 1) —v1{i 4+ 1) > 0 for all 7 > 1. Repeating this procedure, we
can prove it. 1

The following corollary is clear from Theorem 2.

Corollary 2 When p > 0, v,(3) is strictly concave in ¢ for allt 2 0. When p =0, it is concave
n 1.
Furthermore, if § = 1, then we can get the following statement:

Corollary 8 Iff8 =1 and ¢ =0, then (i) is nondecreasing in t for any given ¢ > 1 .

Proof: It is clear that u,(1,w) — u,{0,w) > v,—1(1) — v;—1(0). Suppose
w(t—Lw)—w(i—2,w) 2v-1—1)—v1(z—-2), 1>1. (53)
Then, we obtain for 0 < w < (%)

w(t,w) —w (s — L,w) =v—1(8) — v (£ — 1), (54)
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for h(3) < w < k(2 = 1)

we (i, w) — we(i — Liw) = w(t,w) —v—1(i = 1)
> ve_1(i) = veey (i — 1) (55)

and for (1 — 1) <w <1

w(t, w) — (i~ Liw) = plug(i — Liw) —u,(t ~ 2,w}) + (1 = p)(vi—1(¢ = 1) — v,—1 (£ — 2))
2 v1(i— 1) — v (i - 2) (56)
> v-1(8) — w1 (i~ 1). (57)

In transforming (56} into (57), we used Corollary 2. The above relation still holds even if we
integrate (57) in terms of w. Hence, we have

v(d) —vi— 1) 2 v1(@) —via(i—1), 21 (58)

‘Sinca h,(2) is nonincreasing in ¢ for all ¢ > 1, hi(Z) always equals to B(v—1(3) — ve—1(& — 1)/q.
Therefore, h;(z) is nondecreasing in¢ for all¢2> 1. N

6 Case with Search Cost, i.e. ¢ >0

We can conjecture that the more bullets the hunter may have, he may shoot at even the smaller
valued targets, that is, k(%) is decreasing in . However A;(%) is not always decreasing in 7 if ¢ > 0.
Now we shall show a simple example where /,(7) is not decreasing in <.

Because hi(1) = (Bvo(1l) — ¢)/¢, we have

91(2,h1(1)) = max{ghi(1) + B(vo(1) — vo(2)),
(1 +plghi1(1) + (1 = p){Buo(1) — ¢} — (Bvo(2) — ¢)}
= B(2vo(1)—wvo(2))—¢
= (1 —plgp —c. (59)

If B(1-p)gp < ¢ < Bqp, then ¢1(2, h1(1)) < 0. Therefore, in this case, it follows that k(1) < h1(2).
Like this, it may be possible that k() becomes increasing in 7 for a certain interval. To put it more
concretely, () may become such as that depicted in Figure 2. The figure implies the following in
terms of the optimal decision policy.

(1) Suppose a present target value is w,. If he has more than eleven bullets, then he should
continue to fire until either; he gets it, the remaining number of bullets becomes less than
twelve or it escapes. If he starts with less than twelve, then he should not fire and search for
the next target.

{(2) Suppose a present target value is wp. If he has more than six bullets, then he should continue
to fire until either; he gets it, the number of bullets in hand becomes less than seven or it
runs away. If he starts with more than two and less than seven, then he had better not fire
and search for the next target. If he has one or two bullets, then he should fire until either;
he gets it, spends all the bullets or it escapes. Here, it should be noted that there may exist
two critical points 2. and 2* (4. < ¢*) in terms of the number of bullets for one target value
(think about critical points of ¢ for w). It goes without saying that if k;(2) is nonincreasing
in 7, then such a thing never occurs.

11



0 i, 5 10§

Figure 2 Relation between ¢ and w

(3) Suppose w = w,. In this case, he should continue to fire until either; he gets it, spends all the
bullets or it runs away.

Now we have lim; .o hy(2) = 0 because S{v;—1(¢) — v (2 — 1))/¢ converges to zero as i — oo.
Therefore, this leads us to the following lemma.

Lemma 8 If hy(3a) < hi(iq + 1) for a certain i,, then there ezists iy > 1, such that hy(ip) >
h; (Zb - l) .

On the other hand, we get the following condition by Lemma 4, Lemma 5, and Theorem 2.

Condition 1 A necessary end sufficient condition for which hy(i) is nonincreasing in ¢ for all
t>11s
B(2v(1) — v (2)) —c > 0, (60)

for all £ > 0.
From the above condition, we shall show the existence of intervals of ¢, denoted by Lemma 9
that will be proven below. In preparation of the description and proof of Lemma 9, we define some

symbols as follows. Because we can regard v(7) as a function of ¢, we shall use the symbol v,(z,c)
instead of v;(z) if necessary. In the same way, (7, ¢) will be also used. Let

Dy(e) = B2u(1,¢) — v (2,¢)) — c. (61)
Let the limits of v (3, ¢), hy(%,¢) and Di(c) as ¢ — oo be designated by the symbols without the
subscript ¢, i.e. v(z, ¢}, h(7,¢) and D(e).

Lemma 9 Iff < 1, then there exists a positive number c. for which hy(Z,¢) is nonincreasing in ¢
for any t and ¢ € [0,¢c.]. In addition, if B <1 and p > 0, then there exists c* € [c., fqu) for which
hi(1) < hy(2) for any t and c € [¢*, Bqu].
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Proof: Throughout the proof, we discuss only the case of # < 1. It is clear that v,(1,c) and
v4(2, ¢} are continuous functions of ¢ € [0, Bgu] for any given ¢ > 0. Now we have

v(l,¢) —w(l,c) = fma.x{ﬁv(l,c) —c, g }dF(£) — jmax{ﬁvt_l(l, ¢) — ¢, g€} dF(§)

< [max{Bo(1,0) = vi-1(1,6)),0}4F(€)
= ﬂ('U'(l, C) - Ut—l(li C))

< A(v(1,¢) — w(l,0) < B (62)

Let T = loge/log 8. Then, for any t > T, we get
0<v(1,0) —v(1,0) < B <e. (63)

Therefore, v;(1, c) uniformly converges to v(1,¢) as t — oo, so v(1,c) is also a continuous function
of ¢. In a similar way, ¥(2,¢) also can be shown to be a continuous function of c. Eventually, it
follows that D;(c) is a continuous function of ¢ for any given ¢, and so also is D(c).

If ¢ = 0, then hy(1,0) > ~,(2,0) for all ¢ > 1 from Lemma 7. And we get ;(2,0) < 1 for all ¢

from Lemma 2. Hence we have
Dy (0)/8 = 2v,(1,0) — v:(2,0)
he(2,0)
~ /0 B(2vi-1(1,0)—ve-1(2, 0))dF(€)

hi(1,0) 1
+ £e(2.0) (ﬁv‘"l(l’O)_qs)dF(E)+/h‘(110)(1"p)(‘?E_ﬁ'Ut—l(l,0))dF(f)
he(2,0)
= o[ h(,0=h(2,0)F(©)
he(1,0) 1
to [ WLO-OFO+e [ A-pE-u(LO)FE >0 (6

In addition, we get D(0) > 0 since h(1,0) = fv(1,0)/¢ < f < 1.
On the other hand, if p > 0, then we have

v(1, Bgp) = v (1, B = qp, (65)
v(2,Bqu) > w(2,Byp) =fmaX{ﬁvz-1(2,ﬁq#) — Bap, (1+p)g&}dF(w) > (1 +p)gp, (66)

therefore,
D(Bgu) < D(Bap) < 2Bqp — B(L +plap — Bgp < 0. (67)
If » = 0, then we obtain
vi(1, Bap) = qu, (68)
w(2,Bap) = [ max{Bvis (2 Paw) — Bau, a€}dF (w) = gp (69)

where the third term of (69) can be easily proven by induction. Consequently, we get
Dy(Bqu} = 2Bqu — Bap — Bgp = 0. (70)

Because v(1, Bgu) = vi(2, Bgu) = qp for all £ > 0 and p = 0, we have v(1, Bgqu) = v(2, Bgp) = qp,
so D(Bqu) = 0. Accordingly, we come to:

13



(a) Let ¢ = min{c | Dy(c) =0, ¢ € [0, fqu]}. Then, ¢ > 0 for all .
(b) Let ¢f = max{c| Di(c}) =0, ¢ € [0,Bqp]} and p > 0. Then, ¢} € [ci.,Fgp) for all ¢.

Furthermore, define c. = infy»o ¢« and ¢” = supy5gc;. Then, we have 0 < ¢. < ¢ < fqu for
any p since D(0) > 0, and ¢* < fgp for p > 0 since D(Bqu) < 0. Therefore, the length of the
interval [0, c.] is not zero for any ¢ and r, and the length of the interval [c*, Bqu] is also not zero
for p > 0. With this the proof is complete. 1

Remark Whenf = 1, wehavev(1,0) > g for all £ € [0, 1] since v(1,0) = fmax{v(1,0), ¢¢}dF (&)
and F(£) < 1 for £ < 1. Hence, v(1,0) = ¢g. And we have v(2,0) = 2¢, so, D(0) = 0.

7 Case with a Sufficiently Large Search Cost, i.e. ¢ > fgu
Now, using (2), (3) and (5), we shall examine the case of ¢ > Bqu.
u(f, w) = max{z(), pu(t - Liw)+qu+ (1 -p)z(i-1} t =1, 21,
wi) = [ OdF©),
z(1) = max{fv_1(3) — ¢, fz—1(8)}, t > 1.
Suppose ¢ > B(1 — p)gu/(1 — p). Then Pvy(3) — ¢ < 0 for all 4, so
21 (1) = max{Buo(3) — ¢, fz (i)} = 0. (71)
Hence, we get

ui (8, &) = max{z1(i),pus (i — 1,) + ¢§ + (1 — p)z1 (i — 1)}
= pmax{z1(i — 1), puy(i — 2,€) + g€ + (1 = p)z1(i — 2)} + ¢

_1-r 3 (72)

Accordingly, we obtain
22(9) = max{p [ w1 (i, )AF(E) - e,Bz1 (i)}

1-pt
T, c,0} =0,

= max{f

2,(3) = 0. (73)

As a result, in this case, an optimal policy is not to go shooting at ail.
Next, suppose fqu < ¢ < B(1 = p')gu/(1 = p). Now let ¢ = (1 — p*)qu/(1 — p), from which
we have

k(c) = logp(l - (15—(”1:)6)‘ (74)

Then, for ¢ > x(c), we get

z1(2) = max{Bvo(?) — ¢, Bzo(i)} = Pvo(i) —c,
z3(1) = max{fvi(i) — ¢, Bz1(3)} = fun1 (i) — ¢,

z(2} = Pv—1(d) —c. (75)
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On the other hand, if the number of bullets becomes less than x(c), then it follows from the same
reason above that z/(i) = 0.

Hemnce, in this case, the optimal decision policy becomes identical to the case of ¢ < Bqu till
the remaining number of bullets becomes less than #(c). If the number becomes less than x(c), it
is optimal not to go shooting from the next time point on. However, if he has not got the present
target yet and it still remains, then he should continue to fire until either; he gets it, spends all the
bullets or it runs away.

8 Case of Infinite Bullets

Since both u;(7,w) and v(:) are increasing in ¢ and upper-bounded for any ¢ > 0, they have
finite limits as 7 — oo for any given ¢. Let u {w) = lim;—.o (2, w) and v; = lim;_co v¢(2). Then,
immediately we get uo(w) = quw/(1 — p) and vy = git/(1 — p). By induction, it can be easily shown
for any given t > 1,

(IR, B=1,
l-p l—p
ut(w) = qu 1 _ﬁt Bqu (76)
1
L 1""p+1_ﬁ(1_‘p C)! ﬁ< b]
4
w(trllq‘”’—t, p=1,
v = < B 77
i l_ﬁH-l qu +1_ﬁtc ﬁ<1 ( )
[ 1-8 1-p 1-8" ’

from which we have

{ oG, )0=1,
w(w) = lim w(w) = qw 1 Bap (78)
{—o0 1—p+1—ﬁ(l—p c), g <1,
{ 00: ﬁ_ 17
v = lim vy, = 1 Bap (79)
t——»oot _l—ﬁl p_cs 16<1'

In addition, we have already mentioned the following in Section 6.

hy = lim hy{(i) =0, t>1. (80)
1—00

9 Results of Numerical Examples

In this section, by using numerical examples, we will examine the relationship of h,(7) with ¢, 1,
and other related parameters, 3, ¢, r, and ¢. Here, we use a discrete uniform distribution function
with 101 mass points, equally spaced on [0, 1]. All the figures below illustrate the relation between
7 and A,(¢). Now, we summarize the implications that are deduced from Figures 3 -8.

(1) If e =0, then the critical value »,(2) is nonincreasing in ¢ for all ¢ > 1 (See Figure 3(a,d)).

(2) If ¢ > 0, then A (7) is not always decrcasing in 7 (See Figure 3(b,c,e)). We sce that the position
of the maximal value shifts to the right as the planning horizon becomes longer. But the
maximal value does not always exist. In fact, as seen in Figure 3(c), it doesn’t appear if the
planning horizon is less than or equal to five.
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Table 1: Values of D;(c) (q=0.9,r=0.1)

l

t [B=08,c=10"]|8=1,¢c=10"[B=1,c=10"]f=1c=107 |

0 0.36755000 0.40850000 0.40949000 0.40949900

1 0.19188098 0.21291981 0.21395330 0.21396271

2 0.15190272 0.16463288 0.16586718 0.16587843

3 0.13178598 0.13661378 0.13805264 0.13806577

4 0.12041073 0.11747495 0.11911669 0.11913169

S 0.11373292 0.10330834 0.10515039 0.10516724

10 0.10474813 0.06461562 0.06742139 0.06744734
50 0.10410564 0.00998829 0.01818530 0.01828057
100 0.10410564 0.00015102 0.00946883 0.00964782
500 0.10410564 -0.00194995 0.00126448 0.00194734
1060 0.10410564 -0.00194995 0.00007398 0.00085488
1500 0.10410564 -0.00194995 -0.00015226 0.00045219
2000 0.10410564 -0.00194995 -0.00018908 0.00024057
2500 0.10410564 -0.00194995 -0.00019427 0.00011673
3000 0.10410564 -0.00194995 -0.00019494 0.00004239
3500 0.10410564 -0.00194995 -0.00019502 -0.00000193
4000 0.10410564 -0.00194995 -0.00019503 -0.00002805
4500 0.10410564 -0.00194995 -0.00019503 -0.00004304
5000 0.10410564 -0.00194995 -0.00019503 -0.00005149

(3) In Figure 3(f), k(i) is nonincreasing in ¢ in spite of ¢ being positive. From Condition 1, /,(7)
is nonincreasing in 7 for all £ > 1 if and only if D,(c) > 0 for all £ > 0. The results of the
calculation of D(c) for t = 0,1,...,5000 are as shown in Table 1%. In the table, D;(c) secems
to converge to a positive number 0.104--- for § = 0.9 and ¢ = 10~2. However it becomes
negative for large ¢t when f=1and ¢ = 1072, Evenif 8 =1 and ¢ = 10~%, D3500(107%) is
negative. From these, we can expect that h,(4) is nonincreasing in 7 for all ¢ > 1 if and only
if ¢ =0 when § =1 except the case of p = 0.

(4) If ¢ = 1, then Iz} is nonincreasing in ¢ for any set of  and c(See Figure 4). This case is
reduced to an optimal stopping problem in which ¢ offers can be accepted. We shall conjecture
that the property holds for r = 1.

(5) We can regard h(7) as a function of £, ¢ and r similar to ¢. So we can use (4,8, 4,7, ¢)
instead of k(7). The critical value h(z, B, q,7,¢) is nondecreasing in § and nonincreasing in r
and ¢ for given other parameters (Sec Figure 5, 7, and 8). These properties, if they are true,
don’t conflict with our intuition.

(8) From Figure 8, we find that (¢, 8,q,7,¢) is not monotone in ¢ for other given parameters.
It may be natural that the fact is concerned with the property such that h,() is not always
decreasing in <.

(7) From Figure 3-8, we can guess that the critical value f;(7) is nondecreasing in ¢ for all 7 > 1
not only in the case of § =1 and ¢ =0, but also in the case of any set of # and c.

'The distribution used in the example is a continuous uniform one on [0,1).
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10 Conclusions
e Optimal Decision Policy

First, if ¢ < Bqu, then the policy is as follows. If you have at least one bullet, then go shooting.
Suppose you see a target whose value is w when you have ¢ bullets and { periods remaining. In this
case, the following can be said:

(1) If w < hy(2), then search for the next target by paying c.

(2) Fw>h(),wzht—-1),.., w2 hkii-k)and w < (i —k=1),0 <k <¢— 1, then
continue to fire until either; you get the target, the number of remaining bullets becomes less
than % or it runs away.

(8) If w > hy(k) for all & = 1,2,...,%, then fire until either; you get the target, spend all the
bullets or it escapes.

Next, we summarize the policy in the case for ¢ > fgu. When you have ¢ bullets in hand and ¢
periods remain, the optimal policy is as follows:

(1) If : € k(c), then don’t go shooting over the whole planning horizon.

(2) If ¢ > x{c), then go shooting till the number of bullets on hand becomes less than x(c), and
the optimal decision policy for firing is similar to the case of ¢ < Bgu. Suppose the number
has become less than x(c). Then, you should not go shooting from the next time point on.
However, if you have not got the present target yet and it still remains, continue to fire until
either; you get it, spend all the bullets or it escapes.

e Properties of the Critical Value

We have obtained that, if ¢ = 0, then k() is nonincreasing in ¢ for all ¢ > 1. On the other
hand, if ¢ > 0, then we get the following results:

(1) If hy(ia) < hu(ia + 1) for a certain ¢q, then there exists 45 > 45 such that 2y(4) > k(4 + 1).
(2) If B < 1, then hy(7,¢) is nonincreasing in < for all ¢ and ¢ € [0, ¢.] where c. > 0.

(3) If 8 < 1 and p > 0, then A(%,¢) is not nonincreasing in ¢ for any ¢ > 1 and ¢ € [¢*, Fgu] with
c” € [ex, Bgp), that is, hy(i,c) always has an interval of 7 on which it strictly increases.

11 Some Limitations

We have discussed a sequential allocation problem with search cost where a shoot-look-shoot
policy is employed. However it is sure that some of the assumptions restrict the problem. We will
suggest the following provisions to relax these restrictions: (1) The hit probability ¢ depends on the
total munber of bullets he has shot at a present target. This can be also said for the probability of
escaping, r. (2) In this paper, the action of shooting results in only one of two outcomes; “get the
target” or “don’t get the target”. As a variation of this problem, we can consider the case where a
piece of a target can be got in exchange for a bullet. Then, there still remains a decision whether to
shoot the rest of the target or not. (3) When he is going to chase a target, it may happen that he
finds a new target, that is, he can find more than two targets in one period. (4) He can replenish
some bullets by paying some cost if the number of remaining bullets becomes below a certain level.
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