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. 3 Approximation of the Feasible Region

For a given € > 0 we shall propose an algorithm for finding an e-approximate
solution. For scalars £, and ¢, such that 0 < & £ £, we define the following five
sets :

Uo(é1,62) = {u| v€ R¥%uy <&, up <1/6, uyrup =1},
Ui(&r,62) = {u| ue R%(1/&)us + &ug 2> 2, (1/€3)us + ouz > 2,
(L/€1)ur + €aua S 1+ £/ },
Ua(s,82) = {u] u€ R¥fuy <&y, ua S1/4,
(1/€)us + Eaug S 1+ /6 ),
Us(b1,62) = {u| u€ R*u <&pup S1/61 ),
U(br, &) ={u| uve R, (/&) u+bus S1+6/6 )

i

Clearly

Us(é1,42) € Uh(é1, &) C Ua(1, &) = Us(ér,&2) N Us(6r, &2),
Ua(€,8) = Us(¢,6) = {u|u € R% uy & u < 1/E )
UO(E:&) = Ul(f:f) = {(‘f’l/f)}

For k=0,1,2,3 and 4 let
Yi(br,62) = {2 |z € B (fi(2), f2(2)) € Ur(£1,62) }-
Lemma 8.1 For 0 < & < & and £ > 0, the followings hold.
(a) Yo(é1,&) C Vi, &) G Ya(&, &) = Ya(r, &) N Ya(és, &)
(b) Ya(6,€) = Ya(¢,6) = {z |z € B fulz) & fule) S1/E}
(c) Yo(£,6) =Yi(6,6) = {z |z € BY fi(z) =¢ falz) =1/¢L
(d) Ya(bs,&a), Ya(ér,62) and Yi(ér, &a) are conve sets.
(¢} Yi(ty, &) is a conves set if both fy and fy are affine functions.
(f) If (&2 — &) /61 < ¢, then Ya(&, &) S Y (e).
(g) If (1/4)(é2 — &1)*/erba < €, then Ya(1,62) C Y ().

Proof: Assertions (a) to (f) are immediate consequences of the definitions. To
prove (g), let us consider the problem

maximize Uy - Ug

subject to (1/61)%{1 + (fz'u.g <1+ 52/51.
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. The optimum solution is given by

=R+ D= h )
and its objective function value is 1 + (1/4}(é; — £,)?/€1€,. Therefore we see that
Yi(é,6) CY(e) if (1/4)(é — &)%/66r < e |

This lemma shows that when § and Eg.are sufficiently close to each other, any
feasible solution of the problem

minimize  fo(z)
(Pk(El’&-’)) subject to mOE Xn Yk(fl:fZ)

is an e-feasible solution of (P). Let
a; = min{ fi(z) |z € X }

for: =1,2 and let
1

(3.1) gmin = 0 and Ema.:z: = .
. Cig

If {min > &mas, then fi(z) - fo(z) > 1 holds for any z € X, which means that
XNY =0. If énin < €mae, then X NY C X N Y5(€nin,€mez) and there is an
optimum solution of (P) in X N Y5(émin,&maz) © X N Yi(lmin, émae) If X NY £ 0.
When both f; and f; are affine functions, &y, and €. can be improved as follows.
Let B; = max{ fi(z) | ¢ € X} for i = 1,2 and let {min = max{a1,1/B2}, mez =
min{l/as,B1}. If émin < Emew then we have X NY C X N Y2(énin, Emes). Then we
again find the following four numbers.

ay =min{ fi(z) |2 € X; 1/lmee < fo(2) L 1/émin },
Ar = max{ fi(z) | 2 € X; 1/bmec < fol2) < 1/émin ],
ap = min{ fa(z) |2 € X; €min < file) < €maz |
f2 = max{ fo(z) | £ € X; émin < fi(2) < €mac }-

It should be noted that finding «; and §; is a convex minimization problem. We
then let

1 . 1
Ems"n = max{fmin, o7, _'}: and sma.:c = mln{fma.a:, ) ﬁl}
Be Qy

We repeat this procedure until no significant improvement is made.

For £, and e thus obtained, we have only to search for an optimum solution
either in X NY N Yz(émin, Emez) or iIn X N Yo N Ya(bimin, Emar) = X N Yo(Eminy Emes)-




_ Fork=1to4wecan take £o, €1, ... &m such that £y = & < &< < b = Emasy
Yi(€51€541) S Y(e) and

Xnyn K’u(&min:ﬁma@) - Um—i K:(Ej:&j-{-l) if k= 2,3o0r4

j=0

Xn YO(Emt’n:E‘maz) - U;'n;l Yl(fj,fj.u) ifk=1.

Therefore take U Ya(¢;, £541) as W(e) and apply Corollary 2.3, then we will obtain an
e-approximate solution by solving a finite number of convex programs (Pg(¢;,€541)),
where (P1(¢;,¢;41)) should be considered only when both fi and f; are affine func-
tions.

4 Branch-and-Bound Method

As we have seen in the preceding section whichever k& we may choose, we can make a
finite branch-and-bound method for finding an e-approximate solution of (P). First
we define the following procedure S(k,e€,w,w, &, &) which solves (Pi(1,£2)) and
show whether the problem is fathomed or should be branched. Here we denote the
incumbent by w and its objective function value by w. To make the set Yi(é1,62)
quickly included in Y{e) we take +/£1&; as the new point separating the interval
(61, ;] into two subintervals.

Procedure S(k, ¢,w,w, &1, &2)

S1: Solve {Py(é1,€2)). Let z be an optimum solution of (Pe(€1,¢2)) if exists and
let z be its objective function value.

S2: If # > w, then return.
S3: If 2 € Y(e), then w 1=z, w := fo(z) and return.
S4: Let ¢ := /&, and call Procedure S(k, ¢,w,w,&1,£) and S(k, €,w,w,§,&3)-
Given ¢ and k the branch-and-bound method is as follows.
Branch-and-Bound Method

1: Solve (P) and let Z be an optimum solution of (P). If z € Y(¢), then w := %,
w = fo(Z) and stop.

2: Find €,:n and €paz of (3.1).

3: Let w 1= +00 and call Procedure S(k, &,w,w, min, Emaz)-



By the choice of ¢ in Step S4, we see

(-6 _6—t_ [G 15—&:52—5:1_\/5
'61 E El ’ E 62 62.

Therefore for the problems of depth d of the branching tree the ratios in Lemma
3.1 (f) and (g) are

52 - 61 _ Emu:t: 1/2‘t _
El - (gmin ) 1,
1 (62 ) _ fma.x 1f2¢ fmm 1/2¢
4 6162 - {( Emm) 1}{1 ( ma:c) }’
and (€, —€1)/¢é < ewhend > (Inln(énuz/émin) — 1Inln(1 +€))/1n 2. Hence the tree

is not branched out below some constant depth and the method terminates within
a finite number of iterations.
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