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Summary.

This paper 1s concerned with the set~compound dec151on problem when
the component problem is the squared—error 1oss estlmatlon for“the famlly
of distributions bﬁ speclfled by a density propotlonal to the restrlctlon
of .an 1ntegrable function f to the interval [6, a+1) for 8 in a real
interval Q. The work in this paper.ls a generallzetlon and contlnuatlon
of R. Fox's work (1968, 1970) where he constructed a Levy con51stent

estimate G of the emplrlc dlstrlbutlon G of the n—parameter sequence

8  under PB being the unlform dlstrlbutlon over the 1nterva1 [6, g+1)

for 8e@ = (==, =). "All the orders being uniform in ee[c"‘d]“ with e, =

d, finite, Sections 1 and 2 show that there exists a procedure e whose

modified regret D(s, §) is 0((n logrﬂ / {. Section 3 glves a counter

example to the convergence of the modlfled regret for BE(—m m)

*) The word "non-regular™ was quoted from Ferguson (1968, p.130) in.
which he refers .the exponential families of dlstrlbutlons to regular
families.

1 This paper is a part of the author's Ph, D. Thesis at Michigan

State Unlversity
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0. Introduction.

The set compound problem simultaneously considers n statistical
decision problems each of which is structually identical to the component
problem. The lo;s is taken to be the average of ﬁ component losses.

Let & be Lebesgue measure and ¥ an integrable function with

. . . . 5}
0 2 f21. Let = denote the defining property. Define q(@) = (fe+1

f dE)_l and assume that q is uniformly bounded by a finite constant, say
m. Letting Py =_dPB/dE we denote by P(f) the family of probability

measures given by -

s

(0.1) .B(E) = {p, with py = q(8)[6, e+1)f, Vo € q)

where € 1is a real interval and we denote the indicator funetion of a set
A by A itself. In this paper, the component problem considered is the
squared-error loss estimation of © based on X with distribution

Pefép(f). For any prior distribution 6 on @, let R(G) be the Bayes

-

risk versus. G in this component problem.

Let Xl,A....;.Xh” be n indeﬁen&ent rahdém Gagiableé.;iﬁh,‘xj
distributed acecording to PB € p(f). Let t = (tl, tz; tee tn) be a

Y

set compound procedure: for each j =1, 2, ... , n, t, is an estimator

3

of Bj based on X = (Xl, cee Xn). Let Gn denote the empiric distri-

bution of 6 en and let

l, LIE A T Y

V-1 , 2 '
(0.2)  Db(g, t) -Sn Ijep (5500 = 0)) dlj(}'nc.). - R(G)

where P =P X ees X P6 .

B1 n

With squared-error loss, let QG be the procedure whose component
n

procedures are Bayes against Gn : QGn(g) = (Bln, ezn, se. 40 nn) with,



for each j,

(0.3 o = fo Py (X,) dGn(e)/Jps(Xj) ac_(0)

X X,
: K 3 S i
= xi+ 8 q4(8) dG_(6)/ i+ q dG_

where y' 1is an abbreviation of v-1 and thé affix + is intended
to describe thg integration as over (%5, X.1. Henceforth we delete + in
lower limits bf Ss. _

For the case-%%eré ‘f =1 and Q= (-», «), Fox(1970) exhibited a

distribution-valued Lévy consistent estimate Gn of _Gn. " In empirical

. Bayes problem where the Bi are iid with common distribution G, Fox (1968,

§4.3) obtéined a convergence rate o(i) of the expected risks to R(G)
for a (bootstrap) decision procedure Q based on component procedures
Bayes versus an estimate én" “ |

The behavior in the compound problem of the_generalizatioﬁ of the
procedure § to p(f) .is the subject of this paper. = ...

If sup{|D(g, £) |+ seQ™y = 0(n™%) then we will say that t has a
rate O(n_d). . |

In Section 1 (Theorem 1.1) we exhibit aﬁ ;pper bound of the modified
regret D(9, @) (uniform wr; §65f5 in terms of Lévy metric L(Gn’ én)
of Gn and any distribution-valued estimate én’ when & is bounded.
In Section 2 we construct a particular distribution-valued Lévy consistent

A

estimate Gn of Gn for Q@ = (-=, »). Under an additional assumption
that 1/f satisfies a Lipshitz condition, we show in Theorem 2.1, by
making use of the 5ound in Theorem 1.1, that the set compound decision

procedure é based on én has a rate O((nnllog n)lla). Section 3 shows
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in Theorm 3.1 that when @ = (-», «), there is no sequence of estimate of

8 for which D(8, t) converges to zero.

Notational Conventions.

out to signal the end of a proof.

Pj and P abbreviate PB and. XI}___lPe s respectively. A distri-
: j ST
bution function also represents the corresponding measure. We often let

Pﬁ, P(h) or P(h(m)) denote jh(w) dP(w). G abbreviates the empiric

distribution Gn of 91; cee en. R denotes the real line. We abbre-

viate y-1 to y': We denote the indicator function of a set A. by [A]

or simply A ditself. TFor aﬁy function h, h]:. means h(b) - h(a).

Ite

v' and f\ denote the supremum and the infimum, respectively. denotes
the defining property. When we refer to (a. b) in Sectioun a that we are
dealing with, we simply write (b). For example, .see the line just below

(1.3). There we write (2) as we refer to (1L.2).,. The Sy"mbolg'is used through-
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1. An Upper Bound of the Modified Regret. : !

Let & = [e, d}, where -« < ¢ £ d <+ =, throughout this section.
Let G be a distribution-valued random variable which is an estimate of
Fhe empiric disfripution G, obtained from Xl, ;.; 5 Xh' Define § = (ﬁl,
cee an) to be the procedure such that, for each j, éj(§) = éjn is of
form (0.3) with G replaced b& G (0/0 is understood to_be Xj).

The modified regret for a procedure t is of form
N ' -1.n 2 2,
1.1 b(e, t) =n "¢, P(t.(X) - 85, - P(8, -8, .
1.1)  pG, t) 5=1 (B = 007 - p(o, ~0 %)

Lévy distance for two distribution functions F and H of random

variables (cf..Feller (1971, p.285)) is defined by

‘ Ei:é} L(F, H) =A{e > o: ._E(F') < H ; S(F;)}

where

(1.3) EF(Y) =F(e+y) and F'(y) =y + F(y). |

Remark that the infimum in the definition (2) attains (See Appendix of

Nogami(1975)). Hereafter, we let
1.4y 121, 6.

In this section.we shall exhibit an upper bound of the modified regret
D(e, Q). To do se, the main development is Lemmé 1.3 in which we show that
the average expectation of Iéjn_ejnl over the set where L < ¢ i1s bounded
by at most a constant times e with 0< g <1. For the proof of Lemma

1.3 we use Lemma A.2 of R. §. Singh (1974).

Since X& < ejn < Xj by (0.3) whatever be the distribution G,
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|(é. —B.)2 - (8, —6[9]5 2]@. ~6, ]. Hence, it follows from (1) that
Jn J m 3 = Jn o gn

-1 ~ -1 a
.5)  27Inee, B sn sl RlE, e, |

A

For fixed j, since -0 <1, for any 0 < e < 1,

19507050l 2

(1.6)‘ P|6. -6 [ < PIL>e] + g(]ajn—e

jn “jn I

A

<egl).

jn

Before dealing with the second term of rhs(6), we introduce two lemmas.

Lemmg 1.1. For any s, t € R with s < t and for any ¢ g'Q and

n20 with &+n <1, B e e

.-.l n . '\\ "
(1.7) n zj=lAj < t.s

where Vﬁ,

’ Xj—s L
A, =P {G]- 6, +. &
j j ]X.—t [ j .

A -

e cr 0% -g
- ki
X, < B +1 nl/ jX5+n q dGl.

Proof. Since Vﬁ,

i

- Ay=s y-s
y < Bj +1 - nl/ Jyf+n q dG) £(y) G]y_t dy,

A

1.8 4 - chcejn%. s

and since [ej +§ Ly < ej +1-nl=[y"+n< ej <y - 8], the average

wrt j =1, ... , n of the numerator in the quotient equals to the
denominator. Also, since £ < 1, taking the average wrt j over (8) and
interchanging the integral and average operation leads to 1hs(7) < SG]?:? dy.

But, the Fubini Theorem leads to

y—8 _ utt .
&F]y_t,dy - S (5 4y ar(w) = t-s
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for an arbitrary distribution function F of a random variable and any s,

t € R with s < t. This gives us the resulted bound. §

Lemma 1.2. For all s € R,

. %
1.9 otz P{] (6-6) (X,-s)] [T < e]/[ T 9 dG} < (d-ct3)e.
Jj=1~ 3 = Xj . =

Proof. For j fixed we let z = xj =~ 8. DBy the definition of

-~

L and the fact that the infimum in the definition of Lévy distance is

attained, if I ce, then _ (67) ¢ 6" ¢ ((C7) where B and (F') are

as defined in (3). Hence,

el <612 Ve 1#te oo 4 g%,

[(6-6)(2) | IL < e A e
. o
Thus, -
. X, X.-ste X
~1.n SJ -1, . -l_n S 5
1hs(9) < efn EjZl Pj( X& q dG) 7} + n z‘j=1 Pj(G]Xj__S_€ / Xg q dG),

From the proof of Lemma 1.1 we can see that the curly bracket of the
ths is no more than d-c+l. Hence, an application of Lemma 1.1 with
(s, ty n, 8} = (s—e, steg, 0, 0) .to the second term of the rhs completes
the proof.’ ‘

We will invoke Lemma A.2 of R. S. Singh (1974) in the proof of Lemma
1.3 below which will give us an upper bound of the average wrt j of

the second term of rhs(6).

Lemma 1.3. For ¢ > 0,
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where 3, = 4m(17 + 24m + (7+12m) (d-c)).

Proof. Fix n and § €[c, d]®. We also fix j until (19).

X abbreviates X. Since (0.3)-x'=‘[§,(a-X') q(8) dc/ [i, q(8) dc,

we abbreviate the quotient of the rhs to y/z and that with € replaced

by G to Y/Z. Then,

(1.10) Gjn —ejn = Y/Z - y/z.

Let #* denote conditioning on X and {I < e}. Then, by Lemma A.2

- of R. 5. Singh (1974) with y=I and L=l and by the fact that 0 < ¥/z,

y/z < 1 .we have

(1.11)

thg

Y 2 : ‘
sl - s = DYy + 2]z-a]).
By letting I = (X', X], define by GI the retraction of G into
the closed interval [G(X'), G(X)]. Then, by Proposition A of Nogami

(1975),

LI = L(GI,

G) g LVsvr
where § = I(G-a)(X‘)I and T = I(G-a)(x)]. Thus,

(1.12) when L ce, L. <evsvr 23,

LI
By applying Lemma A.2 of Nogami (1975) with h(8), the retraction of

(6-X')q(8) to I, and weakening the resulted bound, when Ly < A,

=

(1.13)  [Y-y| < 2a(r+) + m(S+T)

where we use <4 on the line to denote the right limit and & is the
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W
~ But, since by the definition of q, q]w1

modulus of cdntinuity of h defined on I such that

W .
a(e) *\/{h]w; Py, Wy €1, |wl—w2[ < ¢},
1

To bound o(A+), pick Wy, W, € I such that 0 < Wy, < A. Now, by

the definition of h;
v, :
(L.14) h] = (w,~w_)}{qg(w,) +

Wl 21 2 .Wqul wl

2(w,)q 0wy ) ( j f(s) ds -

_ w

» 2 1

'§W2+1 £(s) ds) and since q <m and O
Wl+l .

l"

A

£

A

W
(1.15) [q]wzl < mz(WQ—Wl).
1 .

W
Thus, from (14), [h]W

[s¢]

|

A

(wz—wl){q(wz) + (wl—X')mz}- .USing qazm,

=

wi—X' él and w.-w

271 =

A
-
-

and applying the definition of «(}A) gives us that

R o ‘ w _ |
T (1.16)  alA) __<_\/{h]w2 : for w., w,€I such that 0 < w.-w. <"1} < A(m+m2)

1° "2 271

1

and thus the same bound applies for o(A+).
Therefore, applying the bound of (16) to the first term of rhs(13) shows

that when LI As

A

(1.27)  [¥-y] < 2 A@®) + n(sD).

Similarly, by Lemma A.2 of Nogami(1975) with 1 <h=gq < m, when
L 24, | z-z| < 20(x+) + m(S+T). Since by the definitions of a(A) and

W
g and by (15) afXr) g\/{lq]w2 f: for wis W,ET such that 0 < wy—wy < Al

1 1
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< Amr, a(A+) is also bounded by mzl. Hence, as in (17), when L <A,

I

(1.18)  |z-z] < 2am® + m(s+T).

Therefore, by (17), (18) and (12) and weakenihg the bound by replacing A

there by e+S+T; when i €,

A

(1.19)  |y-y| + 2|2-2} ‘g 2 (wt3n)e + (Sm6m>) (s+‘r).

By this and in view of (11) and (10),

ot R([8, -6, [[Esel) < 4(m+3m2)s_(?1‘1z’;}=1 Pj-z_l.)

+ 2-(5nri-6m2)n_l E 3}:1 P{(s+T)[L<el/z}.

Applying Lemma 1.1 with s=c~d-1l, t=d+l-c and n=6s0 to the first term
and using Lemma 1.2 twice to the second term results in the bound of thé
asserted lemma.

The following theorem is an immediate conéequeﬁce of (5), (B) aﬁd

Lemma 1.3.

Theorem 1.1. If P ep(f) with @ = [c, d], for j=1, 2, ... , n,

then . > 0,

Z-IID(Q, é)] < g[ﬁ > el + ane uniformly in @,

where ao is as defined in Lemma 1.3,
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i+ that there exists a procedure @ with a rate 0(

2. A Particular Procedure § with a Rate 0((nhllog n)lla).

We first construct a normalized {(but not monotonized) estimate G*
of the empiric distribution function G. Main work in this section is,
under the extra assumption on f (Lipshitz condition for l/f); to obtain
the generalization (Lemma 2.2) of Lemma 3.1 of Fox(1970). ihen, we exhibit
a distribution-valued estimate G of . Lemma 2.5 showing Lévy consist-

- : N
ency of G to G, will be proved as in the proof of Theorem 3.1 of Fox(1970)

| by using Lemma 2.2. Lemma 2.1 will be furnished to apply Hoeffding's bound

(1963, Theorem 2) in the proof of Lemma 2.2, Finally, Theorem 2.1 shows

- 1
(n llog n) /4).
In addition to the assumption on £ 4in the introduction we now

assume that 1/f satisfies the Lipshitz condition:
. . : l .

@D Ve E T - @ i ucvy o x
for a finite constant M. By this assumption, .
(2.2) " EG/E(E) = 1] g Mlsmt|. o e

Let @ =R until the proof of Lemma 2.3 is ended. Let Q be the
distribution function defined by

‘ v |
2.3 e = [ qac, V.

Then, letting p = S_pe 46(8), we have by the definition of p_ that p(y)

= £(x)(Q(y) - Q(y")) and thus

- «Ply-1)
(2.4) Qly) =z £0y-0)

where I abbreviates E:=0 throughout this section. Letting [z] denote
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AF*(y) = v lpx)

the greatest integer £z if z> 0 and -1 if z < 0, we remark

that if the r-th term of rhs(4) is nonzero then

(2.5) r< [e(n) - 9(1) + 1]

where B(l) =ming 4 o Bi and e(n) = max; o4 0 ei' Since q > 1 and

na

A

9 is the density of Q wrt G, it follows by Theorem 32.B of Halmos(1950)

that-

5 o -1
@6 sm= | @on™ s,

" For each vy, we let Fx(y) = n-l 2:?=1[Xj < y]'i and for any h:> O-

y+h
y

. We allow h to depend on n and assume h < 1 for
convenience. Let P 2 EPG dG, Then, p = dP/d¢ where & is Lebesgue

measure. We estimate p(y) by AF%(y) and Q(y) by
2.7 Q*(y) = SAF*(y~-r)/f(y-r)). -
As in (5), we note that if the r-th tefm of rhs(7) is nonzero, then

(2.8) r < d-ct2 = bo—l;

Note that Q* has bounded variation because of (1). From the relation

(6), we obtain a raw estimate W of G from

- y -1
2.9) W(y) =§ - (q(e)) ~ dQn(t),

GO

Since F*(y) g G(y) < F¥(y+l) for all y € R, we furthermore estimate G

at a point y by

G (y) = (F*(yV Uy AF:(y+l).



Following Lemma 2.1 will be used to prove forthcoming Lemma 2.2,

Lemma 2.1 For every y¢&[p +1],

(l) (n)

(2.10)  6(y) ~b.h < ﬁ(y) < G(y+h) + byh

where b = 2 oM + 304m).

Proof. Since the summation on r in (7) 1nvolves at most a
flnlte number of non-zero terms, we shall freely 1nterchange integral and
summation on r without further comment.

‘ For‘eaéh j, let

R ¢/ -1 | -1
2.11) v, zS (@)™ 4 {ltr < X, < e-cthl(h £(er)) 71,

where the subscript t din dt denotes the variable of integration,

By the definition (9) of W,

1 n

W.(y) = j=1 Wj 7 AR e T

To find bounds of gﬁ(y) we shall find an upper and a iower bound of P W,

Vﬁ. Fix j and use tﬁe corresponding notatioﬂs ﬁithout subécript j
until (27).

We shall start ﬁith getting an alternative form af P ﬁ: Because a
function satisfying Lipshitz condition is absolufely continuous (cf. Royden
(1968), p.108) and 1/q is clearly absolutely continuous, 1/f(.-r) and 1/q
are both of bounded variation. Applying integration by parts (8aks(1937),

Theorem—III.l4.1) and using d(q(t))_l = (£(t+l) - £(t))dt gives us that

Js
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(2.12) Lﬂ (@)™ d (Ttr < X ¢ t-x4h] /£ (c-r))
. Iy-r < X < y-r+h] y [t-r < X < t-r+h] e+l
“Twam feny e O

Now, with EX denoting the expectation of a random variable X, Proposition
ITT. 2.1 of Neveu(1965) gives us a version of the relation E{E(h(ﬁ)IX)}
= Eh(t) for an integrable function h and probability measures. But,
because of its proof it holds for finite measures. Henée,

[t_-:r < X g t-r+h}

v v ' .
| (2.13) Pe{g_m ) f]E+l dt} = hq(e).g;; S(tfr)flz+l dt
whefe ‘ - B
_y pEHh :
(2.14) S(t) = h St [6 < s < oFLI(E(S)/E(L)) ds.

Thus, taking expectation wrt X and then summation on r over (12) and

and multiplying (hq(B))—} on both sides shows us that

(2.15)  (#W)/q(®) = @y " zs(y-r) = 1(5)_"‘"'
where

y
(2.16)  1(S) =S IS(t-r) £107T dt.

-

To get bounds for PEW we shall first find bounds for the first term
of rhs(15) and then bounds for the second term I(8) of rhs(15). Until

(25) we use the notation

_preHl
(2.17) A(EY = h jk ie < s < 8+l] ds. '

Applying (2) to the definition (14) of S(t) and changing a variable



et Ot

leads to the inequality

h
(2.18)  |S(y-r) - Aly-1)] < Mh_lg [6-(y~r) < u < 8+1-(y~r)]Iu.du.
‘ 0 I -

Moreover, because

-1 y+h -
A(y-r) = h gy [6 < t] dt

BT[6-h < y < 0] (y+h-0) + [0 < y],

(2.19)

Irhs(18) < 2_1Mh and .(q(y))_l < 1, we obtain

‘(q(y))"l[e <yl - 2" ym < first term of rhs(15)

(2.20)
U 2 @M g vl + 27,

t+1

e = SS(!:)[t < y-r] £1570F 4

and
it

¥
Since g S(t-r) £}

-0

[t < y-r](£(tr+l) - £(t4r))

il

[t 2 yI(E+Ty-£I+1) ~ £(t))

fl

(2.2L1) £(t + [y-t] + 1) - £(t)
{the latter berause {y—t]'= =1 if t > y), it follows that

(2.22)  I(s) = SS(t) f}i*fy“ﬂﬂ dt.

From the derivation, (22) holds for A in place of §. Thus, from (18)

with any y-r and then by 0 < f < 1,

(2.23)  [1(5) -~ 1()] < 2",

¥y

But by (2.19), I(2) equals I_m (Llhs(19) with y=t)(f(t+l) - £{t)) dt

11
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which becones

(2.24) {[6-n

Since |f£(t+1)

< z"lhz, |

(2.25) |

Therefore,

A

v 3]
y<o1f 40 71" e 01t ac
6-h 6-h

+ [6

A

Vo H
SIQNE It

-1 A -1 ' S yAB
EO < 1EE™ - ) ™AL g MA L ana Se_h(t+h~9) de

first term of (24) ] < Gﬁ/\l)Z_lh. Thus,

. y | o

@) - 19 £33 Y a1 e < aunath.
) 0

by this and (23), b - e

y _
(2.26)  _L1(8) - [® < yI & £ de) | < oeara )2 T
0 ' :

Therefore, from this and (20) and in view of (15) we can see that .

(P W)/q(8)

is bounded above and below by rhs(20)-(lower bound ‘of I(8)

in (26)) and lhs(20) - (upper bound of I(S) in (26)), respectively.

Slnce

[8

A

o
yH1/a(y) - [0 < y+l/ ey =[o < y1 | 1t
0

.0
+ [y < 8 < y+h] & ;‘E]E_'_1 dt

for h>0
bounds by

(2.27) [

h b
where 1

y

6
and [y <8 < y+h]]§ f]E+l dtl £ (MAL)h, weakening the above
' y

using q < m results in

9 < y]-—blh SPwWwg o< y+h] + blh

is as defined in the statement of this lemma.
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Averaging (27) wrt j gives the bound of the asserted lemma.ﬂ
Following Lemma 2.2 is a direct generalization of Lemma 3.1 of Fox |
(1970) in the sense that if f = 1, then m=1 and M=0, and hence we get
his bound Zexp(;Znhzaz).

Lemma 2.2 If 0 < 1, then for each ¥y

A
=

A
m

A

(2.28) P({G(y=c) -~ ¢ < G*(y) G(y+e)A+ s}c,)

A

2 2
2nh ((E—blh)+)

= 2e£p {- o 2
(l+3b0M)

where AS is the complement of a set A, b0 and bl are as defined in (8)

and Lemma 2.1, respectively.
Proof. For y > G(n)+l,‘F*(y) = G*(y) = G(y+e) = 1 and

for y < e(l)—l, F(y+l) = G*(y) = G(y~e) = 0; in both case lhs(28)=0
and (28) holds trivially. -
w. ... TFor yeE[G(l)—l, 8(n)+1] it is sufficient to prove the lemma for the

raw estimate W. TFor if G(y-g)-e < W(y) < G(yte)+ €, it follows that

na

Gly-e)~ € < WHAF*(y+1) £ 6%(y) < W(HVE*(y) < Gly+e) + e. |

Pick v € [G(l)—l, B(n)+1]. As in the.préof of Lemmg 3.1 of Fox(1970)
we shall apply Theorem 2 of Hoeffding (1963). To do so we shall use the
bounds of E(ﬁ(y)) in Le&ma 2.1 and furthermore need to get an upper and
a lower bound of Wj, Vﬁ. By (12) and (21) applied to the definition (11)

L)

of W,
J

(2.29) bW, = Cle o e [y-r < X 2 Y-r+h]/f(y-r)

- [{uxj < HI{(E(E + [y-t] + 1)/£¢6)) - 1} dt.
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In the summation of the first term of rhs(29), there are at most two
positive terms and both terms cannot be positive at the same time. Applying

(2) and then (8) gives that with b_ as defined in (8)

0

0 < (first term of rhs(29}) h l+b0M.

In a&dition, by a use of (2) and the fact that [y—Xj+h} < bo—l (because

A

y< e(n)+l, 8(1) X.:i and h < 1),

| second term of rhs(29) [< b Mh (<boM).

0

.Therefore,

Do < B, < L+2b M, bﬁ;

i

We now apply Theorem 2 of Hoeffding (1963). Since h S &, using the
second inequality of (10) in Lemma 2.1 and applying Theorem 2 of Hoeffding

(1963) gives

W e 2G> Olte) + €] PI(y) - BA(y) > & - bl - -

<
Znhz((a-blh)+)2
(2.30) < exp {- 5 1
(1+3b,1) .

Furthermore, by the first inequaliéy of (10); {W(y) < G(y~-e) - e}C
{P W(y) - W(y) > ¢ -bh}. Hence by the symmétry of the tail bounds, P[W(y)
< G(y-e) - €] has the same upper bound, rhs(30), which together with (30)
gives us the asserted bound of Lemma 2.2. § |

We let § = N—l, N being a positive integer depending on n, and
consider the following grid on the real lime: ... < -2§ < =6 <0 < § < 26

< «.. . We finally estimate G at Yy by
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AT L U
B A LA T

(2.31)  &(y) = sup{G*(j8) : 35 < ¥, 3=0, +1, ... }.

Lemma 2.3. ((Fox(1970)). For any ¢ > 0, if h-.< e and § < &, then
(2.32)  P[L > 2] < (§"h+1)fe "H1](rhs(28))

'ﬁg o where L is as defined in (1.4).
: Proof. We rely on the proof of Theorem 3.1 of Féx(1970).
For 0 < ¢ < 1, let n be so large that hlé e and § < e. Let J be
the largest integer such that F*(js+1) <e. ‘Wé also let T = {j:
F*((3+1)s + 1) - Fj*(:iéﬁ > e, §2J, j=0, + 1 } and 'An‘= j%_[jﬁ,
(3+1)8). Since only retraction and monotonicity properties of his respective

estimate G* and G were used before Lemma 3.1 of Fox was applied, the

following inequalities are still true for our estimates G* and G.

(2.33)  PIL > 2¢) = B¢ Yg ({E(y) > G(y+2e) + 26} U {E(y)<G(y=2¢) - 2¢}))
n .

< 2,40y ((6*(8) > G(iste) + e} U G*(38) < G(36-e) - &)
(3%EA _

&
1
kA

A

ja"é-a;l P({G*(38) > G(j5+e)‘ + ¢} UfG*Cjﬁ) < G(is-e) -~ e},

Since there are at most (6—1+l)[e—l+lj- grid points (see Fox(1970,
p.1850) in Ah’ by Lemma 2.2 the extreme rhs(33)‘is no larger than rhs(32).H
Let § be the procedure whose component procedures are Bayes versus
G defined by (31).. To get a rate of convergence of the modified regret
for § we use the bound of Theorem 1.1. Since this bound is valid only

for 9 = [c, d] where -= < ¢ < d <+, we assume p(f) with @ = [¢, d].
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Theorem 2.1. If ?j €p(f) with @ = [c, d], j = 1, 2, «.. y n where

satisfies the Lipshitz condition (1), then there exist constants b2

and b3 so that, for § with bzh = b36 = (nnllog n)lla,
ID(Q, é)] = O((n_llog n)l/4), uniformly in § ¢ [e, art.

Proof. We use Theorem 1.1 and apply Lemma 2.3. Then,'choosing

g=4-= (2b1+l)h < 1 (for sufficiently large n) and weakening the bound
gives
A . -2 ol .
- (2.34) ID(Q, 9)] < b4h + bSh exp{- {nh /b6)}

where b4 and b5 are scme constanté, and b6 = 2{1 + 3(d-c+3)M}2.

v

A

Choose b2 and b3 so that b2

4 -1/4 _ -1
(3b4) and by = b, (26 +1) 7,

Then, for bzh(=b36) = (n-llog n)1/4; (34) leads to the asserted rate in

Theorem 2.1. B

3. A Counterexample to D(6, t)+0 on R

In Section 2 we demonstrated a procedure f@ such that ID(Q, §)|

0((n-llog n)1/4) uniformly in @ in case of a bounded parameter set Q

[c, d].

=

Here we prove that the boundedness assumption on @ is necessary

for the modified regret to converge to zero.

Theorem 3.1. Let Xl, Xz, .+« be independent random variables where

for each j, X, ~yle,, 8,+1), 8, €9 = R. Let t(X) = (. (X}, . s t (XD
3 i’ 3 J 1 n

be an estimator of § = (el, cee Bn), n=1, 2, ... . Then there exists

a sequence (61, 62, ... ) €R° such that limn D{s, t) > 0.

~
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Proof. EX‘ denotes the conditional distribution of (X, ... s

. . . . 2
Xj—l’ Xj+l’ R Xh) given xl~ Xj. Since fo? each j, E(tj(g) qj) >

P,(P (t (X))- 6.)2, it follows that
J ~x ] ~ d )

-1 .n . . 2
3.1 -~ D(8, t) > . P (P (t. (X - 0, - R{(G).
3.1) © 0207 P ) - P ©)
i
Now, let U be a joint prior measure on (81, 82, eer). Let g
. J
be the conditional measure given ej and let uj be the marginal measure
of ej. Then, setting Sj = ge Ex(tj(g)), i=11, 2, ... , n, we have that
. i o
P B 2, . -1_n. ' 2
3.2 noorL g P (. (X)) -8,)°) > pn Tl P.(s, - 08,)°,
(3.2) U PERACHCHCOHEER 2RI WPiGsy - 8)
Now consider b=y ox Hy X s where uj puts mass 1/2 on each of
the values "2j + r, j > 1, where r is some fixed number such that
0 <r < 1/2. Then
2_ -1 . 2, -1, . 2
- P.(8.-8)"=2""P,, (s,-(2j~r + 2 7P,., (s,-(254r
E ny J( 578 25-xC 5 (2j~x)) 254r 5 (2j+r))
%ﬁ e e e e e . ; . . e e e e ,\ o
2§+1l-r '
- ‘ 2 -1 .
-3 ij {2 (S:ZI-' (23-r))"+ 2. (sj ~ @i+r)) Jax > r2(l—2r),

2j+r

where the last inequality follows since the integrand on the 1hs is not

less than r2.

n

-1 2 .
Since R(G) =n "5, --P,(9, -9, -where 9 is defined by the
in (&) j=1 J( jn J) ®in y
posterior mean ( 0.3) with q= 1, and since the Bj‘s are apart from
each other more than 1, ejn = Bj for all j and hence R(G) = 0.

Thus, p(R(G)) = 0. Therefore, in view of (1), (2) and (3),

(3.4)  ud(e, O} > r2(1-2r)
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for all n. The retraction t* of t formed by taking tg = (X& A tj)

\V4 Xj has modified regret bounded by 1 and satisfies (4). Therefore,

using Fatou's lemma gives

(3.5)  w{IimD(s, t9)} > Tim {u D(s, t9} > r2(1-21) > 0.

By 1im D(8, t) > lim D(9, t*) and (5), there exists a (0, 8,5 .2.)

such that lim_ D(8, t) > 0.8
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