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Abstract

The utility theories for the definitions of cooperative games and
associated solution concepts are discussed. A game with side payments
needs the assumptions of transferable utility and side payments. We
discuss the axioms for the transferable utility assumption and also the
role of side payments for various solution concepts. We also discuss
games without side payments, which do not require the assumptions
of transferable utility and side payments. We see how some solution
concepts depend upon these assumptions.

1 Introduction

In principle there are no utility theories exclusive to cooperative game the-
ory. In practice, however, cooperative game theory sometimes uses some
forms of utility theories in particular ways. Special consideration of utility
theories is required because of the feature that, to achieve some agreement,
payments between players may be made “on the side”. A game with side
- payments requires both the assumption that side payments are possible and
an assumption of transferability of utility. A game without side payments
requires neither of these assumptions. In this chapter, we discuss the axioms
for the transferable utility assumption and also the role of side payments in
various solution concepts for both games with and without side payments.

The assumption of transferable utility, sometimes called “quasi-linearity”,
is that the utility function of each player is linearly separable with respect to
some perfectly divisible commodity called money. The assumption required
to define a game with side payments is that, in addition to the strategic
choice of an alternative, players can choose to make transfers of money. A
game with side payments consists of a set of players and a function which
assigns a set of total utilities, summarized by a real number, to each coali-
tion. This framework provides a convenient tool and has an appealingly
simple formulation. If we drop either the assumption of side payments or
of transferable utility, however, the mathematically heavier concept of a
game without side payments is required. The subtleties of games with side
payments arise in interpretation of solution concepts.

Solution concepts for games with side payments depend upon the as-
sumptions of transferable utility and side payments. Some solution concepts
apparently deviate from the original intention of a game with side payments.



We consider to what extent such deviations from the original intention exist
and to what extent they may be justified. Since neither transferable utility
or side payments are required for games without side payments, solution
concepts developed for games without side payments might avoid subtle dif-
ficulties in utility theories. Many solution concepts have been developed
first, however, for games with side payments and then extended to games
without side payments. Thus, the difficulties present in interpretation of
solution concepts for games with side payments also may arise in extensions
of these solution concepts to games without side payments.

In this chapter, we first focus on the basic assumptions, with respect
to utility and side payments, of a game with side payments. We will see
how a game with side payments is used in the definitions of several solution
concepts. To illustrate the status of a game with side payments and solution
concepts for such a game, in the context of general utility theory and coop-
erative game theory we discuss market games and voting games. Then we
consider solution concepts for a game without side payments. Some solution
concepts involve no difficulty in utility theories but some inherit difficulties
from games with side payments.

In Section 2 we review the concept of a game with side payments and sev-
eral examples from the literature. In Section 3 we consider the assumptions
of transferable utility and of side payments. We give axiomatic characteriza-
tions of the transferable utility assumption in the cases of no uncertainty and
of uncertainty. In Section 4 we discuss some solution concepts for games with
side payments, specifically, the core, the von Neumann-Morgenstern stable
set, the Shapley value and the nucleolus. In Section 5 we discuss games
with side payments and see how those solution concepts depend upon the
assumptions of transferable utility and of side payments.

2 A Game with Side Payments

A game with side payments consists of a pair (N, v), where ¥ = {1, ...,n} is
the player set and v : 2V — R is the characteristic function with (@) =
0. The function v assigns to each coalition S in 2¥ the maximum total
payoff that can be obtained by collective activities of the playersin S. A
game (N, v) describes a social situation in terms of the payoffs achievable
by the collective activities of groups of players.

The game is superadditive iff



o(S)+v(T) < v(SUT) forall §,T € 2N with SN T = 0.

In the modelling of social situations as games with side payments, super-
additivity is typically satisfied. For example, a game is superadditive if the
opportunities open to a coalition include dividing into smaller coalitions,
each of which can operate independently of the other. All examples to be
discussed in the present Chapter satisfy superadditivity.

Two considerations are particularly important for our discussion. The
first is that the assumptions of transferable utility and side payments are
required for the description of a game (N, v). Much of our discussion con-
cerns the interpretations and roles of these assumptions. The remainder of
our discussion concerns the distribution of payoffs among the players, ad-
dressed by solution theories. Some solution concepts require no additional
assumptions beyond those of transferable utility and side payments, while
other solution concepts make additional implicit assumptions.

In this Section, we illustrate the derivation of a game with side payments
from a market game, a majority voting game, and a strategic game. We
discuss the roles of transferable utility and side payments in these examples.

2.1 Transferable utility and side payments

Consider an individual player ¢ with utility function U : X x R — R.
The space X x R is called the outcome space for player i and the space
X x RN is the outcome space. The space X may represent a commodity
space, a set of socia] alternatives or the outcome space of a noncooperative
game. The space R of real numbers is typically interpreted as representing a
perfectly divisible composite commodity called “money.” This commodity
represents purchasing power for other commodities outside the model. The
value Uf(z, £) represents the utility from the outcome & and the increment
(or decrement) £ of money from some initial level. The interpretation of
the unbounded domain of money is that any individually rational outcome
can be achieved, without meeting any boundary conditions, by monetary
transfers. That is, relative to individually rational payoffs that might arise
from the game, incomes are sufficiently large to avoid the need for boundary
conditions.

The transferable utility assumption, also called “quasi-linearity” in the
economics literature, is that U’ is linearly separable with respect to £, that



is, there is a function %' : X — R such that
Ui(z,€) = wi(z) + € for all (z,£) € X x R. (1)

The utility function in (1) is interpreted as uniquely determined up to
a parallel transformation. That is, as will be clarified in Section 3.1, if
Vi(z,£) = vi(z) + £ and vi(z) = vi(z) + ¢ for some constant c, then Vi(z, £)
can be regarded as equivalent to U*(z, £).

The term “transferable utility” is motivated by the following observation.
When two players have utility functions of form (1), since the utility level
of each player changes by the amount of the transfer, a transfer of money
between the players appears as a transfer of utility.

Let zg € X be an arbitrarily chosen outcome, interpreted as an initial
situation or the “status quo”. For a utility function Ui(z, &) of form (1), it
holds that for any z € X

Ui(z,€) = Uzg, u'(z) — u' (o) + £).

The above formula implies that u'(z)—u’(2¢) represents the monetary equiv-
alent of the change in utility brought about by the change from zg to z. In
other words, u*(z) — u*(z¢) is the amount of “willingness to pay” for the
transition of the outcome from zq to z (cf., Hicks (1956)).

In the terminology of economics, (1) implies that there are no income ef-
fects on the choice behavior of player i. “No income effects” means the
preferences over X are independent of money holdings, that is, u'(z)—
u'(zg) does not depend on £. This guarantees the well-definedness of con-
sumer surplus. When player ¢ compares paying the amounts of money p and
po for = and z¢ respectively, his “surplus” due to the change from zg to z is
(v (z) — p) — (w¥(wo) — po). When uf(z) — pg is normalized to equal zero by
a parallel transformation of u¢, u(z) —p is defined as the player’s consumer
surplus due to the change.

The no income effects condition is justified as a local approximation to
a situation where the initial income of the consumer is large relative to any
money transfers that may arise in the game. This also provides a justification
for the assumption of the unbounded domain of money. We should always
keep these justifications in mind: some applications or extensions of games
with side payments are not consistent with these justifications.

The assumption of side payments is independent of the assumption of
transferable utility. “Side payments” permits transfers of money in addition
to any sort of transfer embodied in the outcome z. We consider the role of



side payments in the contexts of market games, majority voting games and
games derived from strategic games.

2.2 A market game

Consider an exchange economy with players 1, ...,n and commodities 1, ..., m,
m+1. The space X, called the consumnption space of the first m commodities,
is taken as the non-negative orthant R7 of R™. Each player ¢ has an en-
dowment of commodities w® € X, describing his initial holding of the first m
commodities. Each player also has an endowment of the m 4+ 1** commodity
but this is assumed to be sufficiently large so that it is not binding. Thus we
do not need to specify the endowment of money: only increments or decre-
ments from the initial level are considered. The value U*(z, £) represents the
utility from consuming commodity bundle z and the initial money holdings
plus the increment or decrement in £.

Under the transferable utility assumption for all players, a game with
side payments is defined as follows: for each coalition §,?

v(§) =max Y  u'(z') subject to) a'= > w'andz' € X forallic S
{ES ies €S
| (2)

The characteristic function assigns to each coalition the maximum total
payoff achievable by exchanges of commodities among the members of the
coalition.

The characteristic function (2) may appear to suggest that players in
a coalition maximize total utility and players make interpersonal compar-
isons of utilities. As we discuss below, some solution concepts based on the
characteristic function may indeed make interpersonal comparisons of utili-
ties. These may violate the original intention of von-Neumann-Morgenstern
(1944) that the value v(.5) simply describes the Pareto frontier and the fea-
sible payoffs for S.Definition (2) by itself does not involve any behavioral
assumptions or interpersonal utility comparisons.

To describe the Pareto frontier, define an allocation (z*,£*)ics for S by

(@,6)e X x Rforalli€ 5, Y o' =Y wiand 3 €6 =0. (3)
i€s ies i€S

An allocation (2%,£%);es is said to be Pareto-optimal for S iff there is no

1When »'(z") is continuous, the following maximization problem is well defined. In the
sequel, when we use “max” we are assuming that it is well defined.



other allocation (3, 7')ies for § such that

Ui(y', ') > Uiz, &) for alli € §; and
(4)

Ui(y', n') > Ui(a?, &) for some i € 5.
The value v(S) describes Pareto-optimal allocations in the following sense:

Proposition 2.1. An allocation (z%,£%)ics is Pareto-optimal for S if and
only if ¥(S) = T s vi(z?).

Proof: If (2,£');cs is not Pareto-optimal for S, then (4) holds for some
allocation (%, %)ies for S. This, together with Z;es 7 = Bies€ = 0, implies
that Zies ui(z') < Zies vi(y') < v(S). Conversely, if B;es vi(2?) < v(8),
there is a (¥')ies with Sies %'(2f) < ies u*(y¥). This implies that (4) holds
for an appropriate choice of (7*);cs. O

The characteristic function delineates feasible payoffs. In the market,
the feasibility of payoffs (a:)ics for coalition 5 is described as:
for some allocation (2%, ¢);es, a; < w'(a') + & for all i € S. (5)

This feasibility is summarized by the characteristic function v, since (a;)ics
is feasible for § if and only if

Lies a; < v(8) (6)

In the terminology of economics, the value »() is the maximum sum of
the consumer surpluses over the players in S. From the no income effects
condition, this sum »(5) is independent of the distribution of the money
holdings among the members of 5.

The definition of Pareto optimality (4) is unaffected by monotone in-
creasing transformations of utility functions. That is, the Pareto-optimality
of an allocation for a coalition § is unaffected by such transformations of
the utility functions of its members. On the other hand, the definition of
the characteristic function requires particular (transformations of) utility
functions. Nevertheless, Proposition 2.1 guarantees that the value v(5) de-
termines the Pareto frontier for coalition 5.

In the context of markets, the side payments assumption simply means
that side payments — transfers of the last commodity — are possible. In
other contexts such as voting games, discussed in the next subsection, side
payments have a more significant role.



2.3 Majority voting game with side payments

Consider a voting situation with n players where one alternative is chosen
by majority voting from the set X of social alternatives. Suppose that the
utility function of each player ¢, Ui(z, £'): X x R — R, is of form (1). Define
a characteristic function v : 2¥ — R by

maxzex Y iest(z) if [§] > 2

mingex Y ies¥(z) otherwise,

»(S) = )

where |.§] is the number of members in §. A majority coalition §, [§] > 2,
can choose any social alternative z from X. Therefore the members of a
majority coalition can maximize the total payoff Zjes w'(z). A minority
coalition S, |§] < £, cannot make an effective choice. Thus v(S) is defined
as the value the members of 5 can certainly guarantee for themselves.

In a voting game, as in a market game, for a majority coalition 5 the
value v(.5) determines the Pareto frontier for 5. For a minority coalition 5,
v(§) also determines the Pareto frontier among all feasible outcomes that
the members of 5 can guarantee for themselves.

The main issue of the majority voting game is the choice of a social alter-
native # € X. Besides the choice of z, the players are able to make transfers
of money, that is, side payments. This allows the possibility of obtaining
the consent of other players to a particular alternative by purchasing their
votes,

In the market game of the above subsection, side payments have only a
trivial meaning in the sense that transfers of money are parts of the main is-
sue of the market; if such transfers are prohibited, the situation is no longer
a market. On the other hand, in voting situations, such side payments are
sometimes difficult or regarded as impossible. In such a case, the formula-
tion (7) is inappropriate: we need the formulation of a game without side
payments, which will be discussed in Section 5.

2.4 The cooperative game derived from a strategic form game

Let G = (N, {Z:}ien, {hi}ien) be an n-person finite strategic form game, that
is, N = {1,...,,n} is the player set, I; is a finite strategy space for player
1€ N,and h; : 1 X+ x X, — Ris the payoff function of player 7. The space
of mized strategies of player ¢ is the set of all probability distributions over
¥;, denoted by M(X;). Note that M(Z;) is the | 3; | —1 dimensional unit
simplex. When the players in a coalition S cooperate, they can coordinate



their strategies to play a joint mized strategy, a probability distribution over
Ys = Iics ¥;. We denote the set of all joint strategies for § by M(Zg),which
is also a unit simplex. The payoff function k;(-) is extended to M(Zy) as
the expectation of h;(s) over Zy. In fact, hi(-) corresponds to wu; in the
expression (1) so that U*(s,€) = hi(s) + £. Thus the whole utility function
U is defined on M(Zy)x R, and the space X of Section 2.1 is now M(Zy).

In the derivation of a cooperative game with. side payments from a strate-
gic game, transfers of money between the playersin a coalition are permitted.
When transferable utility in the sense of Subsection 2.1 is assumed, the total
utility

E hi(os,0_5), where 05 € M(Zg) and o_s € M(Z_3),
=

is independent of the monetary transfers. Thus the total utility Z hi(og,0-5)
can be freely distributed among the playersin S by the pla.yersisrfa, side pay-
ments (£i)ies with Zicsf = 0. Each player evaluates an outcome (og, o_s)
by the expected value of (-} and may make transfers to other players in
return for the agreements to play the joint mixed strategy.

Von Neumann and Morgenstern (1944) defined the characteristic func-

tion »,

§) = i Sies hi(os,0-s) forall Se2V. (8
’U( ) US?M%S) a_SeIAI}I(%N_S) €S (US o S) or c ( )

That is, the value v(S) is defined by regarding the game situation as a
two-person zero-sum game with one player taken as § and the other as the
complementary coalition N — S.

The game involves uncertainty in that the players can choose joint mixed
strategies. It is assumed that when side payments are permitted, even
though they might play mixed strategies, players can make monetary trans-
fers without uncertainty.

In the standard treatment of a strategic game G = (N, {Z;}ien, {hi}ien),
the game G is a closed world in the sense that no additional structure is as-
sumed. In the treatment here, side payments can be made by making trans-
fers of money. Money represents purchasing power in the world outside the
game. In this sense, the game is not a closed world.



3 Axiomatic Characterization of Transferable Util-
ity

It may be helpful in understanding the assumption of transferable utility

to look at an axiomatic characterization of preferences having transferable

utility representations. We will discuss axioms for both preferences over

outcomes with and without uncertainty. The derivation with no uncertainty

is close to the classical utility theory (cf., Debreu (1957)). With uncertainty,

the derivation is a special case of the von Neumann-Morgenstern utility
theory.

3.1 Transferable utility with no uncertainty

In the absence of uncertainty, a preference relation >; is defined on X x R.
Consider the following four conditions on =;:

(T1)  »>;is a complete preordering on X X R;
(T2) >; is strictly monotone on R;

(T3) for any (%,£), (¥,7) € X x R with (z,¢) >; (¥, 7), there is an
€ € R such that (z,£) ~; (y,7+ €); and

(T4) (Z, ‘f) ~q (y: "'7) and € € R imply (maE + €) ~q (%?’H' 6):

where ~; is the indifference part of the relation »; . Conditions (T1) and
(T2) are standard. Condition (T3) means that some amount of money
substitutes for a change in outcome. Condition (T4), the most essential,
means that the player’s choice behavior on X does not depend on his money
holdings.

The following result holds (Aumann (1960), Kaneko (1976)):

Proposition 3.1. A preference relation »; satisfies (T1)-(T4) if and only
if there is a function v’ : X — R such that (2,€) &; (y,7) & ui(z) + £ >
w(y) + 1.

A utility function U*(z, £) = ui(z)+¢ is one representation of a preference
relation >; satisfying (T1)-(T4). Note that any monotone transformation
w(ui(z) + €) of Ut is also a representation of the preference relation »; .
Nevertheless, as already seen in Section 2, the representation u(z) + ¢ has
a special status in defining a game with side payments.

Proof of Proposition 3.1. If there is a utility function U? of form (1),
then »; determined by U* satisfies (T1)-(T4). Suppose, conversely, that

10



>; satisfies (T1)-(T4). Choose an arbitrary zo in X. For each z in X, define
w'(=) by

u(z) = n—§&, where (2,€) ~: (20,7). (9)

The existence of such numbers £ and # is ensured by (T3) and the dif-
ference 17 — & is uniquely determined by (T2) and (T4). Note that (9)
and (T2) imply vi(zo) = 0 and (z,£) ~; (w0, ui(z) + £), Le., ui(z) is the
amount of willingness-to-pay for the transition from zg to z. The function
u'(z) represents the preference relation >; . Indeed, (2,£) >; (¥,7) <
(20, wi(2) + €) ~i (2,6) =i (3s7m) ~i (20,w'(y) + 1) == v(z) +£ 2
u(y) + 7. 0O
The following facts hold (Kaneko (1976)):

Ui(z,€) = u'(z) + £ is quasi-concave iff u'(z) is concave; (10)

Ui(z,€) = v'(z) + £ is continuous iff w(z) is continuous. (11}

In (10) and (11) some convex and topological structures on X are assumed.
It follows from (10) and (11) that a condition for >; to be convex or to be
continuous is the concavity or continuity of u* respectively.

3.2 ‘Transferable utility with uncertainty

When the game situation involves uncertainty, as in Section 2.4, for example,
Ui(z,€) = u'(z)+ £ is a von Neuman-Morgenstern utility representation. In
this case, the domain of a preference relation >; is the set of probability
distributions on X x R. We describe conditions on preference relations >;
with this domain to have a utility function representation of form (1).

A probability distribution on X x R with finite support is a function
p: X X R — [0,1] satisfying the property that for some finite subset S of
X X R, Z4es p(t) = 1 and p(t) > 0 implies t € §. We extend X x R to the
set M(X x R) of all probability distributions on X x R with finite supports.
Regarding a one-point distribution fi; ¢ (i.e., fiz,e)(7,&) = 1) as (z, ) itself,
the space X x R becomes a subset of M (X x R). Also, M(X) X R is a subset
of M(X x R); this is relevant in Section 2.4 {where we take X as Ty). For
p,q € M(X x R) and X € [0,1], we define a convex combination Ap*(1—A)g
by

(Ap* (1= N)g)(z,€) = Ap(z, £) + (1~ A)g(x,€) for all (2,€) € X x R. (12)

11



With this operation, M(X X R) is a convex set. Usually, Ap * (1 ~ Mg
is regarded as a compound lottery in the sense that p and ¢ occur with
probabilities A and (1—A) respectively and then the random choice according
to p or ¢ is made. Condition (12) requires that the compound lottery be
composed into one lottery.

We impose the following four axioms on »; :

(NM1) »;is a complete preordering on M(X x R);
(NM2) p ;¢ >;r implies ap * (1 — a)r ~; ¢ for some a € [0,1];

(NM3) pig, T € M(X x R)and o € [0,1] imply ap * (1 — a)r >=;
ag*{l—a)r;

(NM4) p>;qand a > imply ap* (1 —a)g >; Bp* (1L — B)q,
where >; is the asymmetric part of »;, i.e., p >; ¢ means that player ¢
strictly prefers pto ¢. Condition (NM1) is the same as {T1) except that
condition (NM1) is applied to the larger domain M(X x R); thus (NM1)
implies (T1). Condition (NM2) states that for any lottery ¢ between two
other lotteries p and r, there is a compound lottery ap#(1—e)r indifferent to
g. Condition (NM2), as condition (T2), is a continuity property. Conditions
(NM3) and (NM4) mean that the comparison of compound lotteries is based
on the outcomes of these lotteries, which implies that the evaluation of
a lottery depends eventually upon the sure outcomes of the lottery, as is
shown in (15) below. Thus conditions (NM3) and (NM4) are called the
“Sure-Thing” Principle.?

The following is known as the Expected Utility Theorem (cf., von Neumann-
Morgenstern (1944), Herstein-Milnor (1953)):

Proposition 3.2. A preference relation }=; satisfies (NM1)-(NM4) if and

only if there is a function V* : M(X X R) — R such that for any p,q €
M(X x R) and A € [0, 1],

p i g &= Vi(p) > Vi(g);and (13)

Vi(p (1= M) = AWVip) + (1 = )Vi(g). (14)

The function V* is called a von Neuman-Morgenstern utility function. In

contrast to the representability in Section 3.1, Vi(z,£) allows only a posi-

tive linear transformation, not necessarily an arbitrary monotonic transfor-

mation, i.e., if U? also satisfies (13) and (14), there is a positive real number
a and a real number 4 such that U*(p) = aVi(p) + b for all p € M(X x R).

*Using some additional topological conditions, (NM4) is derived from (NM3) (cf.,
Herstein-Milnor (1953)).

12



Since X X R is a subset of M(X X R), V* assigns a value Vi(z, £) to each
(z,£)in X x R. For each p € M(X x R), the value V*(p) is represented as the
expected value of Vi(z, £) with p(z, £) > 0. Indeed, since each p € M(X x R)
has finite support S, by repeated applications of (14), we obtain

Viw)= > p(e,6)Vi(s,8). (15)
(z£)es
That is, the utility from the probability distribution p is given as the ex-
pected utility value with respect to the distribution p. This fact motivates
the term “expected utility theory”.

Proof of Proposition 3.2. The “if” part is straightforward. Consider
the “only-if” part. Suppose that a >; b for some ¢,b € M(X x R). If such
distributions a and & do not exist, the claim is shown by assigning zero to
every p. Now we define V},(p) for any p with a >; p >; b by

Vi(p) = A, where p ~; Aax (1 - A)b. (16)

The unique existence of such A is ensured by (NM2) and (NM4). Then it
follows from (NM1) and (NM4) that Vi (p) > Vi(g) < p =; g, which is
(13). Finally, p := Vi(Ap * (1 ~ X)q) satisfies
pax (1 —mb~idpx (1~ XA)g  (by (16))
~i AV (R)e (1= Vi (e)b]+ (1 = M[VE(@)a* (1 - Viy()b] (by (NM3))
~i [AVg(p) + (1 = MVgs(@)]a # (1 = [AVE,(p) + (1~ M)V ()))B.

The coefficients for @ in the first and last terms must be the same by (NM1)
and (NM4), that is, g = Vi(Ap*(1—A)g) = AVE,(p)+ (1 — \)Vi(g). Thus
(14) holds.

It remains to extend the function V}, to the entire space M(X x R). We
give a sketch of how this extension is made {cf., Herstein-Milnor {1953) for a
more detailed proof). Let ¢, d, ¢, fbe arbitrary elements in M(X x R) with
exricriaand b >=; d>; f. Applying the above proof, we obtain utility
functions V%, and V,; satisfying (13) and (14) with domains {p : ¢ »=; p >; d}
and {p:e>;p>; f}. Then Vi(c) = Vii(e) = 1 and Viy(d) = Vi(f) = 0.
We define new utility functions U éd and U} ¢ by the following positive linear
transformations:

Ualp) = (Vaa(p) = Ve @)/ (Viy(b) ~ Viy(@)) for all p with ¢ s p =: ds
Ui (p) = (Ves(p) = VEp(@))/(Vif(b) = Viy(a) for all p with e >; p =; f.

13



Then it can be shown that these functions U?; and U;'f coincide on {p :
¢ =i p =i d}. This fact ensures that we can define Vi(p) = Ui,(p) for any
p € M(X xR),where ¢,d are chosensothat ¢ »; p>=; dand ¢ >=; a >; b >; d.
Since U?,(p) satisfies (13) and (14), so does the function V. O

When »>; satisfies (T2)-(T4) on the domain X X R in addition to (NM1)-
(NM4) on M(X x R), it holds that there is a monotone function ¢ : B —
R satisfying

Vi(z,€) = p(ui(z) + €) for all (z,£) € X x R.

Indeed, since the preference »; over X X R is represented by w(z) + £ and
is also represented by the restriction of V* to X x R, the functions ui(z) 4 £
and Vi(z,£) are related by a monotone transformation . The function
o expresses the risk attitude of player 7.

For u'(z) + £ to be a von Neuman-Morgenstern utility function, we need
one more assumption:

(RN)  2(z,€)* 3(z,m) ~i (=, 36 + 1n) for all (2,£),(z,n) € X x R.
This assumption describes risk neutrality with respect to money; given z,

player ¢ is indifferent between £ and 7 with equal probabilities and the

average of £ and 7.
From (RN) and (14) it follows that

S0(0(@) + 6+ 30(i(e) + m) = o(ui(@) + 26+ 2R).  (17)

Indeed since £, 7 are arbitrary elements of R, w*(2) + £ and u!(z) + 5 can
take arbitrary values. Thus (17) can be regarded as a functional equation:
for each ¢ and 8 in R,

29(a) + 36(0) = w(za+ 35)

This, together with the monotonicity of ¢, implies that ¢ can be represented
as ¢(a) = aa + g for all o, where a > 0 and b are given constants. We can
normalize ¢ and b to be @ = 1 and b = 0. Thus we have the following:

Proposition 3.3. A preference relation >; satisfies (NM-1)-(NM4), (T2)-
(T4) and (RN) if and only if >; is represented by utility function of form
Vi(z,£) = v'(z) + £ in the sense of (13), (14) and (15).
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4 Solution Concepts for Games with Side Pay-
ments

A game in characteristic function form describes what each coalition § can
obtain by the cooperation of the members of §. Given a game, solution
theory addresses the question of how payoffs are distributed. Each solution
concept explicitly or implicitly describes the behavior of coalitions and makes
some prediction on the occurrence of distributions of payoffs. Some solution
concepts are faithful to the basic objective of the definition of the charac-
teristic function discussed in Section 2, but some depend critically upon the
numerical expression of the characteristic function. In this section, we dis-
cuss four solution concepts, namely, the core, the von Neumann-Morgenstern
stable set, the nucleolus, and the Shapley value.

We prepare some notions before discussing solution concepts. Let a
game (N, v) with side payments be given. An imputation is a payoff vector
(a1, ..., ay) satisfying

(Individual rationality) : a; 2> v({¢}) forall i € N;
(Feastbility) : Zien a;i = v(N).

Individual rationality means that a possible candidate for the distribution
of payoffs gives to each player not less than what the player can certainly
obtain by himself. Feasibility means that the maximum payoff »(N) that
the total coalition N can obtain is distributed among the players. We denote
the set of imputations by I(N,v).

For imputations a and b in I(N,v), we say that a dominates b vie a
coalition S, denoted by a domg b, iff

a; >b;forallie § (18)

and
v(S§) > Zies a;. (19)

Condition (18) means that every player in § prefers a to b and (19), called
effectiveness by von Neumann-Morgenstern (1944), means that the impu-
tation a is feasible for coalition § (cf.,(5), (6)). Here the characteristic
function is used to describe the feasibility of (a;)ies for coalition §. We
denote a domg b for some S by a dom b.
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4.1 The core

The core is defined to be the set of all undominated imputations, that is,
{a € I(N,v) : not b dom a for any b € I(N,v)}.

Although the core is defined to be a set, the stability property of the core
is an attribute of each imputation in the core. The core can alternatively be
defined to be the set of all imputations satisfying coalitional rationality:

Ties a; > v(§) for all S € 2V, (20)

In the market game of Section 2.2, if v(S) > Z;cs a; for some coalition .S
then there is an allocation (af,&%);es for § such that wi(z) + £ > o' for
all 7 € §, that is, the players in § can be better off by their own exchanges
of commodities. The coalitional rationality of the core rules out such pos-
sibilities. This definition simply depends upon individual preferences and
the feasibility described by the characteristic function. No interpersonal
comparisons are involved in the definition of the core.3:

For two-player games, the core is simply the imputation space I(N,v).
For more than two players, games may have empty cores. In the following
we consider the role of side payments in some examples of games with empty
cores and some with nonempty cores.

Example 3.1. Consider two different three-person voting games with total
player set N = {1,2,3} and X = {z, y}. For one game the utility functions
of the players are given by the column below on the left and for the other
game, by the column on the right.

3In the literature on market games, the nonemptiness of the core and the relationship
between the core and the competitive equilibria has been extensively studied. The reader
can find a comprehensive list of references in Shubik (1984).

*Since side payments permit unbounded transfers of the commodity “money,” the
competitive equilibrium concept requires some modification. A competitive equilibrium is
a pair (p, (z', p(w’ — z*))ien) consisting of a price vector p and an allocation (z*, p(w’ —
£'}))ien with the following properties:

u (z) + p(w’ —2°) > v () + p(w’ — y) forall y € X.

Since money can be traded in any amount, positive or negative, the budget constraint is
non-binding. Under the assumptions of concavity and continuity on the utility functions
and the assumption that Zign w’ > 0, the existence of a competitive equilibrium is proven
by using the Kuhn-Tucker Theorem (cf., Uzawa (1958) and Negishi (1960)).
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uwl(z) = v¥(z) = 10, v¥(z) =0 wt(z) = 7%(z) = 10, 7¥(z) = 0

wW(y) =¥ (y) =0, ¥3(y)=15 al(y) =w(y) =0, z3(y)=0.
The characteristic functions, defined by (7}, are given as follows:
»(N) = 20, w(N) = 20,
v({1,2}) = 20, #({1,2}) = 20,
v({2,3}) = »({1,3}) = 15, and #({2,3}) = 9({1,3}) = 10, and
v({1}) = »({2}) = v({3}) = 0. 3({1}) =9({2}) = v({3}) = 0.

The core of the first game (N, v) is empty. Indeed, consider the regular
triangle with height 20, as in Figure 4.1.

1

Figure 4.1.

Each point in the triangle in Figure 4.1 corresponds to a vector (ay, as, a3),
where a; is the height of the perpendicular to the base i. The inequalities

ay + az > 20 = v({1,2}), a2 + az > 15 = v({2,3}),
and a) + a3z > 15 = »({1,3})
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determine the areas that the corresponding coalitions can guarantee. The
core is the intersection of those three areas. In this example, the core is
empty.

For the second game (N,7%), the core consists of a single imputation,
(10,10,0), designated by A in Figure 4.2. Since (10,10,0) = (@l(z), %(z),
3(z)) this imputation is obtained by choosing alternative z and making
no side payments. Any other imputation is dominated. For domination,
side payments may be required. For example, the imputation (14,6,0) is
dominated by (10,8,2). Players 2 and 3 can choose z and make a side
payment of 2 units of money from player 2 to player 3, so as to ensure the
payoifls of 8 and 2 for themselves.

(14,6,0)

- A:(20,10,0)

Figure 4.2

A necessary and sufficient condition for the nonemptiness of the core of
the voting game in Section 2.3 was given in Kaneko (1975). This condition
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states that every majority coalition has the same most preferred social al-
ternative z*, i.e., v(9) = Tiesvi(z*) for all § € 2V with |§] > 2. In this
case the core consists of the unique payoff vector (ul(z*),...,u"(z*)); the
common alternative z* is chosen and no side payments are made.

Now we will see how much side payments are required for the core. For
this purpose, we consider briefly the Shapley-Shubik (1971) assignment game
and its core. In the assignment game model, only pairs of players from two
groups L and M (LUM = N and LN M = @) play essential roles, i.e., an
essential coalition T'is T = {i,5},7 € L and j € M. We denote the set of
all such essential pairs by P. Now II(§) denotes the set of all partitions of
S into essential pairs or singleton coalitions. The value v(S) of an arbitrary
coalition S is obtained by partitioning coalition § into pairs and singletons,
that is, a game (V, v) with side payments is called an assignment game iff

—_ N
v(8) = glgﬁc% o(T) for all § € 27, (21)

The assignment game has interesting applications to markets with indivisible
goods (cf., Shapley-Shubik (1971)}).

For the core of the assignment game (N, v), side payments are effectively
required only for essential pairs. Indeed, define a pairwise feasible payoff
vector a by

a; > v({i}) for all i € N; and
for some partition = € II(N¥), a; + a; < v({7,5})if {i,7} er and

a; = v({i}) if {i} € .

That is, a pairwise feasible payoff vector is obtained by cooperation of es-
sential pairs in some partition 7. We denote the set of all pairwise feasible
payoff vectors by P(N,v). This set is typically much smaller than the entire
imputation space I(N, ). One can prove that the core of the assignment
game (N,v) coincides with the set {a € P(N,v) : a; + a; > v({i,5}) for
all {z,7} € P}. In the definition of a pairwise feasible payoff vector and
in coalitional rationality for essential pairs {¢,7} € P, side payments are
allowed only between two players in each essential coalition. Thus, for the
consideration of the core of an assignment game, side payments are only re-
quired within essential coalitions. In different game models, we cannot make
exactly the same assertion, but often the similar tendency can be found.
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4.2 The von Neumann-Morgenstern stable set

Now consider the von Neumann-Morgenstern stable set. Let (¥,v) be a
game with side payments. A subset K of I(N,v) is called a stable set iff it
satisfies the following two properties:

(Internal stability): for any a,b € K, neither a dom b norb dom a;

(Ezternal stability): for any a € I(N,v) — K, there is b € X such that

b dom a.

Von Neumann-Morgenstern described the stability property of a stable
set as follows: each stable set is a candidate for a stable standard of behavior
in recurrent situations of the game. Once a stable set has become socially
acceptable, each imputation in the stable set is a possible stable (stationary)
outcome. The stability of each outcome in the stable set is supported by
the entire structure of the stable set. In general each game also has a great
multiplicity of stable sets. Two of these stable sets for the above three person
game examples are depicted in Figures 4.3 and 4.4.

Figure 4.3
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B: (15,5,0)

£:(0,20,0)

Figure 4.4

The stable sets consist of the points in the bold lines. Which outcome in
a stable set and which stable set arises is determined by the history of the
society. For a full explanation, see von Neumann-Morgenstern (1944).

The definition of a stable set is based on dominance relations. Thus,
like the core, the definition depends only upon individual preferences and
the feasibility described by the characteristic function. Nevertheless, the
definition of a stable set depends crucially upon the entire imputation space
I(N,v), in contrast to the core. Some imputations in I{N,v) need large
transfers among all the players. For example, the point B = (15,0,5) in
Figure 4.4 is in the stable set and is obtained by choosing alternative z and
making the transfer of 5 each to players 1 and 3 from player 2. The point
C = (0,20,0) is not in the stable set but needs to be taken into account for
a stable set.
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When the game involves a large number of players, the dependence of a
stable set upon the entire imputation space becomes problematic. Imputa-
tions where a few players get all the surplus and the others only receive their
individually rational payoffs cannot be ignored. It may require cooperation
and agreement among a large number of players to make large amounts of
side payments to obtain such imputations. In this case, the justification for
the framework of games with side payments and no boundary conditions for
money, discussed in Section 2, becomes problematic.

In the Shapley-Shubik assignment game described above, for example,
the core can be defined by coalitional rationality for essential pairs in P
and the pairwise feasible payoff space P(N,v); it does not need the entire
imputation space J(N,v). In contrast to the core, a stable set crucially
depends upon the specification of the entire feasible payoff set. If we adopt
a different set of feasible payoff vectors, a stable set would change drastically,
and also there remains an arbitrariness in the choice of such a space.

Here we do not intend to suggest the superiority of the core to the stable
set. Apparently the stable set has a richer underlying interpretation than
the core, and may give some good hints for applications of game theory to
new and different models of social problems. Our intent is to suggest that
simplistic applications or extensions of the stable set may violate the original
justification and motivation for the framework of games with side payments.

4.3 'The nucleolus

Some solution concepts make apparently intrinsic use of the monetary repre-
sentation of v(.5). In this and the following subsections we discuss two such
solution concepts, the nucleolus and the Shapley value. It is often claimed
that these concepts involve interpersonal utility comparisons. We consider
how we might interpret these interpersonal comparisons.

Let (¥,v) be a game and let a be an imputation. Define the “dissatis-
faction” of coalition § € 2V by

e(a,5) = v(5) — Zies a;. (22)

Let f(a) be the 2"-vectors whose components are e(a,$),$ € 2V and are
ordered in a descending way, i.e., 6;(a) > 8,(e) for all s and ¢ from 1 to
2% with t < s. The lexicographic ordering >; is defined as follows:
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a > biff there is an s (s = 1,- - -,27) such that

0:(a) = 6i(b) for all t = 1,...,5 — 1 and 8,(a) > 0,(b). (23)

The relation »; is a complete ordering on I. The nucleolus is defined to
be the minimal element in I with respect to the ordering »; . Schmeidler
(1969) showed that the nucleolus exists and is unique.

The nucleolus has various technical merits. The apparent merit is the
unique existence. Also, when the core is nonempty, the nucleolus belongs
to the core and, for any € > 0, when the ¢—core is nonempty, the nucleolus
belongs to the e-core. In the examples of Section 4.1, the nuclei are (-255—,
2,10 and (10,10,0) respectively. In the first case the nucleolus is in the
e—core, and in the second case the nucleolus coincides with the core. The
nucleolus is related to other solution concepts — the bargaining set M{ of
Aumann-Maschler (1964) and the kernel of Davis-Maschler (1966).

The nucleolus is frequently regarded as a possible candidate for a norma-
tive outcome of a game, meaning that the nucleolus expresses some equity
or fairness.® Sometimes, it is regarded as a descriptive concept since it al-
ways belongs to the core or the e-core. Either interpretation, normative or
descriptive, presents, however, some difficulties related to the treatments of
transferable utility and side payments. The first difficulty is in the question
of how to interpret comparisons of dissatisfactions v(5)—~3 ;e a; and v(T)—
Y_ict b; for different coalitions §, T' and different imputations a,b. If the
dissatisfactions are compared for a single coalition, the minimization of dis-
satisfaction is equivalent to the original role of v(.5) described by (5) and (6),
but we need to make comparisons over different coalitions. The second diffi-
culty is the lack of motivation for the criterion of lexicographic minimization
of dissatisfactions.

The first difficulty consists of two parts: (A) individual utilities (gains
or losses) are compared over players; and (B) sums of utilities (gains or
losses) for some players are compared for different coalitions. In either case,
making such comparisons already deviates from the initial intention of the
characteristic function discussed in Section 2.

If the nucleolus is regarded as normative, the second difficulty is less
problematic since the normative observer may be motivated to minimize
dissatisfactions. The question here is the basis for the criterion of minimizing

5The normative aspect attributed to the nucleolus is derived chiefly by its similarity
to Rawles’ (1970) minmax principle or the leximin welfare function as the interpretation
of the maximin principle given by economists.
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dissatisfactions in the lexicographic manner. Thus the first question is more
relevant form the normative viewpoint.

The intuitive appeal of the nucleolus to some researchers may be based
on the feature that dissatisfactions are compared using monetary units, per-
haps because monetary comparisons are familiar from our everyday life.
As discussed in Section 2, the assumption of transferable utility prohibits
income effects, but for distributional normative issues, income effects are
central.

4.4 The Shapley value

The value, introduced by Shapley (1953), resembles the nucleolus as a game
theoretical concept; it exists uniquely for any game (¥, v), From the view-
point of utility theory, the Shapley value also needs the intrinsic use of
the particular definition of a characteristic function. Nevertheless, it is less
problematic than the nucleolus. First, we give a brief review of the Shapley
value.

Shapley (1953) derived his value originally from four axioms on a so-
lution function. A solution function 1 is a function on the set T of all n-
person superadditive characteristic function games (N, v), with fixed player
set N, which assigns a payoff vector to each game. Since the player set NV is
fixed, the game is identified with a characteristic function ». Thus, a value
function 1) : T' — R™ is denoted by 9(v) = (¥1(v), ..., ¥n(v)). Shapley gave
the following four axioms on 1:

81 (Pareto Optimality): for any game (N, v) € T, Tiep %i(v) = v(NV);

52 (Symmetry): for any permutation 7 of N, 9(7v) € (Yr(1) ()5 iy Yy (¥)),
where 7v is defined by 7(5) = v({r(i):4 € S}) for all § € 2V;

53 (Additivity): for any two games, v,w € T, ¥(v+ w) = ¥(v) + ¥(w)
where v + w is defined by (v + w)(S) = »(8) + w(S) for all § € 2V,

54 (Dummy Axiom): for any game v € T and i € N, if v(S U {i}) =
v(8) + v({i}) for all § € 2V with i ¢ S, then ¥;(v) = v({s}).

In general, the solution function % depends upon the game described by a
characteristic function, but Axiom $2 means that % should not depend on
the names of players given by the index numbers 1,2, ..., n. The mathemat-
ical meanings of the other axioms are also clear, but they have not been
given a meaning beyond their mathematical expressions.
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Shapley (1953) proved the following: if a solution function 1 satisfies
Axioms S1 through 54, then 1) is uniquely determined as

piwy= T B IS = Doy o) foralie . (29)

|
Sc n!
ET

Although each of the above axioms and Shapley’s result are mathematically
clear, they do not indicate the utility theory underlying the concept of the
Shapley value. Formula (24), however, does provide some utility theoretic
interpretation of the Shapley value.

Suppose that the players come to participate in the game in random
order and that each player i gets his marginal contribution »(SU {z})~ v(5)
when the players § are already in the game and then player i enters the
game. Before the game is played, it is equally probable for player i that he
comes to the game at any place in the ordering of 1, 2, ..., n. The probability
that player ¢ comes after the players S is given by the coefficients in formula.
(24). Thus player i’s expected utility from this process is given as formula
(24).

In the above interpretation, the utility theory underlying the Shapley
value is relatively clear. The marginal contribution v(S5' U {¢}) — »(S) is the
monetary payoff to player ¢ and the expectation of these marginal payoffs is
taken: the risk neutral von Neuman-Morgenstern utility function suffices. In
this interpretation, however, the game is assumed to be played in a different
manner than that intended by the motivation initially given for a game in
characteristic function form.

Similarly to the nucleolus, the Shapley value is also interpreted as a nor-
mative (fair or equitable) outcome, mainly because of the symmetry axiom.
As already mentioned, the Symmetry axiom simply states that a solution
function does not depend upon the names of the players, a necessary but
not sufficient condition for an equitable outcome, since the game itself may
be inequitable.

5 Games Without Side Payments and Some So-
lution Concepts

Although a game with side payments is a convenient tool, it needs the as-

sumption of transferable utility and side payments. The transferable utility

assumption may be inappropriate for some situations in that it ignores in-
come effects. Side payments may be prohibited or impossible. When either
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the assumption of transferable utility or of side payments is eliminated, we
need games without side payments. In this section we discuss a game with-
out side payments together with some solution concepts from the viewpoint
of utility theories.

The term “a game without side payments” is slightly misleading in the
sense that the framework allows games with side payments and transferable
utility as special cases. However, we follow this standard terminology.

5.1 Games without side payments

A game without side payments is given as a pair (N, V) consisting of the
player set N and a characteristic function V on 2V, For each coalition 5, the
set V(§) is a subset of RS, where R¥ is |§| —dimensional Euclidean space
with coordinates labelled by the members of 5.6 The set V(S) describes the
set of all payoff vectors for coalition S that are attainable by the members in
§ themselves. We assume the following technical conditions: for all § € 2V,

V(8) is a closed subset of RY; (25)

@ € V() and 5% < o5 imply 65 € V(9); (26)

{a% € V(S): af > max V({i}) for all s € §} is
nonempty and bounded.

For games without side payments, superadditivity is given by
V(S)xV(T)CV(SUT) forall 5,7 € 2V with SNT = 0. (27)

Within the framework of games without side payments, a game with side
payments is described as

V(S)={e®: Tics af < v(8§))} for all § € 2. (28)

Thus V(5) describes directly the set of attainable payoffs for §. The three
examples of games with side payments in Section 2 are directly described by
(28). It will be seen below that using the framework without side payments,
the assumptions of transferable utility and side payments are not needed.
A game without side payments is a heavy mathematical tool. It is suit-
able to discuss general problems such as the nonemptinesss of the core (cf.,

®R? = {0}.
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Scarf (1967)) but when a specific game situation is given, it is often more
convenient to work on the situation directly instead of describing it as a
game without side payments. Nevertheless, in order to see general princi-
ples underlying cooperative games, it is useful to formulate game situations
in terms of games without side payments. In the following, we will see the
descriptions of the examples given in Section 2 in terms of games without
side payments.

5.2 Examples
5.2.1 Market games

Consider a market game with » players and m + 1 commodities. In con-
trast to the previous formulation of market games with quasi-linear utility
functions, we now assume that the continuous utility function U* is defined
on R}t! and the endowment of player ¢ is given as a vector in RT*Y. The
m + 1** commodity is treated in the same way as the first m commodities.
An S-allocation (z);cs is defined by Tics o' = Dijes w' and =i € R for
all ¢ € §. The characteristic function V is defined by

V(S) = {a° € RS : af < Ui(a*) for some S-allocation (zf);cs} (29)
for all § € 2V,

Then this characteristic function V satisfies conditions (25)- (27). For this
definition, only the existence of a utility function U* representing a prefer-
ence relation »>; is required (see Debreu (1957) for conditions ensuring the
existence of a continuous utility function).

For the definition (29), we can assume that the utility function U* sat-
isfies the transferable utility assumption, i.e., the linear separability. If,
however, the endowments of wfn+1 of the m + 1** commodity are small, then
side payments may not be freely permitted. If the endowments w?  , are
sufficiently large to avoid the relevant constraints, then side payments are
effectively unbounded. This is the case of a market game in Section 2.2,

Nevertheless, side payments are part of the problem.

5.2.2 Voting games

Consider a voting game where the assumption of transferable utility is sat-
isfied but no side payments are permitted. In such a case, the characteristic
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function is given by
S .
V(§) = {a® € Riforsomez € X, a; < v'(z) foralli e S}if |§] > 2

= {a5¢ Riforallz € X, a; < wi(z) forall i € §}if |§] < B.
(30)
This majority voting game has been extensively discussed in the social choice
literature (Nakamura (1975), Moulin (1988), for example.)

Observe that in the above voting game, we have the independence of the
two assumptions of transferrable utility and side payments. A game makes
the transferable utility assumption, which is not necessarily required, but
also makes the assumption that side payments are not allowed.

5.2.3 Cooperative games derived from strategic games

Suppose that side payments are not allowed in the normal form game G =
(N,{Z;}ien, {hi}ien). This means that either the economy including the
game G has money but money transfers are prohibited, or that G is a full
description of the game in question and nothing other than in the game is
available in playing the game. In either case, the relevant utility functions of
players, given by {h;}icn, are von Neumann-Morgenstern utility functions
over the domain M(Zy).

Corresponding to definition (8}, the characteristic function V, is defined
by

Va(S) = {a € RS : there is some o € M(Zg) such that

for any o_s € M(Xn_s), a4 < hi(os,0_5) forall i € §} for all S € 2V,
(31)
The value V,(9) of the characteristic function V, is the set of all payoff
vectors for the members of the coalition S that can be obtained with cer-
tainty by the cooperation of the members of .§. This is a faithful extension of
definition (8) in the absence of side payments. In (8), in fact, the min-max
value, which is obtained by changing the order of the max and min opera-
tors, coincides with the value of (8) because of the von Neumann mini-max
Theorem. This suggests another definition of a characteristic function;

Va(S)={a € RS : for any o_g € M(Zn_s) there is some o5 € M(Es)
such that a; < hi(0s,0-5) for all i € S} forall § € 2V,
(32)
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Unlike games with side payments, these two definitions may give different
sets (cf., Aumann (1961)). The first and second are often called the a and
B — characteristic functions. A general nonemptiness result for the a-core,
defined using the a:— characteristic function, is obtained in Scarf (1971).
The f-core, defined by the S—characteristic function, is closely related to
the folk theorem for repeated games (cf., Aumann (1959,1981)).

5.3 Solution concepts

The characteristic function ¥ of a game without side payments describes,
for each coalition 5, the set of payoff vectors attainable by the members
of §. Once this is given, the imputation space and dominance relations are
extended to a game without side payments in a straightforward manner.
The imputation space I(N, V) is simply the set

{a € V(N):a; > maxV({i}) for all i € N}.
The dominance relation a dom b is defined by:
for some § € 2V, a; > b; for all i € § and and (&;)ics € V($).

The core is defined to be the set of all undominated imputations. The
von Neumann-Morgenstern stable set is also defined with the internal and
external stability requirements in the same way as in a game with side
payments.

Consider the core and stable set for a voting game without side payments
for Example 3.1. Since no transfer of money is allowed, the problem is which
alternative z or ¥ to choose. In both examples, players 1 and 2 prefer z to
y and thus z is chosen. Actually, z constitutes the core and also the unique
stable set. In the first example, when side payments are involved, Player 3
can compensate for Player 1 or 2 to obtain his cooperation for the alternative
y. This causes the core to be empty. Our point is that the possibility of
side payments may drastically change the nature of the game. But this is
almost independent of the assumption of the quasi-linear form of the utility
function.

The nucleolus and Shapley value are based intrinsically on the numerical
expression of the characteristic function with side payments. Nevertheless,
some authors modify the definitions of these concepts. Here we discuss only
one example — the A-transfer value introduced by Shapley (1969).
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Shapley transformed a game (N, V) without side payments into a game
(¥, vp) with side payments by using “utility transfer weights” A = (A1, ..., Ap) >
0 by defining

vA(8) = max{>_ Aig; : ¢ € V(S)} forall § € 2V, (33)
i€S

The A—transfer value is defined as follows: a payoff vector a = (a1, ..., a,) is
a A-transfer value iff there are transfer weights A = ()y, ..., An) > 0 such that
a is the Shapley value of the game (N, v,) and e is feasible in (N,V) i.e.,
a € V(N).

Shapley (1969) proved the existence of a A-transfer value for a game
without side payments, but the uniqueness property does not hold. Aumann
(1985) provided an axiomatization of the A—transfer value.

From the viewpoint of utility theory, it is difficult to evaluate the A—
transfer value. First, the meaning of the transformation from (N,V) to
(N, w,) is unclear: some authors claim the utility units are compared with
these weights, but this does not imply that the game can be transformed
into a game with side payments. Second, the axiomatization does not help
us evaluate the status. A question of a2 meaningful interpretation of the
A—transfer value remains open.
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