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Polling models generally refer to systems of multiple queues served by nondedicated
servers with rules that allocate the servers to the queues. Started with studies of basic
models, which consist of separate queues with independent Poisson arrivals served by a single
server in cyclic order, over 30 years ago, some significant progress in the analysis of these
and extended systems have enriched queuneing theory as well as contributed to the system
performance evaluation techniques in such fields as computers, communications, manufactur-
ing, and transportation. Quite active research efforts are still on with both theoretical and
application-oriented motivations, as surveyed in this chapter with a focus on the last few years.

0. Introduction

A basic polling model is a system of multiple queues attended by a single server in cyclic
order. The term polling originates in the polling data link control scheme in which the central
computer interrogates each terminal on a multidrop communication line to find whether it
has data to transmit. The addressed terminal transmits data, and the computer then exam-
ines the next terminal. Here, the server represents the computer and a queue corresponds
to a terminal. This was an application of a polling model studied in the early 1970s. Situ-
ations represented by polling models and their variations appear not only in computers and
communications but also in other fields of engineering such as manufacturing (e.g., a pa-
trolling machine repairman, assembly work on a carrousel, and an automated guided vehicle)
and transportation systems (e.g., traffic lights at an intersection, mail delivery, and eleva-
tors). The ubiquitous application is not surprising because the cyclic allocation of the server
(resource) is a natural and simple way for fair arbitration to multiple queues (requesters).
Therefore, polling models in various settings have been studied by many researchers since the
late 1950s, focusing on the applications to technologies emerging at each period. The reader
is referred to a monograph [Takagi 1986]) and surveys [Boxma 1991; Campbell 1991; Grillo
1990; Levy and Sidi 1990; Rubin and Baker 1990; Szpankowski 1990; Takagi 1988, 1990a,
1991b] for the developments in the analysis, (an early stage of ) optimization, and applications
of polling models prior to 1990. Recently, a special issue (Volume 11, No.1-2, 1992, edited by
0. J. Boxma and H. Takagi) of Queueing Systems is devoted to polling models, and Volume
35 for stochastic modeling of telecommunication systems (1992, edited by P. Nain and K.
W. Ross) of Annals of Operations Research assigns a section to polling models. Conti et al.
[1993a] survey some latest applications of polling models to the performance evaluation of
metropolitan area networks, '

The aim of this chapter is to highlight some progress in the analysis and optimization of
polling models witnessed during the recent few years. This is done in Section 2, which follows



Section 1 for a description of basic polling models and a summary of their analysis results
available before 1990. In Section 3, possible research topics in the future are suggested. The
references include original papers published in journals and conference proceedings as well as
those in the stage of preprints and technical reports, dated during 1990-1994 (up to March),
that happen to have come under my notice.

1. Basic Models and Summary of Progress Before 1990

Let us describe basic polling models and summarize the progress in their analysis before
1990. To do so, we introduce some notation common to all models. The number of queues
in the system is denoted by N. Queues are indexed by ¢, i = 1,2,---, N, in the order of
server movement. In continuous-time systems, we assume a Poisson process for the arrival of
customers at rate A; for queue i. The Laplace-Stieltjes transform (LST) of the distribution
function (DF'), the mean, and the second moment of the service time of a customer at queue
i are denoted by B}(s), b;, b‘(-z), respectively. The total load offered to the system is then
given by

N
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The LST of the DF, the mean, and the variance of the time needed by the server to switch
from queue i to queue i + 1 are denoted by R}(s), ri, and 62, respectively. The switchover
times are independent of the arrival and service processes. The mean and the variance of the
total switchover time are then given by
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The mean polling cycle time, generally independent of the queue index i, is denoted by E[C].
The LST of the DF and the mean of the waiting time W; of a customer at queue ¢ are denoted
by W;*(s) and E[W;], respectively. A system in which the arrival and service processes in
all queues and switchover times are independent of queue index i is called symmetric. For a
symmetric system, we let p; = p/N = Ab, and omit subscript ¢ from other variables.

In the presentation of this section, we restrict ourselves to basic models and also leave
out references for the sake of conciseness. Readers who are interested in the variations of the
basic models and the references are referred to Takagi [1986, 1988, 1990a).

1.1. Single-Buffer Systems

A system in which each queue can accommodate at most one customer at a time is called
a single-buffer system. Those customers that arrive to find the buffer occupied are lost. This
system can model a patrolling machine repairman and an interactive transaction processing
system in a computer shared by multiple users.

For a symmetric single-buffer system in which the service time is a constant b, closed-form
expressions for the mean cycle time E[C] and the mean waiting time E[W] are available:

E[C] = R+ E[Q}b (3)
E[W]:(N—l)b—%+% (4)
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is the mean number of customers served in a polling cycle.

For an asymmetric single-buffer system, we define the station time w; for the kth visited
queue as a time interval consisting of the switchover time from queue k£ — 1 to queue &k and
the possible service time at queue k, where the visit number k is incremented one by one at
every visit to all queues. The LST of the DF for the joint distribution of N successive station
times wi.- N1, *,wi is defined by
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The LST of the DF and the mean of the waiting time at the kth visited queue are then given

by
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where I7(s) is the LST of the DF of the intervisit time I for the kth visited queue, which is
given by
Ie(8) = @5_1(0, 8, -, 8)RE_y(s) (9)

From (7), we can get a set of N(2V~1 —1) linear equations for the same number of unknowns
that are used to obtain Wj(s). This number has been reduced to 2¥ — 1 by appropriately
augmenting parameters in Q¢(-).

Taking the limit N — oo with p and R fixed at finite values, we obtain a continuous
polling model. In this limit, the server travels around a circle on which customers arrive
uniformly. If the service time is constant, we have

_~srf_1-p )R/b R S M)
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The following mean values are available for systems with generally distributed service times:
R R pb®
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1.2. Infinite-Buffer Systems

In a system in which any number of customers can be accommodated without loss at
each queue, we usually deal with four basic disciplines with respect to the rule by which the



server leaves the queue. In an ezhaustive service system, the server continues to serve each
queue until it empties. Customers that arrive at the queue being served are also served in
the current service period. In a gated service system, the server serves only those customers
that were found in a queue when it visited the queue. Those that arrive at the queue during
its service period are set aside to be served in the next round of polling. In a k-limited service
system, each queue is served until either it empties or k¥ customers are served, whichever
occurs first. {The k-limited service system is subdivided into ezhaustively limited service
system and the gatedly limited service system depending on whether the served k& messages
include those that arrive during the service period.) In a k-decrementing service system, each
queue is served until either it empties or the queue size decreases to k less than that found
at the polling instant.

For a broad class of infinite-buffer systems, including the four basic models mentioned
above, the mean cycle time is simply given by

R

E[C]= i-s (12)

For symmetric systems, we have the following results for the mean waiting time:
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For asymmetric systems, the exact computation of the mean waiting time at each queue
is available for exhaustive and gated service systems. For an exhaustive service system, the
mean waiting time E[W;] at queue i can be expressed in terms of the moments of the intervisit
time I; as
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where 7;; is the covariance of the station times w; and w; for queues ¢ and j, respectively.
For the exhaustive service system, the station time w; is defined as the time interval between
successive instants at which the server leaves queue i — 1 and queue . The set {ry;;i,5 =
1,2,-++,N} is computed by solving the following set of equations:

( > Timt ;il Tjm + Z "m:) i<i (16a)
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Note that eq. (14) has a form of decomposition property for an M/G/1 with generalized
vacations. Although there are O(XN?) equations in (16), an alternative set of O(N) equations
to yield the mean waiting times is also available. A similar set of equations holds for a gated
service system. An exact analysis of a 1-limited or 1-decrementing service system with two
queues is possible by reducing the determination of unknowns to a boundary value problem
on a complex plane. A number of approximation techniques have been proposed for other
limited and decrementing service systems. While the individual mean waiting times may not
be available, their load-weighted sum, called the pseudoconservation law, has been derived
for systems with the four basic disciplines and a mixture thereof. The extensions of the
pseudoconservation law in the recent years are surveyed in Section 2.3.

Major variations of the above-mentioned models, which needed certain ingenious treat-
ment, were: (1) systems with zero switchover times, (2) systems with non-cyclic polling
order, (3) tandem queues served by a single server, and (4) discrete-time systems. In particu-
lar, non-cyclic polling order included deterministic as in elevators, probabilistic (random and
Markovian routing), and state-dependent (e.g., a greedy server). Many minor variations were
also brought in by incorporating batch Poisson arrivals, modified service disciplines, priorities
within each queue, and so on.

2. Progress in 1990-1993
In this section, we overview several topics investigated recently.
2.1. Single-Buffer Systems

In a single-buffer system, each queue can accommodate only one customer at a time.
A customer that arrives to find the queue nonempty is blocked and lost., One may add a
feature of Bernoulli feedback such that the customer whose service is completed returns to
the queue with probability p;, where 0 < p; < 1, without losing analytical tractability. If
the system is asymmetric and the service times are generally distributed, an exact analysis
of this system requires the solution to a set of O(2") linear equations. Such an analysis was
given by Takine et al. {1989] for a system with nonzero switchover times, and by Takine et
al. [1990] and Takine and Hasegawa [1992] for a system with zero switchover times. Bunday
et al. [1992] analyze a scanning polling system with constant service and switchover times
with Bernoulli feedback; see also Bunday and Sztrik [1992]. Chung et al. [1992] analyze a
single-buffer system with Markovian server routing,. A

An interesting variation of the single-buffer system is a system consisting of many single-
buffer queues and an infinite- or finite-buffer queue. This system was used to model a token
ring network with a gateway or a bridge that connects the network to an external network
[Murata and Takagi 1992; Takine et al. 1990a].

Another interesting variation is brought in by considering two classes of customers (the
priority customer and the ordinary customer) that are treated differently according to the



length of the preceding cycle time. While the priority customer is always served when the
server arrives, the ordinary customer is served only if the preceding cycle time does not
exceed the prescribed limit. This system was introduced as a model of a timed-token protocol
that handles both synchronous and asynchronous traffic by Takagi [1990b], who analyzed a
symmetric system with constant service times. The analysis was extended to an asymmetric
system with general service times by Nakamura et al. {1990]. Woodward [1994 (sec. 7.2.2)]
treats a symmetric system by the equilibrium point analysis (EPA) technique.

There is some controversy over the characteristics of the mean waiting times at lightly
even-loaded queues located between two heavily loaded queues. While Takine et al. [1988,
1990b] and Jung [1991] claim that the mean waiting times at the lightly loaded queues increase
in the direction of polling, Mukherjee et al. {1990] present numerical results with opposite
behavior, even though they consider the same model.

2.2. Continuous Polling Models

The service time was assumed to be a constant in the previous analysis of a continuous
polling model on a circle. Bisdikian and Merakos [1992] study the output process of this
model. Coffman and Gilbert [1986], who derived eq. (10), pointed out a difficulty in obtain-
ing the waiting time distribution when the service time has general distribution. Recently,
however, Kroese and Schmidt [1992] successfully analyzed a continuous polling model on a
circle with general service times by means of point processes and regenerative processes in
combination with stochastic integration theory.

Studies of other continuous polling models have also been tried; Most of them are still in
preprint form, such as polling on a graph [Altman and Foss 1993; Coffman and Stolyar 1992;
Kroese and Schmidt 1993] and noncyclic polling in two and more dimensional space [Altman
and Levy 1994; Betsimas and Van Ryzin 1991).

2.3, Extension of Pseudoconservation Laws

A weighted sum of the mean waiting times {E[W;];1 < ¢ £ N}, called the pseudoconser-
vation law, was derived by Boxma and Groenendijk [1987] for a continuous-time system in
which each queue has a Poisson arrival process and one of exhaustive, gated, 1-limited, and
1-decrementing service disciplines by unifying the results obtained before by others for simi-
lar systems with a single service discipline. It was later extended to systems with compound
Poisson processes by Boxma and Groenendijk [1988] and Boxma [1989]. An error in this
extension for a queue with decrementing service discipline was corrected by Chiarawongse
and Srinivasan [1991] who assumed that all the customers contained in each arriving batch
belong to the same class.

Combining these results and correcting the previous errors, we can get the most gen-
eral result as follows. We assume that the system has a Poisson arrival process at rate A
such that each arrival contains G; customers for queue §,1 < 7 < N, simultaneously. The
pseudoconservation law is then given by
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where ¢; = E[G}), gij = E[GiG;] for t # j, g‘(z) = E[Gi(G; — 1)), pi = Agibi, and E, G, L,
and D stand for the index sets of queues with exhaustive, gated, limited, and decrementing
service disciplines, respectively. Some special cases are as follows. If each arrival contains
only customers for a single queue, we have g;; = 0 for ¢ # j, 1 < ¢, < N. Furthermore, if

each arrival contains a single customer, we have g; = 1 and g|(2) =0forl <i< N. If the
numbers of customers contained in each arrival are independent for different queues, we have
gi; = gigj for 1 # j, 1 < 4,7 < N. If all the switchover times are zero, eq. (17) reduces to the
conservation law for multiclass MX/G/1 systems given in Takagi [1991c (sec. 3.5)).

For discrete-time systems, the pseudoconservation law first derived by Boxma and Groe-
nendijk [1988] must be corrected in two ways. First, Bisdikian [1993] points out an error in
the terms not related to switchover times. Second, the term for queues with decrementing
service discipline is in error as shown by Chiarawongse and Srinivasan [1991]. Consequently,
if the numbers A; of customers that arrive at queue 7 in each slot are independent slot by
slot, the corrected pseudoconservation law is given by
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where A; = E[Ai], Aij = E[AiAj] for i £ 7, A = E[Ai(Ai = 1)), and p; = A;b;.

We note that Chang and Sandhu [1990, 1992a] show a pseudoconservation law for a
continuous-time system in which each queue has a Poisson arrival process and one of exhaustive-
limited, gated-limited, and general-decrementing service disciplines, However, their result
contains undetermined constants. A similar pseudoconservation law for a system with such



service disciplines and compound Poisson arrival processes can also be derived [Baba 1991;
Zhigang 1993].

Pseudoconservation laws have also been extended to a continuous-time system in which
each queue has Poisson arrival processes of multiple priority classes of customers and one of
exhaustive, gated, or 1-limited service disciplines [Fournier and Rosberg 1991; Shimogawa
and Takahashi 1992], and to a similar discrete-time system [Takahashi and Krishna Kumar
1994].

2.4. Time-Limited Service Systems

Limited service systems have gained much attention recently in view of the application to
the performance modeling of timed-token passing protocols employed in the medium access
control (MAC) layer of local and metropalitan area networks standards such as IEEE 802.4
token passing bus and ANSI/IEEE Fiber Distributed Data Interface (FDDI). In timed-token
protocols, the time during which each station on the network can continue to transmit packets
is limited according to a certain rule that depends on the congestion of the network. Polling
models with limited service can be used to approximate the operation of timed-token protocols
for which exact performance analysis seems hopeless. We note, however, that the exact result
for the mean waiting time in limited service polling systems is only available for a symmetric
system with 1-limited service as given in eq. (13c).

Several approximate formulas for the mean waiting time in limited service polling systems
were published before 1990; see Takagi [1990a]. Chang and Sandhu [1991) propose an ap-
proximation technique for the mean waiting time in a polling system in which the number of
customers served at queue ¢ per visit of the server is exhaustively limited by K;, 1 £ 1 < N,
They use the known result for a single-queue system with server vacations

E[V?]
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which holds if the vacation times (corresponding to the intervisit times in the polling system)
satisfy certain conditions [Cooper 1970; Fuhrmann and Cooper 1985]. While E[V;] = R(1 -
pi)/(1 — p) is known as in eq. (15), E[V?] is estimated from the assumption that V; is
exponentially distributed [Chang and Sandhu 1992a)] or it has Gamma distribution in which
the two parameters are determined by the approximate analysis of cycle times [Chang and
Sandhu 1992b).

Leung [1991] takes a different approach to consider a system in which the parameter K;
is an independent random variable (probabilistically-limited service). He uses a numerical
technique based on the discrete Fourier transform to determine the queue size distribution
(truncated with sufficient accuracy) at service completion times in each queune, and calculates
the mean waiting time. LaMaire [1991] studies a single-queue system with server vacations in
which K; is a random variable and the vacation time can be correlated with the value of X;
that was used for the preceding service period. When using this result in the framework of a
polling model, he uses simulation to determine the distribution of K; and the dependence of
the vacation time.

In the timed-token protocol, the maximum length of service period is limited not by the
number of served customers but by the sum of the service times since the start of the service
period as well as during the preceding cycle time. Therefore, for the approximation of the
timed-token protocol by a limited service system, the time limit M; is somehow connected

E[wi] = (19)
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with parameter K;. Chang and Sandhu [1992b] simply approximate

K = Mbﬂ@’ﬂ _ (20)

where B;(M;) denotes the mean residual service time of a customer when M; expires. This
form assumes that the service of a customer is continued to completion even if M; expires
in the middle of a service time; this option is called asynchronous overrun in FDDI. Karve-
las and Leon-Garcia [1991, 1993] show a new approach to the delay analysis of symmetric
timed-token networks by which the formula (13a) for the exhaustive service system is used
with appropriately inflated service times. de Souze e Silva et al. {1993] propose a numeri-
cal technique for an asymmetric time-limited service system with exponentially distributed
service times and constant switchover times. The stability and delay performance of timed-
token protocols are also studied by Altman {1991], Altman and Kofman [1993], Altman and
Liu [1994], Conti et al. [1992, 1993b], Genter and Vastola [1990], Rubin and Wu [1992], and
Tangeman and Sauer [1990, 1991]. A survey of these studies is given by Conti et al. [1993a)].

Although some interesting techniques have been proposed recently to study a single-queue,
time-limited service system with server vacations, their extension to polling systems remains
much unexplored.

2.5. Reservation Schemes

In systems with exhaustive, gated, limited, and decrementing service disciplines, the
number of messages served at a queue is determined only when and after the server visits the
queue. Recently, a few service disciplines according to which this number is determined prior
to the time of visit have been analyzed. Let us call such a discipline a reservation scheme.

A simple reservation scheme, described by Bertsekas and Gallager [1992 (sec. 3.5.2)], is
that when the server visits queue {, it serves only those messages that were there when the
server left queue ¢ — 1. Thus, the switchover time from queue ¢ — 1 to queue ¢ is supposed
to be used for scheduling the services at queue ¢{. The analysis of a polling system with this
discipline is similar to that of a polling system with gated service discipline.

Boxma et al. [1992] study two reservation schemes: the globally-gated discipline and the
cyclic reservation multiple access (CRMA). In a polling system with globally-gated discipline,
there is a special queue which we designate queue 1. When the server visits queue i, only
those messages that were present there when the server visited queue 1 most recently are
served. Customers who may arrive at queue i afterwards (even before the server reaches
queue i) will be served in the next cycle. Explicit expressions for the mean waiting time and
the pseudoconservation law for a polling system with globally-gated discipline and Poisson
arrival processes are available as follows:
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This model is extended to a system w1th server interruptions by Boxma et al. [1993].
Altman et al. [1992] discover a peculiar result when the globally-gated discipline is applied
to a scanning polling system. In this system, the server first visits the queues in one direction,



that is, in the order 1, 2, ---, N, serving only those customers that were present when the
service to quene 1 was started. Then the server reverses its orientation, and visits the queues
in the opposite direction, namely in the order N, ¥ —1, +--, 1, serving only those customers
that were present when the service to queue N was started upon the orientation reversal,
and so on. The mean waiting time for queue { in this system is given by
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which is independent of i. Thus the mean waiting times are identical for all queues, exhibiting
the fairness. Higher-order moments of the waiting times differ generally.

The cyclic reservation multiple access (CRMA) was originally proposed for controlling the
access to high-speed local and metropolitan area networks based on a slotted unidirectional
folded bus architecture. For modeling the CRMA, Boxma et al. [1992] assume that the single
server controls the system by sending out “collectors” periodically for a cyclic tour among the
queues to collect their current service requests. After a completion of a tour by a collector,
the requests are served (once the services from previous tours have been completed) in the
order collected. The mean waiting time for each queue can be calculated.

Khamisy et al. [1992] generalize the globally-gated discipline by assuming that there are
n (1 € n < N) special queues each of which has a disjoint set of subordinate queues (these
are logical relations independent of the queue indices). When the server visits a subordinate
queue, only those messages that were present there when the server visited its master queue
most recently are served. This scheme is called the synchronized gated discipline, An extreme
case in which n = 1 is the globally-gated discipline, while another case in which » = N is the
ordinary gated service discipline. The mean waiting times as well as the pseudoconservation
law are derived.

Lee and Sengupta [1992a, 1992b)] analyze a polling system with limited service and reser-
vations to model the pipeline polling protocol for satellite communications. Let K be a
parameter, and let k; ; be the number of messages in queue i when the server leaves queue i
in the jth cycle. Then, the maximum number of messages served at queue ¢ in the j 4 1th
cycle is given by

max[1, min(K, &; ;)] (23)

At each cycle, at least one message and at most X messages can be served for each queue, An
exact analysis for a single-queue system with server vacations and an approximate analysis
for a polling system are provided. The stability of this protocol is discussed by Chang [1992).

2.6. Extended Analysis

Various new developments in the analysis of individual systems as well as generic method-
ologies have continued to appear. Let us mention a few of them. Systems of two queues,
one with exhaustive service and the other with limited or decrementing service are studied
by Ibe [1990], Katayama [1992], Lee [1994], Ozawa [1990], and Weststrate [1990). Kubat and
Servi [1991] derive the optimal server scheduling for systems with two quieues and zero service
times. Levy and Sidi [1991] analyze exhaustive and gated service systems with compound
Poisson arrivals. Approximation techniques for the mean waiting times in limited and decre-
menting service systems, based on pseudoconservation laws, are proposed by Balsamo [1990],
Casares-Giner {1991], and Chang and Hwang [1991, 1993]). Systems in which a setup time
(also called a switch-in time) is needed before starting service at each queue are dealt with
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by Altman et al. [1994], Altman and Yechiali [1993], and Gupta and Srinivasan {1993] (while
systems with zero switchover times in which a setup time is needed before starting service
when a message arrives in an empty system are treated by Fuhrmann and Moon [1990] and
Takagi [1987]). Stochastic ordering of polling systems can be found in Altman et al. [1992],
Boxma and Kelbert [1994], Levy et al. [1990], and Liu et al. [1992]. Resing [1993] charac-
terizes polling systems with multitype branching processes; he notes that he was unaware of
an early work by Fuhrmann [1981]. An idea of ancestral line is also employed for numerical
computation by Konheim and Levy [1992] and Konheim et al. [1992]. Tsai and Rubin [1992]
analyze the mean waiting time in a symmetric polling system with two priority classes of
customers. Zhang and Acampora [1992] propose and analyze a modified polling scheme for
the indoor wireless local area networks.

2.7. Stability

Stability issues in polling models are not straightforward as they should be analyzed in the
framework of multidimensional Markov chains; see Szpankowski [1990] for stability criteria
in multidimensional stochastic processes. Recently, Georgiadis and Szpankowski [1992, 1993]
prove the following necessary and sufficient condition for cyclic polling systems with k;-limited
service discipline at queue i:

p<1 and ,\;<@ foralli € {1,2,.-+,N} (24)
While this condition was “known” for years, a formal proof has been lacking. The proof is
based on stochastic dominance techniques and application of Loynes’ stability criteria for an
isolated queue. Altman et al. [1992] also provide a sufficient condition under which the vector
of queue sizes is ergodic. In addition, they show that the queue sizes, station times, intervisit
times, and cycle times are stochastically increasing in arrival rates, in service times, and in
switchover times. Furthermore, the mean cycle time, the mean intervisit time, and the mean
station time are invariant under general service disciplines and general arrival and service pro-
cesses. Altman and Spieksma [1992] give necessary and sufficient conditions for the existence
of all the moments of station times, and show the geometric convergence. Sufficient conditions
for the central limit theorem and the law of iterated logarithm for the moments of station
times are also given. Fricker and Jaibi [1994] and Massoulié [1993] also deal with the stability.

2.8, Numerical Algorithms

The exact mean waiting times in an asymmetric exhaustive service system can be com-
puted by solving a set of O(N?) equations in (16a)}-(16c), which is due to Ferguson and
Aminetzah [1985], or another set of O(N) equations derived by Sarkar and Zangwill [1989]
(implementation of the Sarkar-Zangwill algorithm are given in Garner [1988)] and Tayur and
Sarkar [1988]). Using the standard method for solving a set of linear simultaneous equations,
even the latter approach requires O(N3) operations. The situation is the same for a gated
service system. Later, Srinivasan [1991] and Srinivasan et al. [1991] propose an algorithm
that requires O(N?) operations to compute the mean waiting time at a given queue. Iter-
ative algorithms that require O(N log, ¢) operations, where ¢ is the accuracy required, are
invented by Korheim and Levy [1992], Konheim et al. [1992], and Levy {1991]. Federgruen
and Katalan [1993] show an efficient numerical method to compute the steady state queue
size distributions for exhaustive and gated service systems,
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An exact computation of the mean waiting time in an asymmetric limited service system
has been unavailable. Thus, Blanc [1990a, 1990b, 1991, 1992a, 1992b] and Blanc and van
der Mei [1993] developed the power-series algorithm which can be applied to systems with
Coxian distributed service and switchover times. Leung [1990a, 1990b, 1991] used discrete
Fourier transforms to approximate unknown functions that appear in the analysis of limited
service systems.

2.9. Networks of Queues

An open network of queues served by a single server in cyclic order is considered by Sidi
and Levy [1990] and Sidi et al. [1992]. This is a generalization of the basic polling system
to the case in which customers, after their service completion at queue i, move to queue
j with probability pi;, or leave the network with probability 1 — Z?;l Pi;- Levi and Sidi
[1990] mention the modeling of selective-repeat ARQ protocol and distributed algorithm on
token ring networks and robotics systems with staged jobs as potential applications of this
network. Not only the queue size and the waiting time at each queue but also the expected
delay of customers who follow a specific route in the network can be calculated for gated and
exhaustive service systems, Altman and Yechiali [1994] analyze a closed network of queues
served by a single server in cyclic order. Katayama [1991] analyzes a tandem of two queues
(with Bernoulli feedback at the first queue) for customers of multiple classes served cyclically
by a single server with zero switchover times. Katayama [1994] also considers a tandem of
two queues with gated service and vacations for the first queue and exhaustive service for the
second queue.

Walrand [1990] describes dynamic optimization problems to determine, at each service
completion time, which queue should be served next by the single server so as to minimize
the given cost, for example, N

E [Z c,-L,'] (25)
i=1 -
where L; is the number of customers present at queue ¢. For networks without external ar-
rivals, an optimization problem of this kind can be viewed as a multi-armed bandit problem
because the system state evolves only at the queue that is attended by the server.

2.10, Finite Systems

The state space of a polling system is finite if the number of customers involved in the
system is finite or if the capacity of the system is finite. Let us call the former a finite-
population system, and call the latter a finite-capacity system.

A finite-population system is a closed system in which each customer alternates a period
of being in the queue (including a period of being served) and a period of being in the
source. From the analogy with the finite-population systems in priority queues [Jaiswal 1968
(sec. II1.1); Takagi 1993 (sec. 4.7)), we may consider two models of the polling system with
a finite population that differ with respect to the population constraint: a multiple finite-
source model and a single finite-source model. In the multiple finite-source model, the source
of customers for each queue is associated only with that queue; a customer whose service
has been completed always returns to its original source. The single-buffer system discussed
in Sections 1.1 and 2.1 is a special case of the multiple finite-source model in which the
population size for each queue is one. In the single finite-source model, there is only a single
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source of customers each of which selects one of the queue at random when it leaves the
source.

The multiple finite-source model and the single finite-source model may be associated
with the flow control and congestion avoidance mechanisms in computer communications
networks. Namely, the multiple finite-source model in which the population size is fixed for
each queue corresponds to the window flow control [Davies et al. 1979 (sec. 4.2)]. The single
finite-source model in which the total population size is a single constraint corresponds to
the isarithmic congestion avoidance scheme [Davies et al. 1979 (sec. 4.3)].

The multiple finite-source model was analyzed by Choi and Trivedi [1992] and Ibe and
Trivedi [1990] using a technique called stochastic Petri nets under the assumption (which is es-
sential in this technique) that both service and switchover times are exponentially distributed.
A similar model with generally distributed service and switchover times was analyzed by Tak-
agi [1992] by using the analysis of an M/G/1//N system with server vacations.

A finite-capacity polling system with exhaustive, gated, and 1-limited service is analyzed
by Takagi [1991a] by considering the Markov chain for the set of queue sizes embedded at
the times when the server visits and leaves each queue. The server vacation time for each
queue is calculated by conditioning on this Markov chain. The queue size at each queue is
then obtained by utilizing the existing analysis of an M/G/1/K queue with server vacations.
An independence assumption implicitly involved in Takagi [1991a] for the vacation time and
the busy period is removed by Kofman [1991]. Jung [1991] and Jung and Un [1991] provide
a different technique, called virtual buffering, to analyze a finite-capacity polling system with
exhaustive service. They introduce a virtual buffer of an infinite capacity for each queue
when the server is on vacation for that queue. When the server comes to the queue, the
messages that exceed the capacity of the real buffer are removed from the queue. A Markov
chain for the sef of queue sizes at the time when the server visits each queue is studied based
on this model, and the duration of the vacation is obtained. Tran-Gia [1992] gives an ap-
proximate analysis of a discrete-time, 1-limited service system with a finite capacity and a
renewal arrival process, Lang and Bosch [1991] present a similar technique for the analysis of a
continuous-time, k-limited service system with a finite capacity and a Poisson arrival process.

2.11. Multiserver Sysiems

Polling systems with multiple servers are studied in a series of papers by Ajmone Marsan
et al. [1990-1994] using a technique of generalized stochastic Petri nets (GSPNs), In this
technique, once a model is described in terms of GSPN primitives, all possible marking states
are mapped into a state space of a Markov chain, whose steady-state distribution is computed
numerically. The performance measures are then calculated. While several earlier studies of
multiserver systems were all approximate, the method of Ajmone Marsan et al. can provide
exact numerical values for the customer waiting times. The restrictions include exponential
distributions for the customer interarrival times, service times, and the server switchover
times, finite-capacity queues so as to obtain finite state spaces, and the limited size of the
models (in terms of the numbers of queues, servers, and buffers) that can be solved with
acceptable time and space complexity. A unique parameter in multiserver systems is the
maximum number of servers that can attend the same queue simultaneously. Some servers
may pass others at some queues (just like an empty bus on a street passes another at a
crowded bus stop). These features that are difficult to handle analytically can be easily
incorporated in the GSPN model.

The numerical results presented by Ajmone Marsan et al. [1990-1994] show that, when
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the total service rate is fixed, the mean waiting times can be greatly reduced by using multiple
servers, particularly when the switchover times are long and the system is loaded (this situ-
ation corresponds to the large distances and high data rates in metropolitan area networks).
For some values of the system parameters, the same can also happen for the customer re-
sponse time (waiting time plus service time), but in a less sizable manner, due to the fact that
the increase in the number of servers at a fixed service rate implies an increase in the mean
service time. An interesting behavior of an asymmetric system with two servers observed
by Ajmone Marsan et al. [1994] is that a heavily loaded queue monopolizes one server while
lightly loaded queues share the other server.

Multiserver systems are also studied by Borst {1994] and by van der Mei and Borst [1994]
using a different approach.

2.12, Effects of Switchover Times

Traditionally, the analysis of systems with zero switchover times has been separate from
that of systems with nonzero switchover times [Cooper 1970]. A reason for technical difficulty
in relating the two was said to be as follows. In a system with zero switchover times, the
server executes an infinite number of cycles in any finite period during which the system is
empty, which implies that the mean cycle time is zero. On the other hand, the analysis of
systems with nonzero switchover times is based on the evaluation of variables averaged over
a cycle time. Recently, however, a few works have appeared to relate the analysis for the two
systems.

As a special case, if all the switchover times are constant, we can derive from egs. (16a)-
(16c) another set of equations with respect to #;; := r;;/R which can be used to calculate the
ratio E[([;)?])/E[L;) for E[W;] in eq. (14). We can then obtain a set of equations for a system
of zero switchover times by letting R — 0. This idea was given by Choudhury [1990] and
Levy and Kleinrock [1991]. More recently, Cooper et al. [1992] found the following results.
For an exhaustive service system, we have

R(1 - pi)
2(1-p)

where W? is the waiting time in the corresponding system with zero switchover times and
with the modified service-time variances

EW;] = E[W{] + (262)

2
72 _ @, al-p
Y =6"+ % X (26b)
For a gated service system, we have
R(1+ pi)
W] = B
E[W;) = EW]] + 20— p) (27a)

where W is the waiting time in the corresponding system with zero switchover times and
with the modified service-time variances

- 621 =
B =pd %P
U=t g (27b)

The results in (26a) and (27a) were also derived by Fuhrmann [1992] in a special case in
which the switchover times are constant. We note that the modification of the service-time
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variances as in (26b) and (27b) was used by Ferguson and Aminetzah [1985] when they de-
rived the pseudoconservation laws. The work of Fuhrmann [1992] and Cooper et al. [1992]
has been generalized to transforms (and therefore to higher moments) of the waiting times
by Srinivasan et al. [1993].

2.13. Optimal Server Routing/Action

When we have control over the server movement, we can optimize its routing (a sequence
of choices of the queues to serve) and its action (service discipline) in each queue at given
decision epochs in order to minimize a given objective function. Such stochastic optimization
problems may be classified into static, semi-dynamic, and dynamic ones.

In the static optimization, decisions are made once and for all before the operation of the
system by selecting controllable parameters. For the static optimization of service disciplines
when the polling order is given (not necessarily cyclic), Levy et al. [1990] prove that the
exhaustive service discipline dominates all other disciplines (under the assumption that the
server does not wait idling at a queue) with respect to the total amount of unfinished work in
the system at any time. Boxma et al. [1990, 1991, 1993] (see also Boxma [1991]) investigate
the statically optimized polling order table (ratio of occurrences of all queues in the table,
size of the table, and the order within the table) that minimizes

N
> piE(W;] (28)

i=1

for an exhaustive or gated service system. Interestingly, they show that the golden ratio policy
provides a good heuristic for determining a good visit order in the table. An optimization
that specifies not only the polling order but also the starting time of each polling is considered
by Borst et al. [1992].

In the semi-dynamic optimization, the decision for the polling order is made at the be-
ginning of each polling cycle based on the knowledge of the system process at most up to
that time. Browne and Yechiali [1989] formulate a Markov decision process to consider the
minimization of the cycle time given the set of queue sizes {L1,:++,Ly} at the beginning of
a polling cycle. According to them, the expected cycle time is minimum if the server visits
queues in the order of increasing values of L;/A; (this rule is independent of the service times)
in gated and exhaustive service systems with zero switchover times. This result is extended by
Fabian and Levy [1993, 1994] for the cycle time maximization. A similar optimization is con-
sidered for single-buffer systems by Browne and Yechiali [1991]. Yechiali [1991] summarizes
the results including those for systems with binomial-gated and Bernoulli-gated disciplines.

Liu et al. [1992] address dynamic optimization problems that determine the server’s rout-
ing and action so as to stochastically minimize the unfinished work and the number of cus-
tomers in the system at all times. They find the following results: When the server is at
a nonempty queue, it should neither idle nor switch until that queue is empty (exhaustive
and greedy discipline). For symmetric systems, (i) when the system has become empty,
the server should stay idling at the last visited queue {patient policy); and (ii) when the
server has emptied a queue, it should subsequently visit the queue with the largest queue size
(stochastically largest queue policy). (The claim (ii) is also shown by Miyoshi et al. [1993].)
The cyclic routing is optimal when the only available information is the previous decisions.
(Prior to this work, Liu and Nain [1992] considered a particular polling system arising from
the videotex system, and identified optimal scheduling policies depending on the amount of
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information available to the controller. Towsley et al. [1991] proved that the largest queue
policy minimizes the number of customers lost when the queues have finite and equal buffer
capacities.) A similar dynamic optimization is studied by Ajmone Marsan et al. [1993] for
systems with multiple servers. One of their findings is that the cyclic polling order provides a
very good performance, often superior to some idealistic schemes, in particular when systems
with a large number of queues and a small number of servers are heavily loaded (high arrival
rates and long switchover times). This is because the cyclic polling follows the minimum
distance Hamiltonian tour of queues. For single-buffer systems, Harel and Stulman [1990]
find the optimal parameter d of a horizon server such that it acts like a greedy server within
the d nearest queues and acts like a cyclic server when all the d nearest queues are empty.

The optimal buffer capacity has been studied by Birman et al. [1991], Gail et al. [1992],
and Sasaki [1993] as deterministic optimization problems, in which the gradual (i.e., non-
instantaneous) arrival process is given and the server routing is longest queue first, least time
to reach bound, or partially gated (only those messages that have completed arrival by the
polling instant are served).

3. Future Research Directions

A strong thrust for the progress in mathematical theory comes from the need by appli-
cation. One of the recent application fields that motivated the study of polling models was
media access protocols in local and metropolitan area networks. Another incentive is the
establishment of mathematical foundations, such as stability, stochastic decomposition, and
boundary value problems. Also, there can be innumerable results by the “Cartesian product”
of solved models (combinations of variations). Certain developments made in the recent years
are overviewed in Section 2. It is likely that many more works will be done along the existing
lines.

Some new directions, though challenging, may be suggested as my personal view. First,
we can investigate real systems and build models with new features. For example, the server
in switchover may slow down if there are customers to serve in the next queue, as usual in
{ransportation and other systems accompanying mechanical movement. If there are no cus-
tomers to serve in the whole system, the server may go to a home base like elevators or stop
at the last served queue (a homing server or a patient server, as opposed to a roving server
in the conventional model). Such models have been studied recently by Ajmone Marsan et
al. [1994], Borst [1993], Eisenberg [1994], and Srinivasan and Gupta [1993]. Note that the
implementation of the homing or patient server requires the information about the whole
system, which may not be easy to obtain for certain applications. Polling models with non-
Poisson arrival processes should also be paid attention in view of vigorous modeling efforts for
broadband ISDN systems. They include modulated Markov Poisson processes, linear input
models [Daganzo 1991; Lee 1993), gradual input processes [Birman et al. 1991, Gail et al.
1992; Sasaki 1993], and “Cruz-type” processes [Altman et al. 1993, 1994]. Embedding polling
models in a network of queues or in other total system models is also important. Optimiza-
tion of the server routing/action is much unexplored because of analytical intractability. As
an alternative, Matsumoto [1994] proposes a method of controlling the server by a neural
network in an asymmetric system so that the mean waiting time is minimized.
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