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1.

Recently, V. Reiner [6] has introduced the concept of signed poset and showed the so-
called signed Birkhoff theorem that is a signed analogue of the well-known Birkhoff
theorem on the relationship between the set of ideals of a poset and a distributive
lattice. The signed Birkhoff theorem [6, Theorem 4.8] asserts that for a finite lattice
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£ with the maximum element 1, £ — {1} is isomorphic to the set of ideals of some
signed poset P if and only if £ is B,-distributive, where P is determined by £ up
to isomorphism as a signed poset (see {6] for the terminology).

On the other hand, the authors [1] have been interested in a family 7 C 3" =
{(X )XY C V. XNY = 0} for a finite nonempty set 17 that is closed witl respect
to the reduced union U aud the intersection M. For each (X;.17) € F (i = 1.2)
the reduced union (X;,17) U (V5. 15) and the intersection {(X7.17) N {X5.13) are,
respectively. defined by

(ML) U (N T:) = (G UA) - (QTUY) (3 UYs) — (X UAY). (1.1)
(N1 13) (X, 1) = (N0 XL. 11 NnYs). (1.2)

We call such a family F a U, M-closed family. U.MN-closed families have heen intro-
duced as domains of bisubmodular functions (see [1], [4]). (A bisubmodular function
f+F — R is a function satisfving

FXL ) + A8 05) 2 AU L) U (AG.0)) + AL YD) D(AL.YR)) (L.3)

for each (\}.}7) € F (i = 1.2). Bisubmodular functions are generalizations of rank
functions of polymatroids and other related polyhedra (see, e.g.. [2]. [3] and [3]).
Each (X.Y") € F can be identified with its characteristic vector \ vy € {0. £1}"
defined by
1 feeX
vty =K =1 ifrey (1.4)
0 otherwise

for cach r € 17,
We sav F is simple if for cach distinet ¢, v € 17

(1)  thereisno (X.Y) € Fsuchthat r,ee € YUY or
(2)  there exists some (.X.17) € F such that either v € YUY and w ¢ X UY,
or ¢ YUY and w € YUY

Also. F is spanning if there exists some (X.Y7) € F such that YUY =17, We
can show that a U. M-closed family F is spawuing if and ouly if for each ¢ € 17 there
exists some (X, 17) € F such that » € XY U1 {see Lemuma 4.1 in Section 4).

We shall show that there exists a one-to-oue correspondence hetweel the set of all
the simple and spanning U. M-closed families F C 3" on 17 with (#,#) € F and the
set of all the signed posets P on 17 such that each such F is the set of all the ideals
of the corresponding signed poset P. This will be a strengthening of the signed
Birkhoff theorem of V. Reiner [6]. We also discuss the representations of general
non-simple or non-spauning U, M-closed families.



2. Signed Posets and Ideals

Following Reiner {6], we define a signed poset and its ideal in an equivalent but
slightly different way in terus of bidirected graph.

For a finite vertex set 1”7 and a finite arc set 4 we are given a boundary operator
& on A as follows. For each arc a € A there exist some vertices v, & € 17 such that
one of the following three holds:

1)da=v+uw (arc a has two tails, one at v and one at ).

{2) da = —v—w (arc @ has two heads. one at 1 and one at w),

() du=v—w (arc @ has a tail at ¢ and a head at ),
where the right-hand sides should be regarded as elements of the free module over
the set Z of integers with a base 17, and if » = w, we do not allow {3). Also, we
assume that there do not exist any two distinct ares a, o’ € A such that da = dd'.
When da = v + w, we say arc « is incident to ¢ (and w). If arc « is incident to
only one vertex v, arc « is called a selfloop at v. We call G = (17, 4:0) a bidirecied
graph.

For the bidirected graph G = (1, A: @) we further assume the following:

(1) There are no two arcs «), as € A such that da; = —das.

(ii) For any two non-selfloop arcs a;, a2 € A, if the sum of the absolute values of
the coefficients of the vertices in da| + das is two, then there exists an arc
az € A such that daz = da; + Jus.

(1it) For any selfloop a; € A and nou-selfloop ay € A, if the sum of the absolute
values of the coefficients of the vertices in da; + 2da, is two, then there exists
a selfloop a3z € A such that daz = day + 20as.

(iv) For any two selfloops @, a2 € A incident to distinet vertices there exists an
arc a3 € A such that 2day = da; + Jas.

Then. we call the bidirected graph G = (17 4:J) a signed poset on 17 and denote it
P o= (1, 4:3) as well. This definition is equivalent to the one given by Reiner [¢]. A
signed poset P = (1.A:2) on 17 is uniquely determined by 94 = {da|e € A}, Le..
a poset is unicquely determined up to the relabeling of the arc set.

For cach a € A we denote by d%a (97 «) the set of the vertices that have positive
(negative) coefficients in da.

Now, we define au ideal of the signed poset P = (17, 4:9) as follows. An element
(XN.1) e 3" is an ideal of P if it satisfies

<da. (X.Y)>< 0 (a€d), (2.1)
where da and (X,Y7) should be regarded as iuteger vectors in Z' in a natural way,

and < -+ > as the ordinary inner product. Incquality (2.1) means that (§tanX)U
(0"anY’) # @ implies (3~aNX)YU(FTanY) # 0. In Reiner's definition of ideal the



inequality sign in {2.1) is reversed but we adopt the above definition due only to the
consistency with our system of notations for ordinary posets and ideals (cf. [4]).

3. U,MN-closed Families and Their Representa-
tions

Now, let us consider a simple and spanning U, M-closed family F C 3" with (,0) €
F. (Recall the definition of a simple and spanning U, M-closed family given in Sec-
tion 1).

For each v € V' define

F(+v) ={{(X,Y) | v e X,(X,Y) € F} (3.1)
if there exists some (X,Y") € F such that v € X, and define
F(—v) ={(X,Y) |veY,(X,Y) e F} (3.2)

if there exists some (X,Y") € F such that v € Y. If there is no (X,Y) € F such
that v € X (or v € Y), then we define F(4+v) = 0 (or F(—v) = #). Note that since
F is a spanning family on V, F(+4v) or F(—v) is nonempty for any v € V. Also, for
any W = (X,Y) € F we define

Wt=X, W =Y (3.3)

Given a simple and spanning LI, M-closed family 7 C 3¥ on V, we construct a
bidirected graph G(F) as follows. G(F) has the vertex set V' (since F is spanning).
‘The arc set A is constructed by the following procedures (1)~(3):

(1) ForeachveV
(la}) if F(—v) =0, add a selfloop a at v such that da = —2v,
(1b) if F{+v) =10, add a selfloop a at » such that da = 2v.

(2) For each distinet v,w € V
(2a) if w € F{+4v)*, add an arc @ such that da = v — w,
(2b) if w € F(4+v)™, add an arc a such that da = v + w,
(2¢) if we F(—v)*, add an arc a such that da = —v — w,
(2d) if w € F{—v)~, add an arc a such that da = —v + w.
(3) For any two selfloops a; and ap that are incident to distinct vertices, add an
arc az such that 28a3 = da; + das.

During the construction of the arc set A, if an are to be added has already been
constructed, then we skip the operation. It should be noted that if we do not require



condition (iv) for the signed poset, or more precisely if we remove such an arc as
appearing in condition (iv), then we do not need procedure (3) given above.

To show that the bidirected graph G(F) constructed above is a signed poset, we
need some lemmas.

Lemma 3.1: For any distinct v,w € 1V

(a) if w € F(+v)*t, then v & F(+w)™,

(b) if w € F(+v)™, then v ¢ F(—w)™*,

(¢c) if w € F{—v)*, then v ¢ F(+w)™,

(d) if w e F(—v)™, thenv ¢ F(—w)~.

(Proof) We show (a) {the proofs of the other cases are similar),

Suppose, on the contrary, that w € F(+v)* and v € F(+w)*. Since F is simple,
there is some (X,Y") € F such that (1) v € X¥UY andw ¢ XUY,or (2) v ¢ YUY
and w € XUY". In Case (1), if v € X, then (F(+2)}N(X,Y))* contains » but not w,
which contradicts the minimality of F(+v); and if v € ¥, then (F(+w) U (X, Y))*
contains w but not v, which contradiets the minimality of F(4+w). Case (2) can be
treated similarly as Case (1). 0

For (X;,Y}) € F (i = 1,2) we write (X, ¥7) C (X5, ¥5) if X; € Xs and ¥ C ¥5.
If we have (X1,Y7) C (X3, ¥a) and (X1, 17) # (X5, Y3), we write (X5, Y1) C (X5, 13).

Lemma 3.2: For any distinct v,w € V
(a) if w € F(+uv)*, then F{+w) C F(+v),
(b) if w € F(4v)™, then F(—w) C F(+v).
(¢) if w € F(—v)*, then F(4+w) C F(-v),
(d) if w € F(—v)~, then F{—w) £ F(~uv).
(Proof) If the inclusion [ is replaced by the inclusion C with equality, then each
assertion easily follows from the definition (the minimality) of F(-). The strict
mclusion [ is due to Lemma 3.1. O

Lemma 3.3: For any distinct v,w € V

(¢) if w € F(+v)* and F(—w) £ 0, thenv € F(—uw)",

(b) if w e F(+v)™ and F(+w) # 0, then v € F(+w)™,

(c) if w € F(—v)* and F(—w) # 8, then v € F(—w)T,

(d) if w € F(—v)~ and F(4+w) # 0, then v € F(+w)*.
(Proof) We show («) (the proofs of the other cases are similar).

Suppose, on the contrary, that w € F{+v)*, F(—w) # 0. and v ¢ F(—w)".
Then we have v € (F(+v)UF(—w))" and w ¢ (F(+v)UF(—~w))*, which contradicts
the minimality of F({+v). m

Lemma 3.3 partly corresponds to Proposition 4.6 in [6].



Lemma 3.4: For any distinct v,w € V
(@) if w € F(+v)" and F(—v) =90, then F(-w) =
(0) if w € F(4+v)~ and F(—v) =0, then F(+w) =
(c) if w € F(—v)™ and F(+v) =0, then F(—w) =
(d} if w € F(—v)~ and F(+v) = @, then F(+w) =
(Proof) We show (a) (the proofs of the other cases are snnilar).
Suppose, on the contrary, that w € F(+v)*, F(—v) = @ and F(—w) # 0.
Then from Lemma 3.3 we have v € F(—w)~ ,which contradicts the assumption that
F(-v)=140. =

From Lemmas 3.1~3.4 we have the following.

Theorem 3.5: The bidirected graph G(F) = (V, A;0) defined above is a signed
poset.

(Proof) Let us check conditions (i)~(iii) in the definition of a signed poset.

(i) This follows from Lemma 3.1 for non-selfloops and from the remark, given after
the definition of F(-), for selfloops.

(ii) First, consider the case when 9a; + day = Fv 4w for some distinet v,w € V. We
treat only the case when da) + das = v+w since the other cases are treated similarly.
Then we have v — u € 0A and u + w € JA. This means that we have one of the
following (a)~(f): (a) v € F(—u)",u € F(+w)™; (b) u € F(+v)*,w € F{+u)~; (¢}
v € F(—u)",w € F(+u)"; (d) u € F(+v)t,u € F(+w)~; (e) F(+v) =0, F —u)

B, w e F(—[—u s (f) F(+w) = 0, F(+u) = 0 v € F(—u)~. Both (a) and (b) imply
v+w € QA from Lemma 3.2. In Case (c), if both F(+v) = ¢ and F{+w) = 0,
then we have v + w € JA due to procedure (3). Moreover, if F(4+w) # 0 (or
F(4+v) # @), then Case (¢) is reduced to Case (a) (or Case (b)) from Lemma 3.3.
Case (d) is reduced to Case (a) (and Case (b)) from Lemma 3.3 since F(—u) # §
(and F(+u) # 0). In Case (e) (or Case (f)) we have F(4+w) = @ (or F(+v) = @)
due to Lemma 3.4, so that we have v + w € 04 by procedure (3).

Next, let us consider the case when da; + day = +2v for some v € V7. We treat
only the case when da; + day = 2v since the other case is treated similarly. Then
we have v + w € 94 and v — w € JA for some w € V. If there is a selfloop « with
Ja = 2v, then we are finished. So, suppose that arcs a;, as with da; = v — w and
Ouy = v+ w are not constructed by procedure (3). Then we have (I) v € F(+w)™
or w € F(+v)~ and (II) v € F(—w)™ or w € F(+v)*. If we have F(+v) # §, from
Lemma 3.3 (I) implies w € F(+v)~ and (II} implies w € F(+v)*, a contradiction.
Hence, F(+v) = 0.

(iii) This follows from Lemma 3.4.

(iv) This is due to the definition of G(F). O

We now denote the signed poset G{(F) by P(F) = (1, 4;9).



Lemma 3.6: Let (X,Y) € 3V be an ideal of the signed poset P(F). Then we have

0 # F(+v) C (X,Y) (v € X) (3.4)
b # F(~v) C(X,Y) (veY) (3.5)

(Proof) Since (X,1") is an ideal of P(F), relations (3.4) and (3.5) follow from the
definition of P(F). a

Now, we show the following theorem.

Theorem 3.7: The set of all the ideals of the signed poset P(F) coincides with the
given F.

(Proof) Suppose that (X,Y) € 3¥ is an ideal of P(F). From Lemma 3.6 we have
(X,Y) = (Upex F(+v)) U (Wpey F(—v)). (3.6)

Hence, (X.Y) € F.
Conversely, suppose (X,Y) € F. Then we have

B # F(+0) C (X,Y) (v e X), (3.7)
0 # F(—v) C (X,Y) (v e Y). (3.8)

If (X,Y) is not an ideal of P(F), then we have the following (I} or (II):
(I) For some v € X we have one of the following three:
(a) There is a selfloop a such that da = 2v.
(b) There are a non-selfloop arc @ and a vertex w ¢ ¥ such that da = v + w.
(c) There are a non-selfloop arc a and a vertex w ¢ X such that e = v — w.

(IT} For some v € Y we have one of the following three:

(a) There is a selfloop @ such that ¢ = —2v.
(b) There are a non-selfloop arc « and a vertex w ¢ X such that da = —v — .
(c) There are a non-selfloop arc a and a vertex w ¢ ¥ such that da = —v + w.

Case (I-a) is impossible since F(+v) # @ for v € X. In Case (I-b), we have
w € F(+v)” or v € F(+w)~. But w € F{+v)™ is impossible from (3.7) since
w ¢ Y. So, we must have v € F(+w)~, which implies w € F(+v)~ C ¥ (due to
Lemma 3.3 and (3.7)), a contradiction. Similarly as Case (I-b), Case (I-¢) also leads
us to a contradiction. Case (II) can be treated similarly as Case (I).

Consequently, (X,Y") must be an ideal of P(F). O

Theorem 3.7 asserts that P(-) defines a one-to-one mapping from the set of simple
spanning Li,M-closed families, on V, containing (@, @) to the set of signed posets on
V. We show that the mapping is also onto.

|



For a signed poset P = (V, A;9) and a vertex v € V, when 2v ¢ 9A, define
I{+v) = ({w|v—we dA}U {v}, {w|v+w e 3A4}) (3.9}
and when —2v ¢ 0A, define
I{—v)=({w]| —v—we dd},{w] —v+w € A} U {v}). (3.10)

Also, if 2v € 84 (or =2v.€.94), we define I(+v) =0 (or I{—v) = ). We can easily
see that I{+v) and I(—v), if nonempty, are ideals of P. We call I{+v) the positive
principal tdeal at v and I(—uv} the negative principal ideal at v of P. (In fact, for a
simple and spanning U, M-closed family 7 on V and its corresponding signed poset
P on V we have I(+v) = F(+v) and I(—v) = F(~v) for v € V.)

Lemma 3.8: Let Z(P) be the set of all the ideals of a signed poset P onV. Then
Z(P) is a simple and spanning U, N-closed family on V' with (§,0) € Z(P).
(Proof) First, we show that Z{P) is U, M-closed. Let (X;,Y;) (i = 1,2) be ideals of
P. Let us consider their intersection (X;,¥;) M (X5,Y3). For any a € A, if

(0Tan (X1 N X)) U{d"an (1 NY2)) # 0, (3.11)
then we have
(0TanY)U(@aenNX) 20, (0Tan¥)U (@ anNXy) #0 (3.12)

since {X;,Y;) (¢ = 1,2) are ideals. Since we do not have -aNX; # @ and 8*anls #
@ (or 8anY, £ 0 and 8 an Xy # 0) due to {3.11), it follows from (3.12) that we
have 97aN(Y NY3) #Por 7aN(X1NXs) #0, ie.,

(e n (YN U(E an (X1 N X)) # 0. (3.13)

Hence, (X1, Y1) M (X%, Y5) is an ideal of P. Let us now consider the reduced union
(X1, Y1) U (X5, Y2). Suppose that for an arc a € A

(tenN (X3 UXy) — (VTUN U@ an (YUY — (X UX,) # 0.  (3.14)
Then we have (3*aNY]) U (0" a N X1) £ B or (9TaNYR) U (8- e N Xy) # 0, ie.,

("aN(XTUX)U(@Tan(YIUYY) #0, (3.15)

since (X, Y7) (4 = 1,2) are ideals. If 8%an((X;UX2)N(Y1UY3)) # B (or 8~ aN((X,U

Xo)N(Y1UYL)) # B), we must have 0~anN(Y1UY3) # 6 (or 8tan(X1UX,) # 0) due
to (3.14) and since (X, Y} (i = 1,2) are ideals. However, this together with (3.14)



contradicts the assumption that (X;,Y;) (i = 1,2) are ideals. Hence, from (3.15) we
have

(07anN (X1 UX) = (11U2) U (8Tan((1UY2) — (X1 UX2)) # 8. (3.16)

Therefore, (X7, Y1) U (X5, ¥5) is an ideal.

Next, we show that Z(P) is spanning. By the definition of the signed poset
P =(V,A;0), for any v € V we have 2v ¢ 34 or —2v ¢ 9A. Therefore, there exists
an ideal J(4v) or I(—v) for any v € V and hence Z(P) is spanning since Z(P) is
U, N-closed.

Finally, we show that Z(P) is simple. For any distinct v,w € V, suppose 2v ¢
0A without loss of generality. If w ¢ I{+v)* U I(+v)~, then we are done and if
w € I(+v)TUI(+v)~, then (J(+v)* — {v}, I(+v)7) is a desired ideal that separates
v and w.

We conclude the proof by noting that (@, @) is also an ideal of P. |

Lemma 3.9: For two signed posets P = (V,A;0) and P' = (VA" d) on V, if
0A # A, then T(P) # I(P').

(Proof) If there exists some v € V such that 2v € 04 — & A" (or —2v € A — &' 4'),
then the positive (or negative) principal ideal at v of P’ is not contained in Z{P).
So, suppose that P and P’ have the same set of selfloops. If there exist distinct
v,w € V such that v —w € 04 — 0'A’, then 2v ¢ 0'A’ or —2w ¢ F'A’. If 20 ¢ §'A’
(or —2w ¢ &A’), then for the positive (or negative) principal ideal W at v (or w)
of P’ we have w ¢ W (or v ¢ W~). Hence, W is not an ideal of P. Other cases
are treated similarly. a

From Theorem 3.7, Lemma 3.8 and Lemma 3.9 we have the main theorem.

Theorem 3.10: There exists a one-to-one correspondence between the set of all the
simple and spanning U, N-closed families F C 3V on V' with (0,0) € F and the set
of all the signed posets on V' such that each such F is the set of all the ideals of the
corresponding signed poset P. In fact, such a one-to-one correspondence is obtained
by making each F correspond to P(F). a

This is a strengthening of the signed Birkhoff theorem of Reiuer [6].

4. General L, M-closed Families

In this section we discuss the representations of non-simple or non-spanning U, M-
closed families.
Consider any U, M-closed family F C 3V.



Lemma 4.1: Every mazimal element (X,Y") € F has the same set X UY, where
the order among F is with respect to C.

(Proof) Since

(X1 U{(Xo = Y1), NU (Yo — X1)) = (X1, Y1) U (X0, ¥9)) U (X1, 1), (4.1)
we have
(X1 U (X - Y1), TU (Y- 1) € F (+.2)
for any (X;,Y;) € F (i = 1,2). Also, note that we have
(XL, Y1) E(XGU{X -1, U (3 - X)), (4.3)
XU -Muude-X1) =X UXUY UYs. (4.4)
Therefore, the present lemma follows from (4.1)~(4.4). m!

Due to Lemma 4.1, for any maximal (X,Y) € F let us call X UY" the support of
F.

We thus see that for a non-spanning U, M-closed family F C 3" on 1V we can
restrict the underlying set V' to its support. Therefore, without loss of generality we
can assume that F is spanning.

Now, consider any spanning LI, M-closed family F C 3Y. Define an equivalence
relation ~ on V' as follows. For any v,w € V we have v ~ w if and only if for each
(X,Y) € Feither v,w € XUY or v,w ¢ XUY. The equivalence classes associated
with the equivalence relation ~ give a partition II(F) of V. By the definition of the
equivalence relation we see that each component A € II(F) is divided into two sets
I and K (either but not both possibly empty) such that for each (X, Y} € F with
K C X UY we have either

(YK, CXand K CYL or

(2) K1 C Y and K C X.

Therefore, we should consider II{F) as a double partition, where each component
K € II{F) is further partitioned into two sets K and .
Choose a representative vy from each component K € II(F) and define

F={(Ufvg | K e TI(F),vx € X}, U{vg | I € I(F), v € ¥}) | (X,¥) € F}.
(4.5)

We can easily show that .7}" is a simple and spanning U, M-closed family on V' =
{vg|K € II(F)}. We call F a simplification of F. It should be noted that the pair
of the simplification F and the double partition II(F) has the complete information
to reconstruct the original F with (#,#) € F. That is, each (.-‘“f,f") € F is made
correspond to (X,Y’) € F in such a way that

N = XUXpUXy UXs, (4.6)
Y = YUY UYy Udo, (4.7)

10



where

Xy = U{K:i|vkx € X,vg € K1, K € TI(F)}, (4.8)
X1, = U{E1|vk € V,vp € Ko, K € II(F)}, (4.9)
Xoy = [ J{K2|vg € V,ux € K1, K € TI{F)}, (4.10)
Xoo = |J{K2]vr € X,vx € Ko, K € TI(F)}, (4.11)
Vi =-U{Kilvk €Y, 0r € K1, K € TI(F)}, (4.12)
Yio = J{K1|vk € X,vx € Ko, K € II(F)}, (4.13)
Yo = |J{Ee|vk € X,ox € K, K € II(F)}, (4.14)

b = | J{Ks|vk € V,vp € Ky, K € TI(F)}. (4.15)

Finally, it should be noted that if a LI, M-closed family F on V' does not contain
(@, 8), then for the minimum element ( Xy, ¥y) of F define

F = {(X - X0, Y W) |(X,Y) € F}. (4.16)

Then F' is a U, M-closed family on V with (#,0) € 7'. Also, note that 7 U {(8,0)}
is a simple and spanning U, M-closed family on ¥ that contains (@,0) as well.
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