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Abstract We consider a global minimization problem: min{ ¢'z +
diylze X, yeY, (z,y) € Z, y € R \U}_,Gy }, where X and
Y are polytopes in R}' and R}?, respectively; Z is a closed convex set in
Rmtnz: and Gy (h = 1,...,m) is an open convex set in R"2. We propose
an algorithm based on a combination of polylhedral outer approximation,
branch-and-bound and cutting plane techniques. We also show that an
out-of-roundness problem can be solved by the algorithm.
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1 Introduction

In this paper we consider the following minimization problem:
min ¢ z+d'y
st. zeX, yey,

@ m
(v.9) € Z, y€ R\ |J G,
h=1

where X and Y are polytopes in R}* and RI?, respectively; Z is a closed convex set

in R™*"2; and Gy (h = 1,...,m) is an open convex set in R"2; the vectors ¢ and
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d are in R™ and R™, respectively. As in many applications the constraints of (Q)

are usually given as a system of inequalities, we assume in this paper that

Q= {(zy|reX, yeY, (v,y) € Z}
{(@,9) | ¢z, y) <0, i=1,...,k},
(1.1) Gh {ylay) <0} h=1,...,m,

¢ = (Jén

h=1
= {{z,y) | (@yey¢Gl

where ¢; (i =1,...,k) and g, (h =1,...,m) are convex functions. The constraint

gr = 0 is often called reverse convez constraint (see Horst and Tuy [6]). By setting

#a,y) = max, 4(,v),

Problem (@) is equivalent to the following nencenonical d.c. problem:

min ¢'z+d'y

(Q) st @(z,y) <0,
g{y) 20, h=1,...,m.

Note that ¢(-) is a convex function.

Problem (@) includes several important classes of global optimization problems,
such as a special d.c. programming problem, a class of problems with multiplicative
terms [4]. Moreover it certainly contains the canonical d.c. programming.

Recently several algorithms {2, 4, 7] are proposed for solving a special case of
(@) in which only one additional reverse convex constraint is considered. Since a
set of reverse convex constraints can not be represented by a single reverse convex
constraint, their algorithm is not applicable to Problem (Q). The general branch-
and-bound algorithm is a sole method for solving Problem (Q) (section X.2 in [6]),
" which does not make use of the structure of the problem. Since Problem (Q) pos—I
sesses a special structure that the reverse convex constraints are defined only on
the y-space, we devise an algorithm which takes advantage of the specific struc-
ture. Moreover, from practical point of view, it is useful to combine several basic

optimization techniques for problems of medium and large sizes (3, 5].



Our new algorithm is based mainly on a combination of polyhedral outer approx-
imation method and conical branch-and-bound in which the partition is made only
in the y-space. Since only linear programming problems are solved in each step,
it should not be costly to determine a solution for subproblem even the feasible |
region is changed by adding a new cut. Therefore we can incorporate the cutting
plane method whenever a cut is available. The algorithm can be regarded as a
generalization of the first algorithm proposed in [4].

To use polyhedral outer approximation and conical subdivision we assume that
(A1) intQ # 0.
(A2) N™, G # 0 and a point y° € Nj-; G4 Is available.
Furthermore we require that the reverse convex constraints are essential, i.e.,

(A3) there exists a point (z*, y*) such that (z*,%*) € Q, y* € Gand ¢Ty* +d7y* <
c'z +d%y for any (z,y) € D.

The remainder of this paper is organized as follows. Section 2 describes a partition
of D based on a conical partition of R"2. We also show how to find the lower and
upper bounds in Section 2. Section 3 gives the algorithm and proves its convergence.
In Section 4 we show that the out-of-roundness problem [1, §] can be formulated
as Problem (@) and describe the details of the method for obtaining the lower and

upper bounds for this specific problem.

2 The branching and bounding operations

We establish a subdivision underlying the branch-and-bound algorithm in this paper.
Due to the special structure of the problem we first subdivide the subspace R"* and
then build the subdivision on the whole space R™*"2. We use a conical partition
as the subdivision of the subspace R*. The bounding operations are carried out by

solving a series of linear programming problems.
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2.1 A conical partition

Let %2 (i = 1,...,n) be ny + 1 affinely independent points of R"2. We call the
Q = ¥ Azt — ") + 4%\ > 0} the cone

convex polyhedral cone {y € R™
generated by points 3°,2!,...,2". The cone has exactly n, edges emanating from
point y°. We denote it by Cyp. Without loss of generality, we assume that all ' are
on the ball Bi(y*) = {z e R |||z —4" || =1}

A collection D of finitely many cones { Cy,...,C; } defined as above is called a
conical partition of R™ if Ui_,;C; = R™ and intC; Nint C; = @ for i # 7. Wecall a
collection {71, ..., T} }, where T; = R™ X Cj, a Cyo-partition of R"*"2, The set T}
is called a Cyo-partition set.

Let Dy be a given conical partition of R™. A conical partition Dryy of R™ is
sz;id to be a refinement of Dy, if for any C; € Dy there exists a cone Cy € Dy, such
tﬂat C; C Cy. For each cone C € Dy, the collection { Cy, ..., C, } of cones of Diyy
is said to be a conical partition of C if U]_,C; = C. Similarly, we call the collection
{R™ x Cy,...,R™ X C. } a Cp-partition of T = R™ x C.

In our algorithm we repeatedly -refine the conical partition of R™ to yield
{ Di }r=12,.., 2 sequence of conical partitions. The refinement process is called ez-
haustive if for every strictly nested sequence { Cy, } satisfying Ci € Dy and Cyqy C Ci

for every k, there exists a vector Z on B;(3°) such that

lim 2z, =2 forall t=1,..ns.
k=+o0

2.2 The lower and upper bounds

Given a Cy-partition {71, ...,T} } of R™*™, we consider how to compute a lower
bound Lj of ¢'z+d yover (DNP)NT; = (DNP)N(R™ x C;) for j =1,...,n2,
where D is the feasible region of Problem (Q) defined by (1.2), and P is a polytope
containing the optimal solution of (Q). For the sake of brevity, we omit the subscript
j and let T = R™ x C denote a Cye-partition set of { T1,...,T; } throughout this and

next subsections.



Assume that the polytope P is defined by the following system of inequalities:
Ar+ By £<b,

where A, B, and b are matrices and a vector of appropriate sizes. Note that P does
not necessarily contain the whole set €). Denoting Dp = D N P, we propose a
procedure for calculating the lower bound L of the objective function over the set
DpnT.

For the cone C, define for every G, (h =1,...,m) a set of ny points
(21) vt =0 408 -0 with 0 =min{ 0, 9}, i=1,..,m,

where 85, is a given sufficient large positive number, and § = sup{ 8| y°+0(z'—3°) €
Gh }. We denote by 6" the ny-dimensional vector (8%, ...,8% )T, U* the ny X no-matrix

(v1h— o0, ..., ™" — ¢0). Define a half space H" in R™ as

H* = {ye R |e" (UM Hy—-y°) > 1}
y=9y"+ UM eTAR > 1),

= {yeR™
where e = (1,...,1)7. Then the intersection I* of H" and the cone C is written as

" = H'nC
{yeR™|y=y" + UM > 1,0 >0}

(2.2)

We see that for every point (z,y) € PN (R™ x NI,I"), there exist nonnegative
vectors A, At = (A, ., AB T (R =1,...,m), such that-e" A* > 1 and

(2.3) | (2,9) = (0™,4°) + (2, U"N").

Lemma 2.1 For every (z,y) € PN (R™ x N, I*) , \* in (2.3) is bounded
forh=1,.. ,m.

Proof. Let h be an arbitrary index of {1,...,m}. Note that v** — y°® # 0 for all ¢
since 70 is in the open set Gy, and that they are linearly independent. From (2.3)

point y with (z,y) € PN{ R™ x N, I") is written as

y = yO + Uh)\h',



that is
M= (UM My~ o).
Then we obtain
B <Oy =901,

which is bounded since y is in the polytope Y. O

Lemma 2.2 For hy,hg € {1,...,m} if 6" > 0™ then I™ C I*=.
Proof. For y € I™, there exists a vector A > 0 such that eT A" > 1 and
y = yO + UhlAhI
= 04 (P g0 et (T
= 0+ [(z1 =), .., (2" = )R (M L AT
Let t; = 9?’ / 95‘2, which is well defined by 95‘2 > 0, then #; > 1 and we obtain
y = '+ [z - 06082ty (2™ — yo)ﬁfjgtne] (AL, Aﬁ;)T
= 3°+ [(z1 - yO)B}I‘?, ce, (2™ — yo)Ggg](tl)\‘i", ... ,tnz)\fl;)T.

Note that t; A" > 0 for all i and T t;Al > 1. This means y € I". O

Let
L=min{c z+dTy|(z,y) € PA(R™ x N, I*)}.

By the definition of I in (2.2), we have
L=min{c"z+d"y| Ax+By<b,
(2.4) y=y"+ U, h=1,..,m,

M >1,M>0, h=1,.,m}.
The following lemma shows that L is a lower bound of ¢* w+d "y over the set DpNT.

Lemma 2.3

(i) If PN (R™ x N, I*) is empty, then the optimal solution of (Q) is not in
DpNT.



i) If PN (R™ x NP, I") is not empty, then
h=1

L<min{c'z+d y|(z,y) € DpNT}.

Proof. From the definitions of I* and G, we see that {y|y ¢ G} N C C Ny, I*,
then DpNT C PN (R™ x NI, I*). 0

Note that if PN(R™ x NP, I*) = 0 then we define L = +c0. From the above lemma,
it seems that we have to solve a linear program with a lot of linear constraints when
m is large. However from Lemma 2.2, it is likely that we can remove many of such
constraints of I in computing (2.4).

The following lemma is derived from Assumption (A3).

Lemma 2.4 Let (z*,y*) be a global optimal solution of (Q), then y* € R™ is
on the boundary of G.

Proof. Suppose that the optimal solution {z*,y*) of (@) is not on the boundary of
G. Then gi(y*) > 0 for any h € {1,...,m}. Let (z(A),¥(A)) = (Alz*,y*) + (1 ~
A)(z*, v*)) for (z*,y*) of Assumption (A3). Then for any A € (0, 1]

Tz(A) +dTy(\) < Tzt +dTy".
Therefore ¢T2(A)} + dTy(X) < cT2* + d y* for some A € (0,1] and ga(y(A)) > 0 for

all h. By the convexity of Q, we also see that (z(X),y())) € Q. It implies that
(z(X), y())) is a feasible solution of (Q). It is a contradiction. 0

After solving the linear programming problem of (24) we obtain an optimal solution
(z, ) and the corresponding objective function value L. If the point (Z, 7) lies in the
feasible region Dp, it is an optimal solution of min{c¢'z + d"y|(z,y) € DpNT}.
Then the currently considered Cyo-partition set T is not necessary to be subdivided
further. Moreover, L serves as an upper bound of the optimal value of Problem (@).

If (%,7) is not in Dp, then we possibly find a feasible point of () by moving
from (Z,7) along some specific direction. A possible choice of the direction is (¢, d).

Define a point (Z, §) by

(2.5) (&%) = #(c,d) + (Z,7) with 7 = min{ s, sup{7|7d+ 7€ G} }.



If (%,9) € Q, then the value ¢T# + d' § is an upper bound of the optimal value of
(Q). If (2,9) ¢ Q, we fix § and search a test point (#,§) defined by

(2.6) #=2a+ AE—2) with A = min{ 1,sup{ A |(Z+ M&—£),9) ¢ @} },
where
(2.7) i=argmax{c'z|dz <b- Bj}.

Lemma 2.5 If A <1 then (2,9) € Q.

Proof. If any point (z,§) on the line segment ((%,9),(%,7)) is not in , then
sup{ A |+ ME—2),0) ¢ R} 21, ie, A=1 o

2.3 Polyhedral outer approximation and cutting plane

At the beginning of the algorithm, we take the polytope X XY as an initial polytope
P, containing Q. The algorithm generates a sequence of polytopes { P |k =1,2,...}
such that P; D P,--- and each Py contains an optimal solution of (@).

At the kth iteration, we construct a Co-partition over some set T' chosen in the
(k-1)st iteration. By solving linear programming problem (2.4) for all sets in the
partition, we obtain a sequence of lower bounds. We also obtain several, possibly no,
feasible points of (Q), which are generated by solving (2.4) or by (2.5)-(2.7). After
bounding operations (see section 3 for the details) we choose a point with minimal
lower bound to obtain a point (&, Ji), which is an optimal solution of (2.4) for some
Cpo-partition set. If we find some feasible points, then choose one of them, say (&, %)

having the smallest objective function value. We can take the inequality
(2.8) cr+dy<ce+dy

as a cutting plane if the value ¢'i + d'¢ is less than the current upper bound.
Adding (2.8) to the constraints of P will not cut off the optimal solution of (Q).
Moreover, if (Zx, Tr) ¢ ©, compute a subgradient sg(Fx, Jic) of ¢ at (Tx, ) and let

(2.9) Dz y) = [(2,9) = (Fe, Te) 56(Tees Be) + H(Zr, -



Then the inequality
(2.10) l(z,y) <0

will cut off the point (T, Zi) but no any feasible points of (Q) in Py. Therefore we

can define the polytope P4 for the next iteration by
Pey1 = Pon{(z,9) | l(2,y) <0, "z +dy <cTa+dTy}),

However, on the situation that only one of the cutting planes (2.8) and (2.10) or
no cutting planes can be constructed, Pyy; is defined by adding the corresponding

cutting plane to P or keep Piy1 = Py, respectively.

3 The Algorithm

Based on the above discussion we propose an algorithm for solving Problem (Q) as

follows.

Algorithm GO
begin
Construct a polytope P; : P, 2 Q and a Cyp-conical partition D of R"™;
Mii=D;v:=+4o0; k=1,
while M, # @ do
© begin
for each C € M; do
begin
Solve linear program (2.4);
(Z(C), #(C)) := the optimal solution; L(C) := ¢ #{C) + d"§(C);
if (z(C),5(C)) € D and ~ > L(C) then
begin
v:=L(C); (2, 9):

end

Il

(%(C),5(C))

else

begin
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Compute (Z,7) by (2.5);
if (,9) € Dand y>c'2+d"§ then
begin
yi=cTE+dTg (4, §) == (2,9)
end
else
begin
Compute (Z,7) by (2.6) with (2.7);
if (3,§) €D and 7> ¢T3+ d7§ then
begin
vi=cT2+dTg (4,9) =(,9)
end
end
end
end;
Mpp={CeM|LICY<v }
L:=min{ L(C}|C € Mpu1 };

Choose a set C € My satisfying ¢"2(C) + d" §(C) = L;

Ci = C; (T, Te) := (F(Cr), T(Cw));

if v is updated then Ppy; = PoN{(z,y)|c’z+dTy <7}

else Ppyi = Fy
if (Tg, ) ¢ Q then
begin
I = [(z, ) — (Zk, Ue) 159( Bk, Be) + G(Te, Bi) < 0
Pey1 = Peri N{ (2, 9) | ln(z,y) <0}
end
Construct a Cjo-conical partition C of Cy;
Mg = M \{C JUC b=k +1
end;

if 7:= 400 then writeln(’ The problem is infeasible *)
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else writeln(’ The solution is ', (z, ¥))

end,

3.1 The proof of the convergence of the algorithm

If the algorithm terminates within a finite numnber of iterations, then clearly we ob-
tain an optimal solution of Problem (Q). Otller\vise an infinite sequence { (Z¢, ¥x) }
is generated. Let (2*,3*) be a cluster point of the sequence. There exists a sub-
sequence of { (Z, k) } converging to (z*,y*). Since the conical partition of a cone
consists of finitely many cones, there exists at least one cone containing infinitely
many points (Zx, 7). Therefore we can always choose a subsequence { (Zx,, 7k, ) } of
the above subsequence such that (%, %, ) € Cr, and { Ci, } is a nested sequence of
cones.

The following two cases can happen.
Case(1) there exists a § such that for all ¢ > 7, (T, %, )} €
Case(2) for any g there exists ¢ > g such that (Zx,, %, ) ¢ Q- '

In order to prove the convergence of the algorithm we first prove (z*,3*) € Q. If
case (1) happens then clearly (z*, y*) € Q. Therefore we only consider case (2). For
simplicity we assume that the points (Z,, J,) does not belong to § for every g by
taking a suitable subsequence of { (Z,, T, )} if necessary. For a positive ¢ let us

introduce a closed e-neighborhood P(e) of Py, i.e.,

P(e) = {(z,9)|3(z0,%0) € P, || (z,4) — (w0, 30) || S €}

Recall P; is the initial polytope of the algorithm satisfying @ C P,. Then P, C P(e)
and any (z,y) € P, implies (x,y) € intP(e).

Lemma 3.1 The cutting plane functions {I; } are uniformly equicontinuous

on P.

Proof. From the compactness of P(¢) we sce that the convex function ¢(z,y) is

bounded on P(¢). By the definition of subgradient ¢(z,y) 2 [(,¥)—(Zx, Tt) 156(Zt, Ti)
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+ ¢(Zx, Gx) for all (z,y) € P(¢), and consequently for a sufficiently large number M
(31) [(x:y) - (ifk,gk)]%(i'k, ﬂk) S M

holds for all (z,y) € P(e) and all k. Suppose that {ss(Zx, )|k = 1,2,...}
is unbounded, then there exists at least one unbounded component of sg(Zx, ¥x)-
We assume without loss of generality that the first component of s4(Z, Jx) is un-
bounded. By (&, Tx) € Pi, we can take a point (z,y) € P(e) such that (2,y) —
(:Ek,gk)l = (%¢,0,...,0). By choosing an appropriate sign of €, we have [(z,y) —
(Zx, T ))56(Fx, Gx) > M for the sufficiently large k, a contradiction to (3.1). There-
fore { s4(Zk, %) | k = 1,2, ... } is bounded.

Let M, My and M; be sufficiently large numbers such that || (z,y) — (T, %) || <
M, || 36(Z,3k) | € Mz and |d(z,y)] < M3 for all (z,y) € P, and for all £.
Then |l(z,y)| < MiM, + Mj for all (z,y) € P and for all k, which means that
{l(z,9)|(z,9) € P, k=1,2,... } is bounded. Therefore, both sup{ lx(x,y)}|(z,y) €
P, k=1,2,..} and inf{ [i{(z,y) | (x,y) € P, k = 1,2,... } are finite. The desired
result follows from Theorem 10.6 of [9]. 0

Sinée {I(z,9)|(z,y) € P, k =1,2,...} is bounded, by Theorem 10.8 of [9}, there

exists a subsequence { I, } of { I } converging uniformly to a continuous function /,

ie.,
lim sup [l (2,9) - Uz,9)| = 0.
= (zy)e P

We have ’

Lemma 3.2 gi%lkq(ikq,ykq) = 1(z*, 7).

Proof. Since I, converges uniformly to I, we have

Ve > 0,3 ¢ such that Vg > ¢1, sup |l (z,9) — l(z,9)] < /2.
(= 9)€P

From qlggo (Zy» i) = (2, y7) and the continuity of [, we have qlirglo UZkyy Tr,) = U™, ¥7),
ie.,

Ve > 0,3 g such that Vg > go, | 1(Zk,, Tk, ) — (2™, ¥") | L /2.
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Then we have for all ¢ > max{q, ¢},

| g (Baegs Bey) — U™, 97) |

< g (Zays Trg) — UFhg T} |+ | U Ty Try) — 12, 97) |
< sup |l (xy) — Uz o) |+ | UTrys Te,) = 12" y7) ]
(.?J,y)EPI
< e/2+¢/2
= ¢. . 0

Lemma 3.3 IfFl(z*, y*) <0 then (z*,y*) € Q.
Proof. Note that Iy (2,y) = [(%,¥) — (Try, Uro)156(Tgs Tey) + HTiegs Uiy )»
Jimo I (2,y) = U(z,y) and i) G(Zgs Try) = $(27,¥7)-

By the boundedness of s4(ZTk, ., Jk, ), We can find a suitable subsequence of sg(Zs,, Tr,)

converging to a vector 3. Therefore
iz,y) = [(z,9) — (2" y")155 + S(a7, 7).

Then we obtain ¢(z*, y*) = I(z*,y*). By the definition of 2, we have the lemma. O

Lemma 3.4 ,}LIEO ey (T s T ) = 12", ¥7)-
Proof. By qlg& Ik, (T, Tr,) = U(z", ¥") and qlinolo(:ikq, Ui, ) = g:c*,y"), we see that
Ve > 0,3q; such that Vg > ¢, | 1(z", y*) — le, (T, Tr, ) | < €73,

and

V6 > 0,3gp such that Vg > go, || (27, y™) — (T, T, ) | < 6.

From Lemma 3.1, we see that { ! (#,y) } is equicontinous at (z*,y*), i.e.,
Ve > 0,36 > 0 such that if || (z,¥) — (2, v*) || £ 4,

then
| Ik, (2%, 4") — U, (2,9} | <&/3 for all ¢.
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Therefore for all £ > 0 we have that for ¢ > max{q;, ¢ }

[1(z", ™) = Iy (Trgns Frorn) | |
< U 5) — b (T |+ 1 (707 = B (T B |
1, (@, ¥7) = Iy (Fegra> Thga) |
< €/3+¢/3+¢/3

= g. ' 0
Theorem 3.5 (z*,y*) €92

Proof. Since (Zx yys Tkpn) € {(2,9) |l (2, y) 0}, I{z*,y") < 0 by Lemma 3.4.
By Lemma 3.3, it implies that (z*,3*) € Q. O

We have proved that every cluster point of the sequence { Zx, J } generated by

the algorithm belongs to 2.

Theorem 3.6 If the comical partitions generated by the algorithm are ezhaus-
tive then every cluster point of the sequence {(Tx, i)} is an optimal solution of

Problem (Q).
Proof. Let (z*,y*) be a cluster point of { (Zy, 7) }. Assume that {(Zs,,Jx,) } is a

subsequence of { (Zy, Jx) } such that (Zx , %,) € Tk, = R™ X Cy, and qlll‘glo(i‘kq, Tr,) =
(z*,y") and that Cy,, C Ck, for all ¢. By the definition of (Zx,, fi,) and Ci,,

(3:2) Gk, =3 +UEN:, = 3"+ (il = ¢% s 2 =90 (W M) T

where eTAf > 1 and A} > 0. From the definition of vt in {2.1) ( where index k,
is omitted ) we see that {v,‘c:‘ |i=1,.,n,h=1,.,m,q=1,2,..} is bounded. By
Lemma 2.1, we have that {\} |h=1,..,m,¢=1,2,... } is also bounded. Taking a

subsequence if necessary, we obtain that
lim 'u = g hm Ahk = ’y,, for i=1,..,n2 and Z'}{‘ > 1,7{‘ > 0.

g—eoo

Therefore

(33) ¥ = lm gk, =1* + (" -0 0 =) )
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Note that viqh =0+ 0%, (zf —¢°), and 6f};_is taken as Gy or such that vt € OGh.
We see that 9" € 8G, or 9™ is a sufficiently large vector. By the compactness
of P, and (Z,, %) € Py, we obtain that y* € P;. Therefore there exists at least
one vector #* in (3.3) such that 9" € &G, for every h. From the assumption that

{qu } is exhaustive, i.e., there exists a vector Z € R" such that

‘}3130 z{.q =z forall i,
we see that 9" is on the ray {y|y = y* +8(2 — y°),6 > 0}. Therefore we obtain
(3.4) Ph =0 Loz -y, i=1,.n R=1,..,m.

Moreover,

y = lim G, = o+ [OHE =80 0, G - 900 )T
= " +[(E-9") - G- )T

L+ (Z—y") S 08 for all h.
fe=1

(3.5)

Suppose ¥* € G, then there exists at least one g such that y* € Gi,. Taking
gh = min 8%, we see that the point 9%*(%) = y° + §%(Z ~ y°) € G, for every h.
Therefore 3 8o ho < gho = min 6% . On the other hand, T @0yt > 5 fhoyhe > fho,
a contradiction. It implies that y* ¢ G.

Combining the above result with Theorem 3.5 we see that (z*,y") is a feasible
solution of Problem (@), i.e., (z*,y") € D.

Let V" be the optimal value of (Q). Note that ¢T3, + d' Ji, is a lower bound

of V*, therefore we see that
'z +dy = lim CT:fkq + dngkq <V
q—oo

It implies that (z*,4*) is an optimal solution of Problem (@Q). !
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4 The out-of-roundness problem

Let S be a set of finitely many points s', ..., s™ in R*. The out-of-roundness problem

is formulated as follows.

min f-—7r
st. [[s=s"||<t h=1,...,m,
(R) |s—s*|>r, h=1,...,m,
s € C(5), ‘

where C(8) is the convex hull of the set S. The problem is to find a pair of cocentric
balls one of which contains all the points s!,...,s™ and the other contains none of
the points such that the difference of two radii is minimized. If the objective function
t — r is small enough, we can conclude that the given points s',...,s™ lie on the
surface of a ball.

There are several algorithms [1, 8] dealing with the problems. However they can
only solve problems of two or three dimension. To authors’ knowledge there are
no practical algorithms for solving problems with dimension higher than three. In
the remaining part of this section we show that the out-of-roundness problem can
be formulated as Problem (Q). We also show how the algorithm proposed in the
previous section can be applied efficiently to the problem.

We consider the problem (R) with the last constraint s € C(S) dropped, i.e.,

min t—r
(R1) st. [s=s"||<t, h=1,...,m,
fs—s"||>r h=1,...,m.

Assumption 4.1 The optimal solution of (R1) is in the convex hull C(S).

Obviously the out-of-roundness problem is equivalent to the problem (R1) under
Assumption (4.1). In practice the given points s!,...,s™ represent the location of
sample points on the surface of an almost round object. Therefore it is very likely
that the solution of (R1) lies somewhere in the convex hull of S. Let

0 1 &g
s — > s,

mh:l
o) = min{efs"|h=1,...,m}, j=1,...,n,

1l

ﬁ;.’ = max{e;-rshlh=l,.'..,ﬂz}, i=1...,n,
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where ¢/ is a jth unit vector in R". Further we define

" Z o= {({nr)lls-s"[<t h=1,...,m},

G = (o) [ st ll<r} A=l m
G = UGh'l |

h=1
P = mpels- ol

X = {t|0<t<2},

and consider

min t-—7r
(R2) st. teX, (rns)ey,
(t,r,8) € Z, (r,8) € R"*1\ G.

Let gu(r,s) = || s —s* | =7 (h =1,...,m), then
Gr={(r,s) | gu(r,s) <0}, h=1,...,m.

Note that in this problem the ratio of m/n is usually very large. The polytope X is

just an interval and the polytope 1" is a hypercube of dimension n + 1.
Theorem 4.2 Under Assumption 4.1 the problems (R1)} and (R2) are equivalent.

Proof. Let (£*(1),r*(1),s*(1)) and (t*(2),r*(2),s*(2)} be optimal solutions of the
problem (R1) and the problem (R2), respectively. Note r*(1) < #*(1), r*(2) < £*(2).
Since (t(2),7*(2),5*(2)) € Z and (r*(2),s*(2)) ¢ G, (£*(2),7%(2),5"(2)) is also a
feasible point of the problem (R1). Therefore

(4.6) £(1) = (1) < £°(2) = 77(2).

On the other hand, from Assumption 4.1, s*(1) = T )2, Aps” for some nonnegative

* such that ¥, A; = 1. Then for some h; € {1,...,m}

(1) = s @) =sh = s*(1) =+ 50— s™ ||

< N ()= + "= s™
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m
= [N =L+ L= ®
h=1

(FAN

IR A B i |
h=1

< 20

Furthermore, s*(1) € C(S) implies s*(1) € {s ] o} < 5; < 80,5 =1,...,n}.
Therefore (£*(1),7*(1),s*(1)) is a feasible point of the problem (R2). We have

(4.7) t(2) — r*(2) £ 7 (1) — r(1). |
By (4.6) and (4.7), t*(1) — r*(1) = t*(2) — #*(2), which proves the theorem. ]

From Theorem 4.1 and Assumption 4.1, the out-of-roundness problem is equiva-
lent to the problem (R2), which is solvable by the algorithm proposed in section 3.

To start the algorithm we choose X x Y} as an initial polytope P; contain-
ing Q, where Q is defined as before. Take 10 to be-a,ny value greater than p° =
max || 5 — s" ||. Then the point (r%, %) belongs to N, Gy, and can serve as point
1" of the algorithm.

Suppose that we are at the kth iteration of the algorithm, let the polytope Py
be defined by

Py = {(t,r,s)| Akt + Abr + AFs < b*),

where A%, A* and b* are m*-dimensional vectors, and A¥ is an m* x n-matrix. In
order to obtain a lower bound over a set D N P, NT, we need first to calculate for
every G, (h=1...,m), a set of n + 1 points which are on the intersection of dGh.

Let (v, 2!),...,(r**1, 27!} be points generating the cone C. Since each con-
straint gy(r,s) < 0 defining the set G is very simple, it is not necessary to solve a
maximization problem sup{ 8| (r% s%) +8(r' — %, z' — s%) € G, } to obtain the value

% in (2.1). Solving the equation
60+ (a1 = 80) = & | = (1° + 62 %) =0

yields the value of 8%, for which (™, s%*) = (r0,s) 4 82(rt — 10, 2* — &%) lies on

the intersection of &G}, and the ith ray of the cone C if 8% < 8y, After computing
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the set of n + 1 points (ri#, s1), ..., (rthh, s7+0h) for every b (h = 1,...,m), we
have to solve a linear program (2.4) to obtain a lower bound and possibly an upper

bound. The linear program (2.4) can be written as

min t—r
st ASt 4+ Afr 4+ Aks < B,
(4.8) (r,s) = (r°, %) + U"NE, VA,
el A" > 1, Vh,
Mot r >0, VA
Recall Ut = [(r1h — 10, sl — §0) .. (p"Flh — 30 gn¥lh _ OV Let
Uh
- (3)
u;
then
(4.9) r =104 UM, Vh,
(4.10) s ="+ UM", Vi

Take an arbitrary number of 1,2,...,m, for instance 1 and substitute (4.9} and

(4.10) with h = 1 for  and s of (4.8), respectively. Then the problem (4.8} reduces

to
min ¢ — U — 70
st. AFRt+BRAL > b,
(4.11) Uk UL = 0, h=2,...,m,
el Ak > 1, Vh,
bt > 0, Va,
where
A o= b,
Bk = _AkUl '-'.4kU1

B = Ab 4+ Al -t

The above problem has m* + (n + 1}(m — 1) + m constraints, and (n + 1)m + 1
variables, Moreover, the number m* will grow at ecach iteration due to adding of
cutting planes. Therefore it is time consuming to solve this problem directly. We

deal with this shortcoming as follows.
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There are a lots of redundant constraints in (4.11). Using Lemma 2.2 we can
remove h from the set {1,..,m} if there exists an A’ such that 8" < g*. Let I be
the remaining subset of {1,..,m } after removing all those h, relabel the elements
in I as 1,...,|I], and relabel also correspondingly U" and Mt We consider the
dual problem of (4.11). Let ¢, #',..., 7171, & be dual variables of the reduced and
relabeled problem (4.11), where ¢ is a vector of mFf-dimension, 7t,...,7/I71 are

vectors of (n + 1)-dimension, and £ is a vector of |/[-dimension. The dual problem

} max (B)TC+eTe
st (A9)T¢ <1,
[7j-1
(4.12) (f}k)TC_ Z (UI)TT]h +ee < —(UDT,
(U")Tn"“lh—;—-‘lfe < 0, h=2,...,]1,
¢, € > 0.

Note that the above problem has (n+ 1)|I]+1 constraints. It is obvious that solving
(4.12) is less time consuming in comparison with solving (4.11) directly.

The other thing we like to point out is that the methods of finding possible
feasible points in (2.5) and (2.6)-(2.7) are extremely simple. By solving (4.12) we
obtain a point (£, 7, 5). Suppose (¢,7,5) € . Then

|5-s"li—7<0 for R=1,...,m.

The value of 7 = sup{ 7{7d+7 € G} in (2.5), where d = (-1,0), § = (7, 5), can be
determined by

f=max{r—||5-s"|||h=1,...,m}.
In fact the point (7d + §) = (F — 7, 5) belongs to G, since

|5—s" |- (F—%) >0, h=1,...,m,

determined by #{c,d) + (%,7) = 7(1,-1,0) + (¢, 7, 5).
If it is necessary to obtain a point (#,§) = (£, #, §) in (2.6), we have to determine

first ¥ = ¢ satisfying (2.7), i.e., to solve the following maximization problem

max{t| A%t + Af7 + AR5 <BF).
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But the optimal solution of the problem is simply given by

- b | .
t:min{;lz:l,...,mk},

)

where a; and b; are the ith components of the vectors A¥ and b — A¥# — A¥3.
’

)

The conclusions

We have proposed an algorithm GO for solving a global optimization problem with

a set of reverse convex constraints by means of cutting plane techniques and branch-

and-bound method. The out-of-roundness problem has been discussed as a special

case of the problem considered in this paper. Techniques proposed to find a possible

feasible point in (2.5)-(2.7) become very simple when applied to the out-of-roundness

problem.
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