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1. Introduction

1). It is commonly recognized that there exists a conflict between

equity and efficilency in income taxation. Progressive income
taxation is a device 1o enhance the degree of equity. A highly
progressive income taxation, however, obstructs labor incentives
of individuals with high productivities or earning abilities, and
so it decreases the degree of efficiency. Therefore optimal
income taxation should be determined to harmonize these contrary
norms.' To discuss this problem, Mirrlees provided a model of
optimal income taxation in his pioneering work [12] . Since
Mirrlees [15] , many authors consiaered this problem in variations
of Mirrlees' model.

There are two directions of studies from a technical point of
view, One is the approach initiated by Mirrlees himself, where
income tax functions of any forms are allowed. In this approach,
the method of the calculus of variations or Pontryagin's Maximum
Principle is used. Another one is the approach initlated by
Sheshinski [19] , where only linear tax functions are allowed.

The first approach is superior to the second to consider the
progressiveness of an optimal income tax function, though there
are many problems arising in the optimal taxation which can be
discussed in the domain of linear tax functions without losing
the essence, The first approach, however, has a weak point,
ag Mirrlees himself pointed it out. It is the lack of

mathematical rigorousness, That is, though several necessary
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conditions for an optimal tax function are discussed under the
assumption of the existence of an optimal income tax function,

the existence is doubtful in the domain of arbitrary functions.
Further thé differentiability of several variables derived ffom

an optimal tax function is also doubtful.1) The second approach
does not have such a weak point, though we can not fully consider
the progressiveness of optimal income tax functions. These two
.approaches are in completentary relationship but have weak points

respectively.

2). 1In this paper; we shall consiger the problem of optimal income
taxation in the domain of progressive tax functions, 0f course,
the progressive tax functions include the linear and'proportional
tax functions. The model we shall provide is a variation of
Mirrlees's model, where we take a public good - government's service
- into account explicitly. The merit of our approach is to be
able not only to discuss rigorously the existence of an optimal
income tax function but also to considex fully it's progressiveness.,
We shall employ the Nash social welfare function of Kaneko and
Nakamura [7] and Kaneko [8] as the welfare criterion, i.e., the
government's objective function in the model.z)

In Section 2, we shall formulate the model of optimal income

1), Mirrlees [}2,Section 4] pointed this out. We shall discuss
this problem in Section 4.

2). When the Nesh social welfare function is replaced by the
utilitarian welfare function, the result of this paper can be

still gained without essential change.



taxation. The existence theorem of optimal income tax function
shall be stated under relatively weak assumptions. The proof
of the theorem will be provided in Section 5.

In Section 3,we shall provide a limit theorem on the optimal
marginal and average tax rates. The theorem states that the
optimal marginal and average tax rates tend to 100-percents as
income level becomes high. This theorem shall be proved in
‘Section 6 under stronger assumptions than those used in the proof

of the existence theorenm,



2. Model and Problem

3). (X,d%,/u) is a measure space of all individuals, where X is
the set of all individuals, d} a (@ ~algebra of subsets of X and
/M a measure on (4 with 0 < /A(X)< + 00 , We assume that
fi}e ® for 211 ieX and M({i}) = 0 for 211 icxX .

We assume that leisure, a consumption good and a public good
enter the individuals!' utility functions Ui(a,b,Q),( ieX ), where
a denotes leisure time, b a level 6f the consumption good and 9
a level of the public good supplied by an economic agent called
"government!" . Every Ui ( i€X ) is defined on Y = [b,l]><E§

where L :> 0 is the initial endowment of leisure time and Ei the

nonnegative orthant of the 2-dimensional Fuclidean space E2 .

We assume:

(A): For all i€ X, Ul(a,b,Q) is a monotonically increasing,

continuous and strictly quasi-concave function of (a,b,Q).

(B): For each (a,b,Q) € Y, Ui(a,b,Q) is a measurable function

of 1 .

(C): For each i€ X, Ui(a,b,Q) is bounded, i.e., for some Mt

Ui(a,b,Q) S M* for all (a,b,Q) €Y .3)

Assumption (A) is standard in the equilibrium analysis, so
no explanation is necessary. Assumption (B) is just a technical

cohdition, which is also familiar in the theory of market with

3). The boundedness from below follows Assumption (A) .
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4)

a continuum of traders. Assumption (C) is the boundedness of

utility functions. | The boundedness is usually justified by St.
Petersburg paradox and is thought of as a natural assumption.s)
This assumption is necessary for the sake of use of the Nash social
welfare function for a measure space of individuals of Kaneko [8:]
as the welfare criterion.

O0f course, we assume that the utility fuﬁctions Ui(a,b,Q)
( ieX ) are measurable utility functions in the sense of von
Neumann and Morgenstern [?1] . In this paper we do not consider
any probability mixtures but only "pure" states. Since pure
states are thought of as special cases of mixtures, it makes sense
to assume von Neumann-Morgenstern utility functions . If necessary;
the government can rotate a roulette and yield probability mixtures.
But if the utility functions are concave, only a pure state appears
as a result of our theory because of the use of the Hash social
welfare function as the government's objective function.

We permit positive linear transformations of gt (i1ex ) .
Exactly speaking, when (i) and @(i) are measurable functions

of i with (i) => 0 for all i&X, we can employ

(2.1) Vi(a,b,Q) = cx(i)Ui(a,b,Q) + @(i) for all ie€X
and all (a,b,Q)e Y

as the same utility functions. Hence we can gain utility functions

v ( i€X ) satisfying the following (2.2) by certain positive

4}, See Aumann [1] .
sos oven [13,cra.11] , sneptey [17,16] or nunees [2 ]
5). See Owen {15,Chap.VI| , Shapley |[17,18] or Aumann {2 | .



transformations:

(2.2) v*(a,b,Q) - v*(0,0,0) is uniformly bounded, i.e., there
is an M such that V'(a,b,Q) = V*(0,0,0) £ M for all icX
and all (2,b,Q)eY ,

We shall confine us to the class of utility functions satisfying
(2.2) for the sake of integrability of the Nash social welfare
function.

Further we assume:

(D): For any & > O, there is a § > 0 such that Ui(E,0,0) -
ut(0,0,0) > § for all i€X . |

This assumption is a kind of uniformness of utility functions. This
assumption is not necessarily preserved for arbitrary positive
linear transformations. In the following we allow only the positive‘

linear transformations satisfying
_ < N < .
(2.3) TFor some £ > 0O and M > 0, £ 2 X(i) = M for all i€X .

That is, when (i) satisfies (2.3), the new Vi gained from Ui
satisfying (2.2) and (D) also satisfies (2.2) and (D) .6)
The following lemma shall be necessary to define the Nash

goclial welfare function.

Lemma 1. Let (a(i),b(i),Q(i)) be a measurable function of i such

that (a(i),b(1),Q(i)) € Y for all i€X .  Then U (a(i),b(i),q(i))

is a measurable function of i .

6).. Assumptions (A) and (B) are preserved for arbitrary positive

linezr transformations.



Proof, See Appendix,

4). Each individual 1€ X owns a labor production function fi(x).
That is, if he works for time x, he can provide a quantity of
labor fi(x) . For simplicity, we assume that fi(x) coincides
with the quantity of the consumption good produced by his labor

7).

fi(x), being independent of the other individuals' labors. We

assume.

(E): For all i€ X, there is an I ( 0 < I* < 1 ) such that
fi(x) is monotonically increasing on [O,Li] and is

nonincreasing on [Ll,i] with fi(O) =0 .
(F): For all i€ X, fi(x) is a continuous and concave function.,

g (G): For each x¢ BLIJ , T1(x) is a measurable function of i .

(H)

L)

i, .4 < Li<
g{; £5(%7) 3u & +o0 and for some ¢, > 0, ¢, =L~ =

L-cO - for all i& X .8)

Assumption (E) means that there is an interior point Li at
which i's labor productivity is saturated, i.e., his marginal
productivity is zero. Assumption (F) is a standard condition.
Assumption (G) is just a technical condition. Assumption (H)

is the integrability of £7(I') and a kind of uniformness of L= .

7). For example, labor can be measured in terms of the unit of
man-power/hour.

8). It is assured by (E),(F) and (G) that Li and f{x(i)) are
measurable functions of 1 where x(i) is a measurable function with

x(i) € BLIJ for all 1€ X, which are proved similarly to Lemma 1 and 2.
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The government produces the public good using the consumption

good as input. We assume that the public good is measured in
terms of the consumptioﬁ good needed to produce it. In other
words, the cost function of the public good is C(Q) = q. The

government's expenditure coincides with  when it plans to supply
Q-amount of the public good. The government's revenue is

determined by a tax function and a level of the public good. 9)

é). We have completedto describe the economic circumstance where
we shall work. We are in a position to discuss the problem of
optimal taxation.

A tax function T is a real-valued function on the set of

nonnegative real numbers E, which satisfies

(2.4) T(y) is a monotonically nondecreasing and convex .

function such that T(y) €y for all ye&E, _10) 11)

We denote, by :7', the set of all tax functions.

9), Ito and Kaneko[b:]ghowed that when cost functions of public
go0ds were linearized by measuring the public goods in terms of the
costs themselves, ratio equilibrium wasinvariant for,such.a trans-
formation but not Lindahl eguilibrium. The egquilibrium concept
of this paper has the same property, i.e., 1is invariant for the
linearization of the cost function of the public good. Hence
our assumption C(Q) = @ does not lose any generality.

10). This condition implies thét T(y) is a continuous function.
11). The monotonicity is not essential, because Qe proéeed the

following discussion replacing it by the continuity.
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A tax function T(y) means that when an individual i works for
time x and earns income y = fi(x), he must pay income tax T(y) =
Tfi(x) to the government, Hence T must satisfy y_z T(y) for
all y€E,_ . We should note that we admit negative tax, i.e.,
subsidies. We take income redistribution directly into account
beside the supply of the public good . The convexity of tax
functions means just the progressiveness of income taxation. In
this paper, we admit only progressive income tax functions. But
it should be noted that :jr includes the proportional and linear
tax functions. '

Let us suppose that the government empioys a tax function T
and decides to supply Q-amount of the public good. When each
individual i€ X decides to work for time x(i), his gross income
- is fix(i) = fi(x(i)) and his disposable income is fix(i) - Tfix(i) .
In this case, the government's revenue is Lf; Tfix(i) %g .

Since Q is the government's expenditure, it must hold that
Tfix(i) .
Jy o g

With above explanation in mind, we provide the following

I7AY

(2.5) Q

definitions. Every individual i maximizes his utility funetion
under the assumption that T and Q are fixed. That is,-individual

i chooses x(i) € [O,L] such that

(2.6)  UM(n-x(i),fix(i)-veix(i),q) 2

UM (n-x, £ (x)-2rH(x),Q)  for all xes[b,L] .
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Let T, be the function such that To(y) = 0 for all y€E_ .

Then (TO,O) is always a feasible tax schedule and an equilibrium

tax schedule. (TO,O) means that the government neither imposes
any tax nor supplies the public good. This is a feasible behavior
of the government. - Hence we have:

Proposition i. There exist a feasible tax schedule and an

equilibrium tax schedule.

The following proposition states that when T is a feasible
tax functions, it is always possible to achieve the equation of
the government's revenue and expenditure. As we are not directly

concerned in this affair, we do not give the proof.

Proposition 2. For every feasible tax function T, there exists

a Q € E_ such that (7,Q) is an equilibrium tax schedule,
Further it is not difficult to verify the following proposition.

Proposition 3. Tet T be a feasible tax function. Then:

(i). 1If 7(0) < 0O, then T(y) > O for some y&E_ .

(i1)., 1 &Z

= 1, then T(yo) > 0 .12)
dy

Yo .

V]

12)., Since T is convex and continuous with y = T(y) for all y&€E

T has the derivatives on the left and the right d°T and d'T
dy - . dy

11
—

for all y & E,

*

4+ !
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T(0)

Figure 1.
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6). Ve employ the Nash social welfare function of Kaneko and

Nakamural:T] and Kaneko [8] as the government!s objective function.
To define the Nash social welfare function, it is necessary to set
the "origin" in our cilrcumstance. The concept is provided by
Kaneko and Nakamura[:7_l as the socially worst state, which plays
the most important role in the theory of the Nash social welfare
function. In the circumstance of this paper it is natural to

set the origin of Y as the "owigin", i.e.,

(2.7) ©0(i) = (0,0,0) for all i€X .

Let T = (T,Q)E:Sf and let (x(1)) be the labor time
igeX

supplies for (T,Q). Ther the Nash social welfare function W(T)
= W(T,Q) is given as

(2.8) W(T) = W(T,Q) = u/\ log(Ui(L-XT(i),flxt(i)-Tfle(i),Q)

) X
- 18(0,0,0)) gu %

We can assume U-(0,0,0) = 0 for all i€ X without loss of
generality. For simplicity, we may write

G(Luxf(i),fixT(i)-Tfixt(i),Q) = log Ui(L-xT(i),fixr(i)-Tfixt(i),Q)

in the following .

13)., (2.2), Assumptions (D) and (H) ensure that this function is
integrable for all TE& :; .
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The government's objective is to maximize the Nash social
welfare function W(T) . That is, the government chooses a feasible

tax schedule T* = (T%,Q%) such that

(2.9)  max W(T) = W(T*) .
1TeF

We call 7% = (T%,0%) & SZ'satisfying (2.9) an optimal tax schedule.

The purpose of this paper is to investigate the optimal tax
-sdhedules. The first result of this paper is the existence of
an optimal income tax schedule. The proof of Theorem I will be.
provided in Section 5.

™~

Theorem I.(Existence Theorem), Under Assumptions (4)-(H), there

exists an optimal tax schedule T* = (T¥%,Q%), which is an equilibrium

tax schedunle .

Z). The concept of optimal tax schedule defined in the above can be
also interpreted as noncooperative equilibrium point of a game in
extensive form in which the government and the individuals appear

as players. | The game is formulated as follows. First, the
government decides and announces a tax schedule (T,Q) to the
individuals. Then evéry individual independently decides his
labor time x(i). The game tree is drawn in Figure 2. The
individuals' payoffs are the utilities gained from (7,Q) and x(i)'s .
If the government's revenue is smaller than it's expenditurekQ '
then it suffers a punishment P, which is sufficiently large. In
this case, tﬁe government suffers P but can supply Q. ‘ Tne

government' payoff is
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(2.10)  Nash social welfare — P

where & = 1 if the revenue is smaller than Q and &= 0 otherwise.

We complete to define the game in extensive form, Let T¥* Dbe
an optimal tax schedule and let (x*(1)) be the labor time
' i
supplies for T* . Then (T*,(x*(1i)}) } is a subgame perfect
ieX

equilibrium point of the game and vice versa.14)

Figure 2.

14). For definition of subgame perfect equilibrium, see Selten [36] .
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3 The Limit Marginal and Average Income Tax Rates

8). In the previous section we have shown the existence of an
optimal income tax schedule. . Our next task is to investigate

the shape of the optimal income tax schedule. As we have assumed
the progressiveness and the monotonicity on income tax functions,

it is not so valuable to investigate local properties of the optimal

~income tax function. Hence we shall consider the problem of

what level the optimal marginal and average tax rates tend to

when income level becomes high. The result which we shall

prove is the theorem that both the optimal marginal and average

tax rates tend to 100 percents. To prove this theorem, we zdg

new assumptions and replace some of the assumptions imposed above

by stronger ones.

9). Initially we assume:

(At): For all i€ X , Ui(a,b,Q) is a monotonically increasing,
continuously differentiable and sirictly concave function

Of (a’b!Q) .

(I): For all i€ X, Ui(a,b,Q) is weakly separable with respect
to (a,b) and Q, i.e., there are functions g’ and n' such

that U™(a,b,Q) = h™(g™(a,b),Q) for all (2,b,0) €Y .



- 18 -

(J): For each Q 2 0, Ui(L--Li,b,Q) converges uniformly to M, =
sup UM(1-L%,b,Q) as b — % ,i.e., for any & 3> 0, there
b

is a b, such that Ut (1-1*,b,Q) 2z M, - € for all b Zbo

and all i€ X .
i
1 U1 .
(K): For each Q@ £ 0, =—e-— _ converges uniformly to
® uy | (z-1%,b,0)
0O as b ~>e2 ,i.,e., for anyg > 0, there is a b, such that

\

. Uy 2
—e— . < g for all b =>bo and 2ll i&eX .
b U; (L‘Ll,b:Q)
. i . -~ . i
HeI‘e UE‘]‘ = Q-U—- ’ U; = ﬂ_ and U; = %-U— .
: da 2b 3Q

Though Assumption (A') is stronger than (4), it would be also
a standard condition . Assumption (I) means that when i€ X decides
his labor time supply, the decision is not influenced by the level
of the public good supplied by the government. Since in our model
income redistribution is taken into account in tax functions, |
our public good is just a pure public good like national defense ,
fire fighting service, etc. . Hence it is not unnatural to
assume that the level of the public good does not influence
the individual choice of leisure and consumption. Assumption (J) is

a kind of uniform boundedness, which is stronger than Assumption (C)
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and (2.2) . When the utility functions Ui can become identical
by positive linear transformations, this assumption, of course,
is true. Assumption (K) means that though the marginal rate

of substitution of leisure and consumption may tend to infinity
as b tends to infinity, the order is smaller than that of b .

If this assumption is not true, it happens that the marginal rate
of substitution at (L—Li,b,Q) has magnitude of the same order or
greater order than b , which would be implausible. The utility

functions which are represented as

(3.1)  gi(a,p) = & & b@\ for all. (a,b) € @,I]x3+

and O <:0(,P<:1
satisfy Assumption (K), but the Cobb-Douglas type functions gi(a,b)
= é?bﬁ for all (a,b) E-B),ﬁ]x E, do not satisfy this assumption .
Hence Assumption (K) restricts our consideration to a certain
extent.
Next we.approximate the labor production functions thig by
piecewise linear functions, Let n(i) be a measurable function

from X to E+ . We assume 3

(E'): For all i€X, £’ satisfies

"
g

_ n{i)x . if x
i (x) =

n(i)rn* if x

o
=
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(L): If SCE, & (S) > 0, then /u({iex : (1)1t € sH > o,
and for any g > 0, there is a.Pj> 0 such that

g adiex ()1t > g]) 16)
im

d_;wf(hGX:IﬂﬂﬂL>a})

The function n(i) assigns to each individual i his marginal
productivity of labor. Assumption (B') means that g ( ieX )
are approximated by the piecewise linear functions . See Figure 3.
This assumption implies (F) and (G) . Assumption (I,) means that
the distribution of the abilities n(i)'s overspreads everywhere of
E, , and that the density of n{i) converges not rapidly to O as
n(i) — e, When I* is a constant,i.e., 1t = 1° for all iex,
this limit property is satisfied by many distributions, e.z.,
the Pareto distribution, the normal distribution, etc..

We are now in a position fto state the main result of this

section. We shall prove the following theorem in Section 6 .

Theorem II, (Limit Tax Rates Theorem ): Let (T%,Q*) be an optimal

income tax schedule. Then it holds under Assumptions (A')-(L)

that
- +
(3.2) 1im  LTY) o qim &) o4
y —>e« dy y —>eo dy
(3.3) 1im 2 oy
y = vy

16). O denotes the usual Lebesgue measure on E .
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Theorem 11 says that both the optimal marginal and average
tax rates tend to 100-percents as income level tends to infinity.
It should be, however, noted that disposable income level y - T*(y)

is always a monotonically nondecreasing function of y .

10). (3.3) follows immediately from (3.2) . See Subsection 18,
The reason for (3.2) can be intuitively explained as follows.
Suppose that the marginal tax rate does not tend to 1 as y — oo .,
In this case, disposable income y - T*(y) tends to infinity as

gross income tends to infinity with the same order, i.e., 1lim (y-
(y))/y > 0. Hence if an individual i with very h{éiﬁ;;ility
works for time L* , then his disposable income n(i)Li - T*n(i)Li

can be also very high. This observation and Assumption (K) imply
that individuals with sufficiently high abilities work for Li‘s .

In this case, if the government increases the marginal tax rate

a little in a range of sufficiently high incomes, then individuals
with incomes in the range still work for Li’s . Then the govern-
ment's revenue increases and so - the government caﬁ increase the
level of the public good. This increment of the level of the
public good makes the utility levels of individuals with low

incomes to increase because the tax function in the range they
confront does not change. Even if the utility levels of the
individuals with high incomes may decrease, the decrements are
smaller than the increments of the utility levels of the individuals
with low incomes because of the boundedness of utility functions

( Assumptions (C) and (J) ). Hence the government can increase
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the social welfare by increasing a little the marginal tax rate

in the range of sufficiently high incomes, This is a contradiction
to the optimality of (T¥,Q%) . Thus we get the result (3.2) of
Theorem II . This 1s also an intuitive sketch of thé exact proof

of Theorem II which will be provided in Section 6.

a1). We compare briefly the result (3.2) of Theorem II with
preceding studies. Mirrlees [12] showed many possibilities of

the optimal marginal tax rate but concluded that thef were much less
than 100-percents. Further Sheshinski [}9:!, Fair [}hl sy Feldstein
[4] s Kesselman L9:l and others discussed this problem and provided
different uﬁper bounds of the optimal marginal tax rate.. But they
are also smaller than 100-percents. In our model we take a public
good into account explicitly but not in the others. This is,

however, not a main reason for the difference. The main reason

for it is our assumption of the boundedness of utility functions .

This assumption is not used in the other papers. This is a natural
assumption which is Justified by St.Petersburg paradox,. Another
reason is the progressiveness of income tax functions. If we

admit only linear functions as tax functions, then we can not obtain
our result (3.2).. Otherwise, it follows from Proposition 3.(ii) |
that the state that all individuals do not work is the best from

the view point of social welfare. This is the reason for the
difference between ours and Sheshinski [19} and others in which

linear tax functions are only allowed.
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12). When T¥* satisfies (3.2) and (3.3) of Theorem II, there are
two possibilities as follows:

(3.4) lim (y-T%(y)) = + o0 s

y —o

(3.5) lim  (y-T%(y)) < +e0 .
y —reo

When (3.4) is true, the disposable income can be as large as desired.
When (3.5) is true, the disposable income has the upper bound.

In this case, even 1f an individual with very high ability works

for much longer time, his disposable income does not increase or
increases a litfle. Hence he does not work for long time. That
is, the tax function obstiructs the labor incentives of individuals
with high abilities. Thus we would conjecture that (3.4) is true
but not (3.5) ., Regretfully I have not succeeded in proving

this conjecture, This is an important open problem.
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4. Remarks and Open Problems

13). The first result of this paper is the existence of an optimal
income tax function in the domain of progressive income tax function.
In order to discuss further properties of the optimal tax fundtions,
we may need to use Pontryagin's maximum Principle or the method of
variatvional calculus. They would be applicable to our modél under
some stronger assumptions. In this case, our existence theorem.
may gurantee the existence of an optimal solution and so necessary
conditions derived from it would meke sense.

In principle, however, the progressiveness of the optimal
income tax functions should be derived but not assumed. When we
admit tax functions of any forms, we have many difficulties in
discussing the optimal income tax functions. Our existence theorem
may be generalized to such a case under certain appropriate assumptions,
but it would be difficult to discuss further properties of the
optimal income tax functions ( e.g., Theorem II of Section 3 ) wunless
it is proved that they are progressive tax functions as a result .
Further, Maximum Principle or the variational method would not be

able to be applicable to such a case even if the existence of an

optimal income tax function is proved. The reason is as follows:
Let T be not a convex function. Then the labor time supply x(i)
may not be uniguely determined. That 1s, even when all the functions

given initially are differentiable, solution x(i) satisfying

...:%U...:.L.. + %]%:id— (fi(x)—Tfi(x)) = 0
a X



- 26 -

is not uniquely determined. Hence it would happens that this
solution does not have any disirable properties such as continuity or
differentiability , which are necessary for the use of Maximum
Principle or the variational method. '

Thus we have very important open problems as follows:
(1): Whether or not Maximum Principle oxr the variational method is

applicable to our model in the domain of progressive tax functions;

(2): Generalization of the existence theorem to the case of a wider

domain including non-progressive tax functions;

(3): If an optimal tax function exists in such a domain, whether or

not it is progressive.
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5. Proof of Theorem I

14). From (2.,2) there exists an M > O such that

Ul(a,b,Q) € M for all (a,b,Q)€Y and i€X . Hence W(7) =

jﬁ log Ul(L-xT(i),fle(i)-Tfle(i),Q) 9M is bounded from above .
X

That is,

(5.1) sup W(7T) < +oo .,
TeX

This means that there exists a sequence {,?s} = {(TS,QS)} such that

(5.2) .(TS,QS)Q SZ for all s and lim W(7®) = sup W(T) .

Since Q < \[‘ fi(Li) 9u £ +oo for all (T,Q)ELEZ'by Assumptions
X

(E) and (H), every Q® ( s.= 1,..., ) belongs to a compact interval.
Hence there is a convergent subsequence {Q?v} of {Qs}. Since
{(Tsv,QSv)} satisfies (5.2), we can assume without loss of generality
that {QS} itself converges to Q% .,

The purpose of Subsections 14 and 15 is to show that we can

choose a subsequence of {TS} which converges in a certain sense.

Lemma 3. inf T°(0) > =0 .
s

I

Proof. Suppose inf T°(0) -~ 00 ., Let {(xs(i)) }be a sequence of
S ieX
labor time supplies for ‘?S ( s = 1,040 ), i.8., each xs(i)

satisfies (2.6) for 7° . Then it is clear by Assumption (E) that

(5.3) xs(i) < 1*  for all s and ieX .
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Tet To(y) = y + T°(0) for all yeE,_ . 0f course, these T° ( s =
1,... )} satisfy (2.4), i.e., %SEQCT for all s . Since 7% is

convex and T°(y) § y for all y € E_ , we have

A

(5.4) 1°(y) € ¥%(y) for a1l yeE, .

It follows from (5.3%) and (5.4) that
™Sl o d 5.1 .
T°f-(L™) 4 jn Tf™x (i) @ .
J; 7 X s(1) /M
The left-hand term of this inequality is rewritten as

i,.1 s - i,.1 3
fx(f (1)+1%(0)) au fX £H1h) g+ Op(n)

1AV}

By Assumption (H), there is an s. for which this value is negative .

since (7°,0%) ig a feasible tax schedule, it holds that

S

A

_— < i3
J; otk (1) du = JQ £ (1Y) e+ Ts(olp(x) < 0.

This is a contradiction. Q.E.D.

Q

15). Iet X = inf 7%(0) . Let X be an arbitrary positive integer.

S
Then we define C[0,k] by

(5.5) C[b,kﬂ = {t : t is a continuous, convex and nondecreasing
function on the interval [b,k] which has 4t I < 1
dy I k

and satisfies X = t(y) < y for all ye[p,k . }

It is not difficult to verify the following lemma .
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Lemma 4. Let t° be the restriction of T° on [0,k]

1 ’ [ I B ] ) 3
Then every t° belongs to C[0,k]

We introduce the topology defined by the distance d(t1,t2) =

ye
holds:

su J{t1(y)-t2(y)[ into ¢[0,k] .  Then the following lemma
0,K |

Lemma 5. C[b,ﬁ] is a compact set for any k .
Proof. See Appendix.

Let t° be the restriction of 7% on [0,1] (s = 1,... ) .
Then it follows from Lemma 5 that_{ts} has a convergent subsequence
{¥'%] .. et o' be the original tax function on B, in {1}
corresponding to %18 . Then [T1S} converges uniformly on [p,{]
Let t1° be the restriction of T'° on [Q,Z] ( 8 =1T,00e ) & In
the same way we let {%28} be a subsegquence of {tTS} such that {%28]

cConverges. . Let T2S

corresponding to %25 . Then {TZS} converges uniformly on [b,z]

be the original tax function on E+ in [TS}

If we continue this process, we get an array of sequences of the
form

i {T1,T2,...
T

11

-
[¢3]
rrmgrred
|

- ;
TZS} - {T“ m 2,...}
{T31 2,...}

LS IR B B BN BN RN INY IS K DN I BN DNY DNN N BN BN BN BN BN BN

=
‘N
03]
[
1
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in which each sequence 1s a subsequence of the one directly above

it, and for each k the sequence {Tksl has the property that

{Tks} converges uniformly on [b,k] . If we define §1,'T2,...
by E1 = T11,(52 = T22 ,E = T33 ..+, then the sequence Eﬁs} is
the "diagonal subsequence of {TS} . It is clear from this

construction that for any Kk, {%s} converges uniformly on [O,kﬂ .
Hence §;fs} also converges pointwise everywhere on E+ . We can

define the function T* on E_ by

(5.6) T*(y) = 1im T°(y) for all yeE, .
5 P2 :
Lemma 6. T% & ;}7.
Proof, Since each 7° is convex and nondecreasing with %s(y) = NG

for all yE}E+ yi1t holds that for any y1,y2 (O £ y1§ y2) andcéé[b,{] ’

Tty +(1-00y,) § «F(y,)+(1-00F5(y,)

TS(Y1) = T?(Yz) and Ts(y1) =y, foralls .

We have, by (5.6),

T*(yy+(1-207,) £ oKy, )+(1-TH(y,)

1#(y,) € T%(y,) and T(y,) € yq .

Q.E.D.

Let {53} be the subsequence of {QS} corresponding to {jﬁs} .
This {681 also converges to Q¥%, Hence we have shown the following

lemms.
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Lemma 7. {Ts} = {(TS,QS)} has a subsequence {(ﬁs,ﬁs)} which
satisfies

(1) lim 3§° = Q*‘Z o, 1im T5(y) = T*(y) for all yeE
S5 —yoo 5 =20 +

and T* & :7
(ii) {ﬁs]- converges uniformly to T¥% on [p,k] for any k .

16). The purpose of this subsection is to prove that (T%,Q%) is

a feasible tax schedule and

(5.7)  W(T¥) = W(I¥,Q%) = sup W(T) ,
TeZ
which means that % = (T%,0%) is an optimal tax schedule. That is,if we
show the feasiblity and (5.7) , we complete the proof of the existence
of an optimal tax schedule.

To show the feasibility, it is sufficient %o prove

v < iwra
508 *. = T*f * d- »
(5.8) ax € [ o) g

where (x*(i)) is the labor time supplies for (T*,Q%) .
ie X
Lemma 8. Let {(Es,ﬁs)} be the sequence given in Lemma 7 and
let ('Ec's(:'L))_éX be the labor time supplies for (T°,3%) ( s = 1,... ).
i
Then {%S(iﬁ- converges to x¥(i) for each ie&X .

Proof. See Appendix.

Let individual i& X be arbitrarily fixed. By the continuity

of ¥, we have 1lim f£%_(i) = £lx*(i) . since 0 £ £% (1) €
5 —p e ° ’
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fi(Li) for all s, we have

lim Tortx (1) = TerlxE(i)
S =300
because ‘ﬁsflgs(i) - T*flx*(i)' < ’ Esfiis(i) - T%fiﬁg(i)l +

IT*fchS(i) - T*flx*(i)l — 0 (s =~> ) by Lemma 7.(ii) . 16)
since T°¢'% (1) € £1(zh) for all s,all i€ ¥ and £i(r) is
is integrable by Assumption (H), we have, by lLebesgue's dominated

convergence theoren,

1im 853% (1) a = f TxFIx*(1) d .
s —)wﬁ{ 5 /M X /“
since (T°,4°) is feasible, it holds that

~g < f ~S i
= T™f x (1) de for all s .
Q . g(1) v

Hence we have
. ~g < . pand s B0 N SR i R
Q¥ = lim Q@ = lim jﬁ Tf xs(l) iﬁ = JF T*f " x*(1) gp( ;
5 — 0 g —»oovY X

which is the feasibility of (T%*,0%).

Lemms, 9. (5.7) holds,

Proof. Since {(ﬁs,ﬁs)} is a subsequence of {(TS,QS)l' and 1lim

Ww(T®,0%) = sup W(T), it holds that 1lim W(T°,3°) = sup W(T) .
87 i oy mSpics oy aS i ]

For each i€ X, U (L-%(1),f %X _(1)-T7£7%X(1),07) —> U (I~x*(i), £ x*(i)-

Tfix*(i),Q%) as s —-—>¢ because of Assumptions (4),(F), Lemma 7

16)., Note that T%* is a continuous function because T¥* ¢ :7.
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and TLemma 8, By (2.2), UT is uniformly bounded. Hence we have,
by Lebesgue's dominated convergence theorem,

1im log UH(I-F (1), FY% (1)-Tr % (1),35) a
S_)JX g UN(I-%, (1), €75 (1)-Te % (1),5%)  ap

- hf log UM (T~x#(1i),fix%(i)-Trrx*(1), Q%) G
X

That is, sup W(T) = 1lim W(T°,0%) = w(T*,qQ%) . Q.E.D.
TeF S —> 0o
17). The purpose of the last subsection is to show that (T¥,Q%)

is an equilibrium tax schedule. Suppose Q¥ < f T*fix*(i) 91,! .
' X

Lemma 10. Let {qs} be a sequence which is decreasing and converges

to Q% . Tet (Es(i)) be the labor time supplies for (T*,qs)
ieX :

( 8 = 1,000 ) Then {SES(:L)} converges to x¥(i) for each 1 &X .

Proof, This lemma can be proved similarly to Lemma 8 .

Hence we have, by Lebesgue's dominated convergence theoxrem,

1im pxrl% (1) dx = ‘jr mrrix(i) d Q% = 1im ¢° .
s —eoﬂf; S / X a > 5 —>

Therefore there is an integer s such that f T*flis(i) ri.,u > d° >

Q% . This means that (T*,qs) is a feasible tax schedule. For

this s, it holds by Assumption (4) that for all i €X,

v (Lmx (1), then(1)-Teetxn(i),0%) < UL(DT-x*(i), Frx*(i)-TETx*(1),q")

S uh(I-R (1), £ (1) -1 Y% (1), %)



- Bl -

Thus we have -

W(T*,Q%) = \fx log UL(Tex*(i), £ian(1)-mreiex(1), %) & <
J;(log U (D-E (1), £1F (1) -T%27F (1), 07) ap = w(r*,q5) .

This is a contradiction to the optimality of (T*,Q%) .
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6. Proof of Theorem IT

18). Throughout this section we assume that (T%,Q%) is an optimal

tax schedule. Since T¥ is a convex function with T*(y) Sy for
all y€E, , it holds that for ally > 0 and £ > 0,
(6.1) LTX < a7 < dfmx £ gTmx <
y ’y—a dy | ¥ dy |y dy [ y+&
- -+ .
Hence we have 1im $-1% = 1im L IX .
y —edy |y ¥y —edy |y
T
Suppose 1lim d I =1, Since T¥* is convex, 1t holds
y =« dy |y
that
atr#| < , ¢ daTrx
= TH*(y+1)-T%(y) = for all y & E+ .
dy |y dy {y+1

This implies 1im (T*(y+1)-T*(y)) = 1 . Using the following
Yy ~> @

familiar lemma {Lemma 11), we have

(6.2) 1im X)L - 1im (ox(ye1)-TH(y)) = 1 .
y =2 v y —>

Hence it is sufficient to show that I1im 9L
y — e dy

y

Lemma 11.( Komatsu EO,Theorem 40,5] Y. If f(x) and g(x) are defined
on E_ and g(x) is monotonically increasing with g(x) — e« ( x — ¢0),
and if (f(x+1)-f(x))}/{(g({x+1)-g(x)) —> & ( x —> o0 ), then
f(x)/g(x) —> o ( x ~>00) , where & is a real number.
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In the following we suppose

— +
(6.3)  1im LIX - qqip LIE

y—ee 4y |y Yy —eo dy

=a < 1 .

y

So we shall derive a contradiction from this supposition.

19). We define a sequence of tax funcitions {TS]- by

(6.4) 1T%(y) = T*(y) if ¥ 2 sL

1 (a+$)(y-sT) + T*(sL) if y 2 sI, ,

where & is a real number such that a < a+$ < 1. It is clear

that every T° belongs to :;7 . See Figure 4.

) Lemma, 12. There is an integer n, such that for all 1 with n(i):Z n, o,

(6.5) 1-a-§ > — ; ; i
n(1) ol | (port,nca)rt-renci)t, o%)

(6.6) 1 =-a=~3 >

n(i) U; (-1, n(1)1t-1%n(1)1t, %)
. | for all s 2 1 .

Proof. It follows from Assumption (K) that there is a bO such that

Ui

1 < 1=(a+8)  for a1z i€X and b 2 b

U% (L“Llsb;Q*) L .

-—‘-I— L
b o

Hence we have



- 37 -

_Figure 4,



i
1 U3
P — < 1-(a+d)
n(i)nt-rtn(i) ot o (z-2%, n(i)Th -1 Tn(i) 1t g#) L
for all i with n(1)t*-2'n(1)s! Z v, .
Since
i 4 ali . 1, i
n(i)L7=T n(i)L~ _ iy - T n(l!% ) < ’
n(i) n(i)L
it holds that for all i with n(i)L'-1'n(i)z* Z b, ,
j_ .
1Y <
a3 gl | aert, n(a)piena(a)nt, o)
1 i -
L - : — . — . . . < 1-(ad) .
n(i)tr-rTn(i)zt U5 | (z-1,n(1)1t~1"n(1)zt, 0%)
Since  lim (1 - LF () = 1-a~5§ >0, it holds that
n(i) —~>e0 dy |n(i)L
n(i)Ll-T1n(i)Ll —~> 00 as n(i) —eso ., Therefore we can choose

n, such that

n(i)tt - 1'n(i)pt Zbo for all i with n(i)‘Z ng o

It is easily verified that n(i)Li—TS+1n(i)Li 2 n(i)Li—TSn(i)Li

for all s and all i .  This implies n(i)L'-7%n(i)L* Zb, for
all i with n(i) P n, and all s . Hence (6.6) holds for this n

o}
In the above argument, T%* can be replaced by T1 . Q.E.D.
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Lemma 13. Let (x*(1i)) and (xs(i)) be the labor time supplies
ieX icX

for’(T*,Q*) and'(Ts,Q?) (s =1,... ) respectively, where Q° is any

nonnegative real numbexr. Then it holds that

(6.7) x¥*(1)

xs(i) for all i&€X and all s

(6.8) x¥(i) = 1%

i

for all i with n(i)x*(i).z n T,

where n, is the integer given in Lemma 12.

Proof. Note that the labor time supplies for a tax schedule (7,Q)
does not depend upon Q by Assumption (I), that is, if (x1(i))
. igX

and (x2(i)) are the labor time supplies for tax schedules (T,Q1)

1€ X
and (T,Qz) respectively, then x1(i) 2 x2(i) for all i €X .
Let s 2 n, . Let i be an individual such that n(i)x*(i) <

sT Since T°(y) = T#(y) for all y € sL by (6.4) and T° is

convex, x¥(i) also satisfies

US(T-x*(1),n(1)x*(i)~T%n(1)x*(1), Q%)

Z

(17N

Ui(L—x,n(i)x~Tsn(i)x,Q*) for all x S 1.

* such that

In fact, if this ineqguality is not true, there is an 0 S T
n(i)xO.Z s, and Ul(L—XO,n(i)xo—TSn(i)xo,Q*) -

U (Lmx*(1) ,n(4)x*(1)-T5n(1)x*(1),Q%) .

This implies Ui(L—x,n(i)x—TSn(i)x,Q*) > Ui(L-X*(i),n(i)x*(i)—
Ton(1)x*(1),9%) for all x ( x*(i) < x §?x° ) by the concavity of gt ,

which is a contradiction. Hence we have shown that x*(i) = xs(i)
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for all i with n(i)x*(i) < sL .
Let i be an individuval such that a(i)x*(i) Z sk . Since

n(i) > n(i)x*(i)/L 252 n,, (6.,6) of T.emma 12 is true, i.e.,

Ui
‘]_a...é > L. 1
n(i) i i . RN - NI, | *
U; 1(L-17,n(1)L7-T"n(4)L7,Q%)
-5
Using d T = a+p by (6.4), it follows.that
dy | n(i)x*(1)

. : =mS '
[—UJ{ + sz'-n(i)(1~ a1 )] . . : > O
| W 7 H(z-1t,n(1)nt-r%n(4) 1t %)
d

which is equivalent to -mmUi(L-x,n(i)x—Tsn(i)x,Q*)
dx

i > 0.

x=1

This and Assumptions (A'),(E!') imply Xs(i) = Li . Analogously

we can prove that x*(i) = Li for all i with n(i)x*(i)'Z nL .

This is (6.8) .  Hence it holds that x_(1) = x*(i) = L' for all i
with n(i)x*(i) € 8L .  Q.E.D.

Z

Lemma 14. When the government employs 5 (s n ) in place of T¥,

the increment of the government's revenue is not smaller than

S;/A(F(sL+1)), i.e.,
(6.9) kf; Tsn(i)xs(iJ_gu - L/“T*ﬂ(i)x*(i)’%u 2 %}A(F(SL+1)),

X
where F(sl+1) = { iEX n(i)LlZ SL+1} .
Proof, - Note that x*(i) = xs(i) for all i€ X . Since T°n(i)x*(i)

-~ Ton(i)x*(i) = (a+6)(n(i)x*(i)-sL)+ T*(sIL) - T#n(1)x*(1) 2 0
for all i€ X by (6.4),
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it holds that

(6.10) J‘F(SL,SLH) _[Tsn(i)x*(i) - T-%n(i)x-}'r(j_)]?}_ 2 0,
where F(sL,sl+1) = {iGX : sL S n(i)x*(i) < SL+1} .
Since T¥n(i)x*(i) pS a(n(i)x*(i)-sL) + T*(sL) for all i with
n(i)x#(i) 2 sL by the definition of a, it holds by (6.4) and (6.8)
that

(6.11) L(SL+1)[TSn(i)X*(i) - T*n(i)x*(iﬂ 51,\

e

~
ZuF(sLH) £a+%)(n(i)x*(i)-SL)+T%(sL) - [a(1r1(:L);@<—(j_)_sL).FT%(sL)]]?M

r\

= ,l . Ky 4 - - . i-
, F(SL+1% fn(l)x*(l) SLj 5“’ t];(sL+1) $(n(i)L"-sL) 5“

2 51 g‘m = 3'}*(5‘(@”))

<

F(sL+1)

Since Tn(i)x*(i) = T#n(i)x*(i) for all i with n(i)x*(i)'g sL by

(6.4), we have

mS (4 Yl 1) Do ( 1) 3% ( § -
(6.12) J;{—F(SL)I;L n(i)x*(i) T*n(l)x%(l)] d/r,{ o .
Hence it follows from (6.10),(6.11) and (6.712) that
P50 (1) x%(1) - TFn(i)x*(i 4
‘Jix [ n(i)x*(i) | T¥n{i)x (1)] /u

- N 2 R T
) ﬁ'(SL,SLH)[T m(2)xH3) - 1 n(l)Xk(lﬂ d/’l
+Uy;(SL+1)[iSn(i?x*(i)'- T*n(i)x%(ii] %M

2 571(3(514+1)) . 0.E.D.
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20). In the following we assume s 2 n, and use Lemma 13 without

any remark.

. Ut

Since G%(a,b,Q) = ?

gt} (a,b,9)

(a,b,Q) # (0,0,0), there is a b > O such that

> 0 for all i€ X and all

Z

(6.13)  JA(H) & M(F(0,n,1))

H

It

{1 ¢ F(o,n 1) : 05 (L-x*(1),0(1)x*(1)~T*n(1)x*(1), Q%)
Z-b} ,
<

{iex : 02 n(i)x¥(i) ¢ nOL} .

where F(O,nOL)

Since (x#(i)) is invariant for § by Assumption (I),
ieX
we can write

(6.14)  J5(Q) = 6M(T-x*(i),n(L)x*(1)-T*n(i)x*(1),q)
for all i& X .
It holds by Assumption (A') that for all ieX,

(6.15) Ji(Q*+AQ) = Ji(Q*) + I (g%)ag + AQ'F’jQ

andEi‘——)OasAQﬁO,
. Q

. i
where Jl' = 4 .

4aQ
| it 17) |
Lemma 14. Suppose IV (Q¥%) 9u < +o00 Let 9 3 be a
H

decreasing sequence such that lim Qe = 0. Then it holds that
K —>o00

17). It is easily verified that dJ*/dQ is a measurable function

of i .
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~

(6.16) L{ 1
H 8qk %p —~—y 0 as k ~>» 00 |,

Proof. Let i be fixed. (Jl(q*+qk)-~-Jl(Q*))/qk is the inclination
of the line connecting two points (Q*,Ji(Q*)) and (Q%+qk,Ji(Q*+qk)) .
Since J*(Q) is a concave function by Assumption (A!'), this inclination

is a nondecreasing functicn of k, i.e.,

(3 (0%eq )04 (%)) /g S (TH(Q*ray, ) =0 (0%)) /ay,

for all k .

Further it holds that (J%(Q¥+q)~07(Q%))/q, S daJ*(e*)/dq for all k.

Hence it follows that !83 l=I(Jl(Q*+qk)—Ji(Q*))/qk - ast (o) /a0 ] is

’ X
nonincreaging function of k . Since (Jl(Q*+qk)—Jl(Q*))/qk -
dJi(Q*.)/dQ is an integrable function of i € H and since Ecji — 0

. : k
as k —y e« for all i€ H, we have, by Lebesgue's dominated
convergence theorem,
i
d — 0 as k &0 .
jH Eqk / ~

Q.E.D.

since n(i)I' -~ T%n(1)1* —> 00 as n(i)L* — 00 and y - 75(y) &
y-TS+1(y)' for all y%EE+ and all s, there is an s Zno by Aséumption (K)
such that

(6.16) M, - b.@M(F(j’nOL))C1 S el(-rt,n(1)pi-1%a(1) 1}, Q%)

for all i with n(i)tt Z s1 ,

where c, is the positive number defined by
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6.17 = 1i F(sL+ .
(6.17) ey = in;f( (s1+1))/ p(F(sL))

Note that the positiveness of c, is ensured by Assumption (L) .

We are now in a position to evaluate the value:
(6.18)  W(T%,Q%+ §M(F(sL+1))) ~ W(T*,Q%)
= f 6 (Dox¥(2), 5(2)x%(1) -0 (2)x4(5), Q%+ EM(F(sT+1))) O
X

-f 6L (Tox*(1),n(1)x*(1) ~THn(1)x*(1),Q%) G
X

1

/. (63 (3x%(1) ,m(5)35(2)~2%n(3)x%(1) , Q¥+ SA(B(5341)))
F(0,sL)

- G (Lok(2) ,n(4)x4(1)~1on(1)x(1) , Q%) g

+

uf\ [Gi(L—x*(i),n(i)x*(i)—Tsn(i)x*(i),Q*+§/A(F(SL+1)))
F(sL)
- Gi<L-x%<i),n(i)x*(i)-m*n(i)x*(i),Q*)] o

For a sufficiently large s, the second term of the right hand

gside can be rewritten as follows:
(6.19) j [Gi(L—X*(i),n(i)X*(i)-Tsn(i)X*(i),Q*+ S/U(F(sLH)))
‘ F(sL)

- GF(Lmar(2), (x4 -TAn(L)x%(1),0%) ] du

F(O,n_ T
> L[\ [Mi _ b § M( (4 n,L))e, ) Mi] 9#
by

(sL)

b B}M(F(O,nOL)c1/M(F(sL))
4
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kS

Let us suppose that LJ‘ Ji'(Q*) é}t < v, Since T*(y) =
H

7°(y) for all y < s1 by (6.4), the first term of the right hand

side of (6.18) can be rewritten as follows:

i 1.
(6.20) fF(o,sL)[J (Q%+ 0 M(F(sL+1))) ~ T7(Q )J ap
> i, i
= fH[J (@ Sp(R(sT+1))) = TH(9%) ] au

Z Lﬂ{bZ/A(F(sLHD}M +\£{8i d//‘@&(F(sLH))
b§ #(P(sT+1 )@ (F(O,n,1))/2 + fH gl %-@M(F(SLH)),

N\

/

gi
@M(F(SL+1))

Hence it holds for a sufficiently large s that

where g; = and b is the number defined by (6.13).

(6.21) W(TS,Q*+S/J-(F(SL+1))) - W(T*,Q%)

_i bS/J.(F(SLH))/}A(F(O,nOL))/Z + J;Ieisyx@/u(f‘(sl,.q.*[))

- DOM(F(SL))er(F(O,n T4 .

Since ¢, = 1im /M(F(SL+1))K/A(F(§LD > 0 and kf; 8; gp —> 0

8 —3 o0
as s =—>oo0 by Lemma 14, the right hand side of (6.21) becomes

positive for a sufficiently large s. This is a contradiction to
the optimality of (T%,Q%) .
3y
When Jﬂ Jl(Q*)dip. = +p0, (6.21) can be rewritten as
H _

follows:

(6.22)  W(T®,Q%+ BU(F(sL+1))) = W(T*,0%)
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.

- jH[Ji(Q*JrS/A(F(sLH))) - Ji(Q*-)] au

= DOHEF(sT)) e p(F(0,n,1)) /4 .

fH[Ji(Q*+B,Le(F(sL+1)))—Ji(Q*)] d
Since > 00 as 5 —>» o0 by the

QYA(F(sL+1))
- |
following Lemma 15 and{f‘ It (Q*) 9M = 00, and since
H

lim /(A(F(sLa-*f))éJ}(_F(sL)) = ¢, > 0, it holds for a sufficiently
S >
large s that

i *4 O _giiax {
JH[J (Q B}KF(SLH))) J7(Qq )]}i_ ) b{L(F(sL))
o M(F(8T+1)) M (F(sL+1))

>,

This means that the right hand side of (6.22) is positive for such

¢, (F(0,n,1))/4

an s . This is a contradiction to the optimality of (T%,Q%) .

Lemma 15. Let { fs} be a sequence of measurable functions on H such
<

that O

il

£ (i) s £ ,4(i)  for all s and all i €H. ~ If there is a

measurable function £ such that 1lim fs(i) = (i) for all i€H
S =

andu[\ £(i) =¢0 , then 1lim f (i) du = oo .
H }0\ 8 ~>eo}H S /L

Proof. See Appendix.

18). Since Ji(Q) is convex and monotonically increasing with respect
to Q for all i€ H, (Ji(g*+ S/,((F(SLH)))-Ji(Q'*))/S/(A(F(SLH))

is posifive and nondecreasing with respect to s for each i .
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Proof of Lemma 2: It is not difficult to prove that x(i) is uniquely

determined for each fixed ie X . We need to show the measurability
of x(i) . Let of be an arbitrary real number and let S be the

set of all rational numbers. Since Ut is strictly quasi-concave ,

continuovs and T is convex,continuous, it holds that

x(i) > if and only if there exists an r € S such that r >
and U™ (L-r, 2" (2)~12%(2),Q) > U (I-%, £ ()-1£1(0),Q) .

Therefore we have

{iex : x(i)>o<} = U {iex : Ui(L-r,fi(r)-Tfi(r),Q)
T

> U (1, tH o021 00,0) |

Since every set of the right-hand side is a measurable set by Lemma 1
and Assumption (G) and S is a countable set, the set of the left-

hand side is also a measurable set . Q.E.D.

Proof of Lemma 5: By Ascoli's theorem ( Simmons [go,page 126,

Theorem C]), it is sufficient to show that C[Q,ﬁﬂ is closed,bounded
and eguicontinuous.
Initially we show that C[b,ﬁ] is bounded and equicontinuous.

It is clear by definition that

A

xS t(y) Sk for all y¢ [0,x] and all t € cfo,k] .

Hence C[b,@] is bounded. Since any t & C[b,k] is convex and
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- - +
nondecreasing with a t(y)i <4 , we have o S L.t(y) , G t(y)
dy k ay dy

S for a1l ye [0,k] and t € clo,x] . This implies

- t(y+g) S t(yj) +§ and t(y-£) 2 t(y) - & for all y~& ,y+& €
| lo,x] .

Hence for any § > 0, let & = £ , and so, it holds that for all
v,yte [0,k] and a1l t € c[0,K] ,

lv -yl €% implies [t(y) - t(y")] se .

This means that CE),E{] is equicontinuous.

Next we show that CE),kJ is a closed set. Let {ts] be a
convergent sequence of functions in CE),k_] . Let t© = 1im t% .
g —p o2

Then it is easily verified that £ is continuous, convex and

-, 8
nondecreasing. Since t° is convex with i_t_ﬂlll < 1 , we have
ay k

S s
t_(k—ﬁ)a-tik) £1 for all s and all &€ > 0 .

Hence we have

t2(k-8) - t°(k) €4 poral1E> 0

-Z
» ’ -4 0 :
- This implies a7 (y) < 1 . Thus we have shown that t° € C'Z),kj .
= dy k :

- Q.E, D,
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Proof of Lemma 8: Suppose that ~{§E§i)} does not converge to x¥*(i)

< i

for some ji Since O b is(i) = L for all s, the sequence has a

.convergent subseguence {is (i)} with 1lim isv(i) =a # x*¥(i) .
V> o0
By the definition of-isv(i), we have

. i ~ . .A.- T . ~ v i~ ~ ))
Ul(L—XSy(i),leSv(l)—TS flxsu(i),Qs ) 2

i o j.. 5 N A’Sv i A Nsy

U (L“X*(l)sf X*(l)"'T f X*(l),Q ) .

. .. > ~\J},\_1) I
Since U™ is continuous and {(TS , 95 )} has the properties (i) and

(ii) of Lemma 7, it holds that
UM (b-a, £ (a) -1t (a),0%) 2 U(Dmxx(a), ehae(a) -meelan(a), qn) |

But a £ x*¥(i) . This 1s a contradiction to the uniqueness of the

labor time supply . . Q.E.D.

Proof of Temma 15: Let us construct the sequence of simple functions

{gs } such that

g (i) = [ = ir XSy (1) & £l x=o0,1,..., s2° -1
oS 25 25
s if fs(i) 2 5 .

Clearly gs(i) < fs(i) for all i& H and all s. Hence ‘f‘ gs(i) gﬁa $
H

. . L < . .
Lfﬁfs(l) 9# for all s . Since fs(l) = fs+1(1) for 2ll i1 &H and

all s, it holds that gs(i) g-gs+1(i) for all i€ H and all = .
It is also verified that lim gs(i) = f(i) for all ieH .

g —3
By the definition of integral, we have
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f £(1) dp = 1i
H a sl-l-I;wJ.H g5lt) G -
//c Hence we have oo f
= (i) 4
H pat

//\ Q. .D‘
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