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Abstract

The theme of Hardin's renowned "The Tragedy of the Commons" is that the common-pool
resource is dissipated to the level where the average value of extraction equals the wage rate in the
long run when the number of appropriators is unlimited. Yet experimental results and rapid
deforestation in tropical countries follow a confrasting pattern: even though the number of
appropriators is limited, the common-pool resource is dissipated more than the Nash equilibrium
predicts. First, given these market or experimental observations, we identify two behavioral
principles: share maximization and difference maximization. Second, we characterize these
principles at Nash equilibrium.
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1. Introduction

Garrett Hardin's (1968) classic work on "the tragedy of the commons" describes the
degradation of scarce resources that are open to all appropriators in society. Since all
appropriators have equal access to the commons, they can enjoy the value of the average
product from the commons. As long as this average value is greater than the marginal value,
new appropriators aiming at the difference come into the commons with the result that
resources are dissipated.

A real-world example is rapid deforestation in tropical countries. According to Repetto
(1988), "once leading exporters like the Philippines have already virtually exhausted their
lowland productive forests."! Although the reasons for the rapid deforestation in tropical
countries are complex, the character of the problem is that a few foreign firms, from
countties such the U.S.A. and Japan, who want to obtain timber concessions, compete with
each other to exploit all the profitable areas.? Our paper may be interpreted as the analysis
of situation where a few big outsiders exploit the commons that has been shared by many
members in a traditional society.

In a laboratory experiment on the common-pool resource problem by Walker, Gardner,
and Ostrom (1990b), the common-pool resource was dissipated more than the Nash
equilibrium prediction even though the number of subjects was fixed throughout the
experiment according to Davis and Holt (1992). Holt (1992) reported a similar phenomenon
in oligopoly experiments where the theoretical structure was essentially the same as the
common-pool resource model: subjects produced more product than in the Cournot-Nash
equilibrium outcome. In a slightly different context, Saijo and Nakamura (1993) found in the
voluntary contribution mechanism that subjects did not contribute all of their endowments
even though the marginal return of the contribution was greater than one. That is,
contributing everything is the dominant strategy. A common factor in these e#periments is

that no communication was allowed. Since in a traditional society communication among

! The tragedy of rapid deforestation of tropical areas embraces the loss of many animal and plant
species including genes for possible future medical research as well as commercial materials. See
Boado (1988) and Repetto (1988).

2 Qutsiders occasionally destroy a commons that is supported by some institutional arrangement
among the natives. See Berkes, Feeny, McCay,'and Acheson (1989) and Ostrom (1990).
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appropriators is an important factor in coping with the dilemma, we believe the setting of
these experiments better represents a few big outsiders who do not talk to each other.
Another real-world example is the panic hoarding of consumption goods: a toilet
paper panic occurred in Japan in 1973, triggered by the rumor of the tight demand and
supply of paper due to the first oil shock.* Recently, consumers in Japan rushed into rice
shops to maintain their supplies because of the bad crop of rice in 1993, even though enough
rice was supplied by import. Both toilet paper and rice are relatively cheap commodities
although they might be more expensive in Japan than in other countries. The actual cost of
buying these commodities is searching the shops and standing in line. This queuing
externality makes the structure of the problem very similar to the tragedy of the commons.
Why is deforestation in tropical areas so rapid? Why didn't subjects in the above
experiments follow Nash or dominant strategy predictions? Why did consumers buy up
toilet paper and rice? For concreteness, we consider fish as the common-pool resource. First,
in the special circumstance that all appropriators have the same endowment and spend the
same hours for fishing, we show that appropriators can increase their shares or the
differences between their incomes and the average income by spending more of their time to
catch fish if and only if the value of average product of fish is greater than the wage rate
determined by outside industries. This preliminary observation partly drives the difference
between non-income and income-maximizing Nash equilibrium behaviors of appropriators
in the above experiments. Second, we identify the class of behavioral principles that equate
the value of average product from the common with the outside opportunity cost at Nash
equilibrium even though the number of appropriators is finite.5 Although this class of
behavioral principles is relatively large, we identify two important classes of behavioral
principles imposing reasonabie restrictions on the class of utility profiles: share maximizing

and difference maximizing behaviors. Third, after identifying the two behavioral principles,

3 We thank Professor Wako who pointed out these examples to us.

4 See Hirose (1985).

5 Qur approach identifying behavioral principles through the allocation has its origin in Houthakker's
revealed preference theory (1950) and the integrability approach to demand functions originated by
Hurwicz and Uzawa (1971).



we characterize them. Share maximizing behavior is equivalent to equality between the
value of average product and the wage rate together with a share condition related to the
distribution of endowments. Difference maximizing behavior is equivalent to equality
between the value of average product and the wage rate together with a symmetry condition
on labor input. That is, in both cases the commons can be wiped out even though the access
to the commons is limited, or the number of appropriators is small.® Fourth, although in the
difference maximizing Nash equilibrium every appropriator's labor input is the same
without assuming symmetry in _I:he distribution of endowments, in the share maximizing
Nash equilibrium allocation a larger endowment holder exerts a bigger labor input and
receives a larger share. That is, big companies dominate the commons. Finally, if
appropriators put weight to both the monetary benefit from the commons and the share,
then the aggregate labor input level realized is between the one when appropriators care
about the monetary benefit only and the one when they care about the share only. Further,
this setting explains certain asymmetric behavior in experiments. For comparison, we
develop similar analyses for two polar cases: the value of marginal product equals the wage
rate (i.e., the socially optimal case) and the outcome when each appropriator employs the
income maximizing behavioral principle.

Section 2 characterizes income maximizing Nash equilibria and proposes the share
maximizing and difference maximizing behaviors as preliminary hypotheses. Section 3
identifies the behavioral principles based upon market data. In section 4, we characterize
the behavioral principles obtained in section 3 and a numerical example is presented in

section 5. Concluding remarks are in section 6.

2. Income maximizing Nash equilibrium: a preliminary
We employ a simple static model adopted, for example, by Weitzman (1974), Sandler

(1992) and Roemer and Silvestre (1993).7 There are 1 appropriators (1 is fixed) in a society,

6 The alleged "export flooding” by some Japanese firms that might result in wiping out another
country's industry may be partly explained by this share maximizing behavior in our static model.
7 Our model is a special case of Roemer and Silvestre, Wejtzman used a slightly differenct "many
lake" model.



and appropriator i faces the decision to split i's endowment, say 24 hours, into catching fish

and leisure time.

Let w; be appropriator i's initial endowment, that is the possible total leisure time, and
x; be the labor input for catching fish. Let the production function be f{(x} with f0)=0 and
f(0) <o, where x = 3 x;. Assume that the average product is always greater than the
marginal product, thatis, f'(x)x~ f(x)<0.% Appropriator i's share of the total catch equals
i’s share of total labor inputs. We normalize the price of fish as one and denote the wage

rate by p.9 Then appropriator i’s income is defined by

m{(x) = f(x)%w(w,- -%;)
where X = (x,,%,,--,%,}. Define m;(0) = pw;. m;(X)is continuous since f'(0) is finite. Then
in the usual analysis of the tragedy of the commons, #; is the objective function. We will
generalize the objective function so that other appropriators’ incomes as well as i's own are
arguments of the objective function and denote appropriator i's utility function
w; (my (x),---,m, (%)) .10 We also write i's utility function by u;(m(x)) = u;{x)=u,{x;,x_;).
Assume that u;{m) is continuous for all i. Then u;(x) is continuous for all i. Further,
assume that u;(x;,x_;) is concave with respect to ¥; and u;(.) >0 for all i for analytical

convenience. The optimization problem of appropriator i is

max u; (m({x})} subject tox; {0, w;]. (1)
A list of labor inputs x* =(x}".x3,---.x;) is a Nash equilibrium if for all i, u;(m(x*))
2 u,(m(x,x%)) for all x; €[0,w;]. The existence of a Nash equilibrium can be obtained by

applying a standard argument.11

Proposition 1. A Nash equilibrium exits.

BIf f"(x} < 0, f (x)x - f{x) < O follows immediately.

® Our interpretation is that the opportunity cost of leisure is the wage rate of the best possible job other
than fishing.

10 Instead of introducing the vector of all appropriators' income, the amount of fish that appropriator
i's catches (f{x)x,/x) is a candidate for the objective function. We did not take this approach since
appropriator i spent the entire endowment for catching fish under this objective function.

11 8e, for example, Ichiishi (1983).



Proof. Let W =x,[0,w;]. Define
r(x )= argmax {u;(x;,x_;)|x; €[0,w;]}.

Since W is compact and #; is continuous for all i, #; is upper semi-continuous by Berge's
Maximum theorem. Notice further that r; is non-empfty-valued, closed-valued and convex-
valued, the correspondence (#,+,#,):# —» W has a fixed-point by Kakutani's fixed-point

theorem. Clearly, this fixed point is a Nash equilibrium. g

In what follows, we will assumne that the solution x; in (1} is in the interior of
[0, w;], and then consider conditions that validate the interior assumption. Since
Y mx)=f (x)+ p(T w; - x), define m(x)=Y m;(x) and let £ be a solution of dm(x)/dx =0.
Apparently, & is the socially optimal total labor input.

Although (1/m)f"(x)+((n-1)/n)X f(x)/ x) = p is well known as a necessary condition for

the income maximizing Nash equilibrium, we found that this condition together with

x, =(1/n)x is necessary and sufficient for the equilibrium condition.

Proposition 2. —-l%;i-—) =0 for all i if and only if % f '(,_.M)_,.”_;l%l =pand x" = %x"’ for

all i,

Proof. Only if part: Notice that

2D @ s s)e- s —-{f( x)-L (")} L9 @
Summing up the first order conditions, we have
zc?m(;;c,x_,) £+ (i 1))‘( —np=0. 3)
That is,
)2 ) o e <o) @

Since
am(x!, xl X x™
__.(__t'__.. - {1...nx_m.}{i§_:_';_),_p} = O.r

1 ,
we have x}" =—x" for all i.
1



L3

ami(x;"rx:')

=0 for ail i.
£ or all i

If part: By assumption, we have (4). Since x}" = %x"‘, it is clear that

- 1f(x) n—1f(x)x

23 we have — f (x)+ - x"— [ Hence, if the

Differentiating 71; fx+
production function is strictly concave, x™ is determined uniquely. Consequently, x{* is also
unique for all /. That is, no asymmetric equilibrium labor input profile exists under the
strictly concave production technology.1? Therefore, Proposition 2 provides a simple
algorithm to find the income maximizing Nash equilibrium allocation. In order to check the
second order condition, consider the second derivative of m; at x™. A simple computation
gives

m (x: ’x—l)

b2 - 2 prem-phe 25 e,

Since f'{(x™) <I~(—J~C-m-l and -:i-f'(x"‘)+nT_1f—§c—Jf:~‘-)-=p, f(x™)<p. Assuming thatf"(x"}<0,

X
we have —nj—%%—’—"— < (). Inorder for x™ to be an interior allocation, lx <minw; and
i

i
~

" <w=Yw ass'uming that f'(0)>p and f"<0. Asis well known, if # =1, then x"= X,
and x™Tx® as 11 — » which is obvious from Propositions 2, where f(x°}/x* =p.

In order to explain the fact that the appropriators’ labor input in Walker, Gardner, and
Ostrom's experiments (1990b) tends to be greater than the income maximizing Nash
equilibrium labor input,1? we introduce two tentative behavioral principles for the
illustration of the problem. In the following sections, we will consider the justification of

two principles and more general behavioral principles.

m;{x)
L l
Zm()

appropriator i's difference from the average income. We say that appropriator i ificreases i's

m(xAx)

m;(x)

be appropriator i's share of total income and m;(x)— 3, i-’T

m (G Ax;) 5 m; (x)
Yom(x;Ax) - X mx)

} respectively, where (x;Ax;) = x+(0,---,0,Ax;,0,---,0). Consider a situation

share (difference) at X with Ax; > 0 if

( (8)-3,

mi(x)_zjm,(x)

12 See Sandler (1992, pp. 117-119) and Ostrom, Gardner and Walker (1994, p.111).
13 Sge Davis and Holt (1992, pp. 350-55).



where appropriator { maximizes i's income m; at a Nash equilibrium. Although
appropriator i decreases i's income when appropriator i increases s labor input from x; by
Ax;, this increment Ax; reduces all other appropriators’ income at the same time. If the sum
of all other appropriators' reduction of their income is sufficiently large, appropriator i
increases i's share and difference. The following proposition shows that in the symmetric
case, the value of average product of fish is greater than the wage rate if and only if

appropriator { can increase i's share and difference.

Proposition 3. Suppose that w;=w for all i and X = (a,a,--,a) . Then appropriator i increases i's
share and difference at X with Aa;> 0 if and only if L’(;fa—:ria’) >

i
Proof. First, consider the share case. Suppose that appropriator i increases i's share at X with
Aa>0. Then
mi{x;Aa;)
zmj(X;Mi )

m(x;An;) f(na+Mi):;'ﬁ +p(w—a—Ag;)
zm}'(xiﬂﬂ,')_ flna+ Ag; )+ plrw — na — Aa;)

> 1/n. Since

_1 1 a+Ad; +Aa, /n
_-ﬁ+m{f(na+Aa)mm +p(w—-a-Ag; )~ f(na+Aa)“m+M ~p(w—a——Aa,-/n)}
=1+ ] f(mz+‘,3.ai)}[AM-_.%'-.]‘p[,m."Aﬂ |

n Zm]_(x;Aa'.) na+Aa; s I g . i n
we have £ (r:la:;ai N p. This shows the equivalence.

Consider the difference case. Similar computation gives

x; Aa _ : .
my(x; ) 3, 2 f( ) ( ,-(x)—z,.m’T(")]w@-%)(_f_@iﬁ‘ﬂ_p),

Ha + Ag;

which shows the result. g

Since every appropriator inputs the same amount of labor at the income maximizing
Nash equilibrium, let X = (4,4,,4) be the labor input vector. That is, by Proposition 2 and

f(na f(na) lf’(na)+£:lf(m)
n " na

——=> f'(na}, we have ——~ =p. Hence, if appropriator i does

care about i's share or dlfference, appropriator i would increase {'s labor input (Ag;> 0} by



Proposition 3. Similar overproduction phenomena are also reported in oligopoly
experiments [see Holt]. In voluntary contribution mechanism experiments in which the
marginal return is greater than one, Saijo and Nakamura found that subjects did not
contribute their entire endowments even though contributing all of the endowment was
every subject's dominant strategy and the priscners' dilemma situation was not present. In
their design, reducing their contributions make their income less but it increases their shares

and differences.

3. Identifying the class of behavioral principles

3.1 Necessary and Sufficient Conditions

flx ")_)!J f(*)+" 1f(x)

challenge to identify the behavioral prmc1ples of appropnators or their utility functions.

Given observations such as =pand f(x*})=p,itisa
Although our focus is on the case with which the value of average product of fish equals the
wage rate determined by outside industries at the equilibrium, we will consider three cases
together for the purpose of comparisons.

First, we derive the necessary and sufficient conditions regarding the shapes of utility

function profiles for each case at equilibrium.

Proposition 4. Suppose that i?u_,-()i)_=0 foralli. Then
f( *) =pifandonlyif ¥.” ]au ((m? ) x; =0 for allz
(ii) f (x*)+n If (x )-p if and onlytf 2,21 o (m* )x;=au‘éfr*)x—* forall i; and
o T poRy e ; nau(m) 8u,-(m)* :
(i) f'(x*) =p if and only if 2}_1 o, X;= g x* foralli
o,
Proof. (i) By (2) and a;(_x)=xj f x)i S forix i, we have
Ay (x*) Zau (m*) I (X*) Ju;(m*) Im;(x*)
ox; i om;  ox om.  ox
_f (x*)x*— f(x*) 3u,- ( . Fle*)x*—F(x*) f(x*) '
x+? E am & x*? x* p-]
_ L) (f(x*)_ ]
x* Eam' Bm x* P ©)
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[L]

={. (6)

S . "
Since f'{x*)x*—f(x*) =0, f(’-* )_pz 0 implies Z%xj =(]. On the other hand, if
i
f( ’*)

Z——x =0, we have ——=

am; " p=0.

(i) and (iii) See appendix. g

In the following subsection, we argue that the class of utility profiles satisfying the
simultaneous partial differential equations in Proposition 4 is quite large even though we

impose the relation expressed by the equations globally, not merely at the equilibrium point.

3.2 Difficulties in Identifying Behavioral Principles
du;{m}
d

H;

Let Vu(m) = be an #x7 Jacobian matrix. Consider the case with which the

value of average product of fish equals the wage rate. From Proposition 4-(i), to identify the
class of behavioral principles is equivalent to identify the following class of utility function

profiles:

du; (x"')

1

= {(ul, M) =0, Vu(m*)x*=0,x*=0 and x*:rzo},

where m*=m*(x*}, Consider a utility function profile (i;,---,#,} € A'. At the equilibrium
x* (i.e., 0w {x*}/9x; =0), Vu(m*)x*=0,x* 20 and x* # 0 must be satisfied. Now consider
another utility function profile (it,,- -, i, ) where the slope of indifference curve at x; (and
m; ) of it; coincide with the slope of indifference curve at x; (and m; } of u; for all i. [If this is
the case, (il;,--,il, ) is also an element of A'. That is, even though the behavior of (&, --,,)
is totally different from (i,,---, i, ) other than x*, these two utility function profiles have the
same equilibrium. In other words, A' just describes only the local properties at x*.
Therefore, in order to find behavioral principles, we restrict the class of utility function

profiles further.

A= {(u1 o -,u,,)| for each m there exists an x* such that Vu(m)x* = 0,x*>0 and x* = 0}



which includes the simultaneous partial differential equations Vu(m)x*=0. A" extends the
conditions in A' to the entire domain of m. Let A = A’ n A". Although A is not a linear
space, 14 an element u & A generates an infinite-dimensional linear space that is a subset of A.
As an example, we consider the case where the utility functions are expressed by the

Ui
for all i.

difference between i's own income and the average income. Let u, (m)=m; -

First, we show that u=(u,,---,u,) € A. Consider

-1 1 1

n # n
TN . |
Vu{m)= n "o n
11 =L

L " n 1]

Clearly, we have Vu(m)(1,1,---,1y'= 0 for ali m. Thatis, ue A", Then thereexistsac>0

*
such that f—g—)- =p where x*=(c,¢,---,¢) and x* =nc. Furthermore, by (6), we have

k
S(x* k m;
auffx—l =0 forall i. Thatis, ue A'. Now consider [u,- (m)} = [m,. —%-—'—J where kis a

x;
natural number and let u* = Uul (m)]k, - -,[u,, (m)}k ) Then applying the same argument as
above, we have oru' +fu™e Awhere o,fe R. Let Ay = {au’ +pu™|¢,meN and o,8¢ R},
where N is the set of all natural numbers. Then (u!,u?,---) becomes the basis of Ay and

hence Ay is a linear space. Since the cardinal number of the basis is not finite, we have the

following proposition.
Proposition 5. Ay is an infinite-dimensional linear space for eachue A
Although A, is mathematically infinitely dimensional for each u, it is not economically

infinitely dimensional since each element of (u!,u?,--) in the above proof represents

essentiaily the same utility function profile.

14 Notice that the convex combination of two singular matrices is not necessary singular.

-10-



3.3 Restricting the Class of Utility Profiles

The cause of the difficulty identifying behavioral principles is due to the fact that we

must find n appropriators’ utility function profiles from thin information, i.e, from just one

fx*)

x#

equation, for example, =p. To handle this problem, we restrict the class of utility
functions by a few parameters. Since the class of one parameter utility functions is still
meager to express important behavioral principles such as share and difference maximizing
principies, we consider a class of utility functions with two basic parameters to find
economically meaningful behavioral principles: ¥; (x) ={o;m; )ﬂ "(Ei zx,ofmj)y" , where f; and
y; are the two 5asic parameters and the o; are auxiliary paramefers. Notice that this class
of utility functions is general enough to contain utility functions such as u; (x}=m,

m;

mj

u, (xy=my, u;(X)=m;~ and u, (x)= . Under appropriate conditions, the
i

following proposition shows that the equality of the value of average product with the wage
rate gives rise to two types of behavioral principles: appropriator i's utility function is

expressed by the (generalized) share of i's income or the difference of incomes.

Proposition 6. Suppose that %‘—(;'—’x—"—)u =0 forall i.

ox; o (4, 5%)
* *
Zja,-jxj Eja,.jmj(x X2)

(i) Assume that [3; >0 and foralli. Then f—ix—)— =p if and only if

B:
1w, (x) = [_aLm,__} s and

Ef-a,-,-m,-
(i} Assume that B; =0 and o; =0, forall jwith j#i and x} = %x". Then L(;—*) =p if and only if
;-
w, (x) = n(~a; )[mi - 21 ! J for all i.
1

o; (x; rx:-:') -
ax;

13

Proof. (i} Only if part: By Proposition 4-(i), if 0 and % =p, we have

;-
¥ 24y =0, Thatis,
}a?ﬂj !

[ Zj o 7t l—lﬁ: ]ui (x)=0. 7}

Y | it m;

-11-



Oi¥s . %M wehave v, +B;=0. Since >0, ¥;=-B;(<0). Hence

Zi aiix; Z C(,’ j

ﬂ,
o,
U, (X) = [W] .

If part: For u;(x), if y;=-f;, then u; (x) =[

Since

LT

z}aqmj

have 2 ——x _—;—— ¥; +B;)u; (x )=0. By Proposition 4-(i), f ix )= p
; i

T I L

Zjo Xy’

B
J . Using we

0 forall i and &= f =p, we then have

{ii) Only if part: From Proposition 4-(i), if _3_‘_;(__

i

% &uaf;n ——x; =3 ogx; =0, Since x; Hlx' for all i, we have ¥,a; =0, Using Z,-O‘ij =0,
i

and o; =0 for all j with j#1, then Zia,-,- =(n-1)g; +oy; =0. Hence, a; =—(n-1)a;.

Therefore,

1 AX) = oty + 0 3,y = —(n =)o, + @ [Zm m] n(—&,—)[m,-— i J
o X

jni i=1 i
; 1 aui (m *J .
If part: Since ¥ o =0 and x; =¥ > i X = 0% = 2 o =0. Using
aué-ix ) 0, from Proposition 4-(i), we have &=~ f x )
" 2n;

Notice that u, {x)=n{—a; )[mi — In ! ]: Oyj ;= j: - in Proposition 6-(ii). That is, the

utility function expressed by the difference between i's income and the average of all is

actually the same as the one expressed by the difference between i's income and the average
of the rest.

The following proposition characterizes the observation % Fx) +2=2 ” —'f—--— =p. As

might have been expected, this observation is equivalent fo income maximization
by all appropriators within the limited class of utility functions.

oY; (x;;x:f)

P 0,and x; = %x' foralii. Then

Proposition 7. Suppose that o.; 20, Z,-‘If; >0,

-12-



_’];f’(x')+—’£-;—];—)l;:-—)= 4 ;fand Oiﬂy 1f 1 (x)=(aﬁmi)ﬁi+ﬁ'

Proof. See appendix. g

Proposition 8 is for the observation f’(x")=p. This observation is equivalent to total

income maximization by all appropriators.

Proposition 8. Suppose that Eu—‘%’c—ffz‘l =0, 3,05 =3 ;0 = 2.0 forall iand k, o =%; for all

jwith j=i, and v, 20, x; =—}l-x' and w; =T forall i. Then f{x")=p if and only if
u(x) = { oty

Proof. See appendix. g

In order to identify behavioral principles for three observations, we impose some

assumptions for each of Propositions 6, 7, and 8. Without these assumptions, we might

it

xt

worry about, for example, a situation where p is cbserved, but the principle is

income maximization. The next proposition shows that these situations would not happen.

Proposition 9. Suppose that W54 XD () e

i

'y
@I f% =p, then u; (x) = m for some i and u; (x) # m; for some i;
(i) If n>1 and % £ +"—;—1-i§l—) =P, ther 1, (x)# m for some i, u,(x) # %’- for some i, and

¥ m;
i (x) # m;~ ;1 L for some i; and

(iii) If n>1 and f’(x')= p. then u,(x) # m; for some i, u,(x) #% for some i, and u; (x)=m; -

2,m;
i
for some i.

Proof. See appendix. g

4. Share and difference maximizing Nash equilibria

Since we identify several important behavioral principles, we characterize

13-



equilibrium conditions given behavioral principles.1® First, given uf(x)= % for all i, we
obtain that the equality between the value of average product and the wage rate together

with a share condition is equivalent to the share maximizing Nash equilibrium.

Proposition 10. Suppose n >1. Then -fiu—-é;‘:-’—“g 0 for all i if and only if —= f ( ) =p and
LI _m__(x,_,xil L — forall i.
x omx;,x.) W

Progf. Only if part: First, we prove

-t 2o, (2
au?(xirx—:‘)
ox;

Rl 3 4 2

m m m m x*

x#

fi )—p By (5), we have

Since =0 for all i, Z;‘gﬁ =0. Hence

35 LJ
Since n>1, we have f___—p lhenbyProposmon4(1), Z,gu xft —_-(x;--m—ix' ]l=0.
i

Since x*=0, wehave —i’—:% Moreover, since %—:p, we have
f(x) 3
m__x W
m f(x)+p(w x) w
. ] M M (%, X)) _
If part: Since L& =p, 5 =% and by (5), 2tz
part: Since —5-==p, “r=" an y () x,

Since f'(x)x— f(x) <0, x* is determined uniquely, and hence x] is also unique for all i. That
is, Proposition 10 also provides a simple algorithm to find the share maximizing Nash
equilibrium allocation. In contrast to Proposition 2, the share maximizing Nash equilibrium
allocation depends on the distribution of endowments although the total labor input is
invariant. If the endowment of appropriator i increases, then i's labor input for fishing
increases and at the same time the labor input for fishing of the rest of the appropriators

decreases. In order to check the second order condition, consider the second derivative of

15 Proposition 3 identifies the direction of share (or difference) increase, but it does not characterize the
share maximizing (or difference) maximizing equilibrium.

14



tn; at x*. A simple computation gives

R e S

x * ' . i (xt vt
f(, )<0, 1—x—'_>0,and 1—ﬂ>0,wehavea—w‘7’£:‘—)<0. In order for
X X m ax

Since f'(x")-

x*to be an interior allocation, 0 <x” <w.
x,m,
Second, consider the case with difference maximizing behavior. Let uf(x)=m, - =L.L
n

for all i.

1.

aud(xl.‘ r.) ‘. . f(x') L]
SR G forall d only if 252 o d x =—
for all i if and only if p and x, X

i

Proposition 11. Suppose n>1. Then

foralli.

Ayt o ou?
Proof. Only if part: Since @1(‘;"’;_"5—1_1 0foralli, 3, ——-= 0. By (),

i

23 L ren- L -3 o nJ(f(x*) J
~ 1) (M—p]=0.

d
Since 1> 1, we have f( ) =p. Then by Proposition 4- (1)
J\. y P

; 3m X = Z =0. Hence,

d L] »
o (x; %) _ 0

f ( _ s 1.
If part: Since =pand x; = =X by (5), 3,

The difference between Propositions 10 and 11 is important. Proposition 11 says that all
appropriators input the same hours of labor regardless of their initial endowments as long as
the behavioral principle is the difference maximizing one. On the other hand, in Proposition
10, equilibrium labor inputs are determined by the ratio of one's endowment to the total
endowment as long as the behavioral principle is the share maximizing one. By the same
reason as in Proposition 10, x* is determined uniquely. Consequently, x; is also unique for

all i. A similar computation shows that the second order condition at the equilibrium is

-15-



satisfied.16 In order for x*to be an interior allocation, 0<x” <w and x" /n <minw;.

Third, consider the case with total income maximizing behaviors. Let u{°(x}=m.

' 3”150(1‘,') .- : Pt
Proposition 12. - 0 for all i if and only if f'(x )=p .

Proof. See appendix.

The fact that £ <x™ < x7 is well known where £ is a solution of f'(x)=p, x™ is a solution of
A/ m)f )+ ((n-1/n)(f(x}/x) =p, and x° is a solution of f(x)/x=p. Aswe noticed before,
both income maximizing and difference maximizing behaviors give rise to symmetric
equilibria. On the other hand, experimental results such as Walker, Gardner, and Ostrom
(1990b} show non-symmetric patterns of labcr inputs. It is share maximizing behavior that
gives a non-symmetric equilibrium in our class of restricted utility profiles. Based upon

these facts, we propose a more general form of utility functions: let appropriator i's utility

function be o, (m;, 5;) where s5; =m, /. Assume that -g%>0 and %ziﬂ).

In order to show that x” <x” <x°, we give the following lemma showing that each

appropriator's best response curve shifts to the right hand side as the parameter moves from

mto v and from v to s (see Figure 1}

v PR+
. om(x{,x_;) <0and as;(xf,x_;)

Lemma 1 o, o,

> 0forall x_;.

Ax., ¥ . (VX (x?,x_; (7 x2) asi (et x
Proof. Since x{ is a solution of &J'(x"l")=0, 90 Xo7) Iy X ‘)+8U'(xI X-1) 95,47 X)

; o ox; J5; ox;
. st(x) 1 Bm,-(X) n 8"1(x) \ . a’",‘ X
=0. Since x - ?nf?_-{ o, m-— Zf:l—éxii—mi , solving with respect to —%, we have

16 A simple computation gives that —;f%x‘z’xi = %[ Fiy- ﬂTle(l - %—] + (l - i—]} Since

1 e "
1-—=>0, the second order condition is satisfied.
1



g

ﬁ)__ 30 l(l_ﬂJ Jm,-(x)=5‘0,- 1 afnj(x)m
am, s m\  m )| & o mE S gx

Due to the interior solution assumption, m >0 and 1- -’:1—11’- > 0. Since 8; <Qforalliand j

s 00 Xy o dm(x],x;) .oy ;o dsixt,x)
withizj, o >0 and >, >0, T <. Since p >0 and = >0, -——-—-—-axi

>0.3

Proposition 13. (i) If the production function is strictly concave, then £ < x™< x°.

(ii) x° <x®.

am'(xifx-l)
a;

f(x)<0,G(x)= f"(x)+(n- 1)M<0 First, we show G(% ) > 0. By (2), we have

Bm(x) %[ f(x)
A2 = 25 -p)at- [f— )

Since f'{X)= P<f() G(%)>0. By Lemma 1,

Proof. (i) Define G(x) =Y, . Then G(x)= f'{(x}+{n- 1)f (x) —np(see (3)). Since

om(x] %)

i

<0 for all x_;. Hence G(x"}<0.

Since G(x"}=0,wehave ¥ <x"<x’,

(ii) Define Q(x) = f &) -p. Then Q'(x) < 0. Since Y :;xx ) n;l{f Sf,v)-p}(see (8)) and

as;(x,x;)

> 0 for all i by Lemma 1, we have Q(x”) > 0. Since Q(x*) = 0 by Proposition 10,

we have ¥ <x°. g

5. A numerical example

In this short section, a numerical example is provided. Let f(x) =a+/x , where we set o =
6.57. Letn=3, w; =20 for all {, and let p = 1. When appropriators care about both m; and s;,
we suppose that every appropriator has a utility function expressed by v; = m;s;. Figure 1
shows three best response curves and three symmetric equilibria. The horizontal line stands
for the sum of labor inputs other than appropriator i and the vertical line is for appropriator
i's labor input. Hence, the diagonal line shows symmetric labor inputs. The three

symmetric equilibrium labor inputs are
x*=9.99, ¥/ =117 and x{ =14.4.

On the other hand, the symmetric social benefit maximizing solution is X; =2 /3= 3.58.

-17-



<<Figure 1 is around here>>
Consider now an asymmetric case. Suppose that w;= 40, w,= w; = 20. By Proposition

1, x{" is still 9.99 for alli, but x{ =21.6, x§ = x§ = 10.8.

6. Concluding remarks

We have shown that even though the number of appropriators is limited (or even in a
short-run static modet), a common-pool resource is dissipated completely up to the point
where the average value equals the wage rate when appropriators compete for shares or
differences. This contrasts with Hardin's theme, where the number of appropriators is
unlimited.

Our analysis explains a part of the experimental results, but some of the problems are
still unsolved. Walker, Gardner, and Ostrom (1990a) observed that by raising each
appropriator's endowment sufficiently high, the labor inputs are made high enough to
exceed the point where the average value equals the wage rate. Although the convergence
of contribution in the voluntary contribution mechanism is a relatively strong property,
Gardner, Ostrom, and Walker (1990) and Walker, Gardner, and Ostrom (1990a and 1990b)
found that the average labor input does not converge to a certain point in common-pool

resource experiments. These issues must be addressed by theoretical models.
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Appendix: Proofs of Propositions
Proof of Proposition 4-(ii}. Since — f (x*) +—— il lf (< )—p, that is,

Ji'y) —p= “7{( f’(x*)‘%*—)) and by (5), we have

xﬂ-
duy(x*y - f(x) ;o ou x*
200 - e ]{Z - J =0

am; n

n JU; (m ) 8u,~(m*) x*

Since f( x*)—m:&{) 2o xp=—s

. On the other hand, using

n O au, x*
z“f=‘am,- Y om n

du(x*) _ 1au( = f(x*) du; { f(x*) u; o JON [ fxty
dx; 1 om; \f( )= ] 3m\ x* ) 8m{ (f( T )+( x* p)}
LAY

X

Proof of Proposition 4-(iii). By (5) and p= f'(x),

d o, .
e
n OU; (m ) 3“;'(111*)

and (5), we have

=0, wehave f(x*) i 1f}(cx) =p.

Since f* (x*)—i—) #0, wehave 3, x* . On the other hand, using

Xj= am;
ou; . oy 8ui(x*) ou; (m*) . Ju; (x*)
Zi’;l-a-ax- Fy —Lx* and (5), we have 3% ey (f'(x*)-p). Since _51’!'—20’
we have f'(x*) =p.|
" . e e O (X X0)
Proof of Proposition 7. Only if part: By Proposition 4-(ii), if T =0 and
f( )+" 1f(x £, wehave zj%x; =§:1-5n— That is,
M, o % ( B ) -
iy = - L — | MU =0. Al
f&m}; i om; n {2 ot 2 @, n ) m; (x n]}u’(x ) a1
Since x; =%x', we have ngqm’ LZ Oy an) =0, Since Z o >0, m#, x*>0andn>0,
we have ¥, =0 or Zatj =0. ¥ =0, then we have u; (x)=(a,-,.m!-) ", Consider the case with
j#x
2 0= 0. Since ;; 20, Y 0 =0 implies a; =0 for all j with j#i. Therefore,

i i

u; (x) = o, )ﬁfﬂ" .

If part- Suppose that #, (x) ={om;)P*". Then we have

My B X el
Zfam'xﬁ Bm Pl (x n}u(x) 0. (.x,—nx)

221-



By Proposition 4-{ii), we have -~ f (x )+ n-1 f (x ) =p.y

Proof of Proposition 8. Only if part: By Proposition 4-(iii), if i (i %oi) _ ) ang frixy=p, we
My O » ) !
have Zja—m—j—x,- =-é’-;;;x . Thatis,

: : 181 _ Y =
Ziamj aﬂ'l,-x zal} I(E axfxr ax) " (x x)u[(x) 0. (A2)

Since u; (x*} #0, we have

P
210 e B, (A3)
it Z, it Yi

. L3

L] L] " m i ! ! » '
Since x; :-1-x and w; =W, we have m; =—. Then (A3) becomes L—M=§’—(x —x—).
n n H Zjoc[-,- ¥ n

_):,-aﬁ=2,-%(x'—%)(‘-' Z,-aff=2,-%)- B

i

Summing up this for all i, we have x' -

assumption, Zi oy =Y. 0; . Hence we obtain Zg%(l" %)x' =0. Therefore, n=1or §; =
!

)13.'4'?"‘

for all i. If n=1, then u{x) ={o;;m; = (a,-,-m)ﬂ *7i Consider now n>1. If ;=0 for all j,

then u; (x) = (2 o J) . That s, Zj;u X __37’:,; '_z L. (z QX ~ 05X )u.-(x')=0-
ij I

Since 7; #0, 2., ox; —0zx” =0. Utilizing ay =@ for j# 1, we have
¥y O 0 = (2 (OX; - Tx; + a,-,-xf) —ax =T — o )(x' ~x; )=0.

Hence ;=@ or x; =x . If otz =, then u;( (2 e J a"m) If x; =x , summing

up for all participants, we have x* =nx". That is, n=1. This gives u;(x) = {azm;)" ={a;m)"

If part: If u,(x) = (o) =[o{ F(x)+ plw- x)}] “% we have

ou; (x*)

. (B +7:) em )Py {f’(l" - P} =0

Thatis, f'(x')=p.}

Proof of Proposition 9. (i) Suppose by way of contradiction that #;(x)=m. Then
a; =1, B; =0, and y; =1. Substituting these values in (7), we have then x*=0, which
contradicts to the interior solution assumption. Similarly, supposing that u; (x)=m; (i.e.,

o =1, B; =1, and y; =0), we have x# =0, which again contradicts to the interior solution

assumption.
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(i) Suppose that u;(x)=m (i.e, oz =1, §; =0, and y; =1). Then substituting these values in

13 . . . L .
(Al), we have (1 - ;)x =0, which again contradicts the interior solution assumption.

Next, suppose u, (x)= %, (e, o3 =1, f; =1, and 7; =-1). Then we have

{_ m; (1-—1-)1" +(x; _x ]}_1_= 0. Summing up for all i, (1_1)"_ =0, which contradicts the
n n)|m njm

Ximy 1 1. .
L (1.e., (v 47 =1—-J:z-, C(,'?- ="";1-(I¢]J, ﬂ,— =(, and

assumption. Next, suppose u; (x}=; ~
- x (1) . (1Y :
¥; =1). Then we have x; - 1--?-1- —n—=0. Summing up for all , lmr_i x =0, which

contradicts the assumption.

(iif} Suppose that u; (x)=m; (ie, oy =1, §; =1, and y; =0). Substituting these values in

(A2), we have x; =x". Thatis, }.x; =0, which contradicts the interior solution assumption.
i

Suppose that i, (x)-_--':ni (ie., e =1, f; =1, and 7, =~1). Then (x; —x')-’i- =0. Hence

x; =x , which contradicts the assumption. Suppose that u; (x)=m; —Z—’n’—, (ie, o; = 1—%,
o =-%(i #]), B;=0, and 7; =1). Then x; —%—(b%)x‘ =0. Summing up for all ;,

(n—1)x" =0, which contradicts the assumption. g

so »
Proof of Proposition 12. Notice that u{°(x}= f(x)+p(w-x). Then ou; x(x )= Flx)-p.
S0 r,0 oo
If 3“:-ax(x ) =(), then f*(x‘): p. On the other hand, f'(x')= p implies _ai‘xgx& =0. y
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