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abstract

"The situational decision making model" is a qualitative, non-metric approach
to a decision making. Originally aimed at a more realistic application
of the statistical decision theory, the model does not assume an assumptive
loss function, but consists of more essential ingredients of a decision

T

making, i.e., 'decision criteria,' "situations' and 'actions.' The paper

is of a cognitive nature, dealing with how to order, retrospectively, the

decision criteria in terms of thedir influences, and hence to analyse the

structure of decisions.
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1. Introduction

Let'{al,..., aI},'{bl,..., bJ},'{el,..., eK} be the set of "decision

" Yactions," "situations" of decision making, respectively.

criteria,
A decision maker is to decide, given a criterion, on the appropriate action
corresponding tec the situation that prevails. The outcome of a particular
decision making 1s denoted by the combination of these three ingredients,
such as (ai, e bj). We call this triplet "outcome." It is the process

K i1s privailing and then bj is decided

that a criterion a; is given, e
upon.

A decision maker's behavior is based upon the preference ordering for

outcomes under the situation ek:

>>k on (ai, bj) i=1,...,I; i=1,..., I . (L

€ s
The author [1] defines, on these orderings alone, the natural class of

optimal decision procedures {d : e + b) for appropriate action 'b' corre-

T 1

sponding to the situation 'e,' given the criterion 'a.' ©Note that scme
criteria are dominated and thus deleted from our consideration. Hence with-
out loss of generality, any criteria are not dominated.

Now given a;s the set of situations E = {el,..., eK} is partitioned
into Ri disjoint and exhaustive subsets, Féi) (s =1, 2,..., ﬁi) of situ-

ations, which we ecall "strategic subsets for ai," by the relation;
. 1 (i) _— 1
if e, e EFS , then d(e) = d(e').

In other words, when a; is taken, one need not switch actions as long as



a situational change is limited within 'Fél). We denote by Py the partition
0 . ‘
U @ g L@ :
E=_Y F, F N F d(s # st) (2)

When all criteria are applied to the decision making together, the decision
maker is now acting with the superposition of all partitions pl, pz,..., pI,

which is again a partition of E and denoted by

P=PIAPI A AP . 3
The purpose of the paper is to order decision eriteria 815 @pseees By

when the decision making is thought to bé\based upon all criteria combined
together,

The principle of ordering would certainly depend upon the nature of
problems to solve. Our present concerns are, however, mainly two pfinciples,
one cof which will apply:

(a) the Unity Principle; it would ﬁe desirable for P to be close to

the single-subset partition,

(b) the Diversity Principle; it would be desifable for E' to be com-

posed of large number of subsets, preferably with equal "likelihood.™

It is assumed that each situation :Ei has the probability (as like;
lihood}) of cccurance ek’ though it can be interpreted in various ways,
e.g., in Bayesian context or in the frequentists' context.

The author employs informational quantities to implement the ordering
based on these two principles introduced above. They are entropy and so

called "Kullback's information number" ([2]). Numerical examples are given.



For subsequent chapters, let the partition ﬁ‘ be

21
P E=églfs,ﬁsﬂfs,=¢(s%8.'). (4)
By definition, each fg(s =1,..., &) 1is the subsets of situations within
which there is no strategic need to switch one's (the decision-maker's)
action according to the situation which prevails, independently of decision

criteria applied. We call f; "over—all strategic subsets."

2. The Case of Unity Principle

The Unity Principle asserts that E' be composed of small number of
strategic subsets with large probabilities. The principle would prévail
when it would be strategically tractable for strategic subsets to become
large in each size and small in the total'number.

Let us generally denote the entropy of the partition p of the abstract

set X

X=A1U...UAS, Auﬂ Ag =9 (@#al), (5)
by

H(p) = - I _; p, logp, ~(6)



Then, we can prove the general property of the entropy,

i1l

H(p) = - Z, p, logp, 2 - EBqB ;oqu, (7

Qp = L. P.»
B GBa

where G =‘{Gl, Goseo } is (any) grouping of the index set (@) or, equivalently,
of Aa's. The property is called "convexity" ([2]) and proven by the fact
that

P P

o
L.H.S. - R.H.S. = I q,(-Z ——  log
. B "B GB g g

o]

) >0, ' (8)

v

the last quantity being called "condifional entropy" given the grouping G,
and denoted by H(pl G).
If, in our problem, H(p) =.0 (0£ close to 0), then the Unity Principle
- is already (almost) fulfilled since in that case we have & = L. |
If on the contrary H(Eﬁ is sufficiently large, the most influential decision
criterion, al*(say), to cause this departure would be the one to attain the

maximum decrease; Afﬁ from H(ﬁ) to
Hy 2 Hp A s AP3 1 APipg Ao APD 9
with i running over 1 = 1,..., I}

A= max [ H(p) - B, ]

i
= max H(Elp1 Acer APsg APy Ao APD (10)
i
The quantity in the bracket | ] is the effect of criterion 3, given

the rest of criteria. The second most influential criterion, ai% is found



in similar way, that is, given al* already deleted, seeking the maximum

decrease, A *, of entropy caused again by deleting any one criteriom.

2
Repeating this process, one can order the set of decision criteria a;s a2;

sees g in terms of influence:

with each contribution (given the subsequent ones) Ai& Aiﬁ..., Afr gdding

up to H(ﬁ);

H(P) = A%+ A+ ... + A | (11)

Note that it does not necessarily hold that Ai* decreases monotonously
Ak> Ax> ... > Ak ' (12)

though the construction process might suggest to be the case. Our evaluation
of decision criteria, however, is the conditional one, i.e., the evaluation
of the effect of a; "given the rest of them", thus admitting the possible
(and natural also) interaction among decision criteria. Monotonicity of

Ai* could hardly be the case in such a complexity. It would be, therefore,

surprising and of special interest, if the monotonicity holds,

3. The Case of Diversity Principle

The Diversity Priciplé asserts that .E be composed of large number of

strategic subsets preferably with equal probabilities. This principle aims



at more exactness to adjust actions flexibly with the situational change,
in contrast with the Unity Principle which, essentially, is the expression
of the strategic stability in changing situations, The assignment of equal
probabilities may not be the only one for the mathematical expressioh of
diversity, though it will serve the first-order approximation.

Let, in general,
= LIRS | 1
P= (Ppseees pgd s p' = (Byseees Pg) (13)

be two probability assignments to the purtition (5), and define "Kullback's

information number" to be

I., . (p) = &> 1o Py (20) (14)
P,IP' P &=1p0'._ g Pta =

Convexity holds also for this quantity;

i P i
log—7— > I ——
oy 108 P, = g dg 108 Ty s
1
= - T
Qg = Zg Py» A'g = Iz Py

B B

for any grouping G = {Gl, Gz,...}

Correspondingly to (8), we have for (15)

(pa/qB) '
L.H.8. - R.H.S. = £ (pa/qﬁ) log 0 3 ) >0, (16)

q,(Z e Ty o e
B BTG Poa/qB

B

which serves the proof of.(15). The quantity (16) is called "conditicnal

Kullback's information number" and denoted by I’, P,UOIG) or briefly I (p|G).



IP’P' (p) signifies the degree of departure of [ from pP'. In our
problem, then, let us define the departure of P = (m ,..., ﬂg) from the
complete diversity p' = (1/%,..., 1/%) to be

)
]

I(p) = z§=l ™y 108 775 : (17)

The ordering procedure for the Diversity Principle goes in quite the
same manner as in (9) - (12), with I(:) this time in the place of H(:)
there.

There are two points noteworthy. First, I(Eb has the statistical
interpretation that, if T

.s W, are relative frequency counts ﬁl,..., ft

1 2 L

in the total n counting on the strategic subsets _i,..., fﬁ, then the

likelihood ratio test statistice

3

o1 ﬁ-snﬁs % ' (18)

A=1

to test the null hypothesis (of the "complete diversity" in our problem)

g T === 1/% (19

has the logarithmic expression

log A =1 T,

A (20)

B - 2oy, lee sy s

whose limiting distribution is

2log A v Xz(er) _ (21)

as n =+ ([2], p.9§).



Second, the Unity Principle and the Diversity Principle is dual in

the sense that

H(p) + I(P) = log? (= const.) (22)

4, Numerical Examples

Let us present the theory thus far developed in two typical examples.
They get started with partitions as given, though it would serve ﬁore to
the consistency of the paper to derive partitions themselves from the system
of the situational ordering (1), which is left to the author's previous

paper [1].

In Examples, we denote e k for the sake of simplicity.

k =

Example 1. Let I = 10, K = 1000. The assumption of such a large K
would be by no means unrealistic, since the situation is usually made up of
the combination of several, dependent or independent, factors. For example,
situations with 4 factors e = (f, g, h, i), £, g, h, i €{1, 2, 3, 4, 5}
form the 625-element set of situations.

In our examples throughout (1 and 2), we limit, for the sake of simplic-~
ity, all partitions to "slit-type." By "slits" for the slit-type partition

of {1, 2,..., K} into subsets {Fl, Fooeeu, FR}’ we mean £ - 1 integers

2
ks (s =1, 2,..., R-1) satisfying

gk <<k 52K (23)



and representing FS as

F = {k

. s—1+l’“"ks} (s =1,..., &) (24)

with the convention ko =0, kg = K. 8lits for 10 partitions are given in

Table 1. The assignment of . 6 (k =1,..., K) is necessary only to

¢
derive Ty = P(ﬁg) (s =1,..., &). p 1is also slit-type with £ = 92, and
représented in Table 2 by s, ks and L (s=1,..., 92, kgz is not called
"slit' in our definition, however). The resulting orderings of decision
criteria and their contributions are shown in Table 3. |
What is the most marked with this Example is that partitions P> Pos
= Pig tend to be finer increasingly and the order is almost retrieveq
by our procedure in Table 3 both in case of the Unity Principle and the
Diversity Principle. The‘procedure passes the "internal check."
Contributions rather increase in the Unity case, whereas they decrease
in the Diversity case. This will afterwards turn out to be a generally ob-

served tendency. That they go in opposite direction is understood reason-

able by seeing that if the R.H.S5. of the identity
H(p| G) + I(p| G = (H(p) + I{p)) - (H(G) + I(G))

remains rather stable as in (22) under mild conditions.

Example 2. TLet I =10, K = 1000, Slit~type partitions are considered
also considered also and given in Table 4. § turns out to be 94,

This Example 2 assumes, in contrast with Example 1 (Table 1), partitions
of comparable degree of finess, Table 5 is the representation of ﬁ- for

the Example 2.



10

Table & reveals resulting orderings. Increase and decrease are likewise
observed for this Example 2, However, the increase this time for the Unity
- case is almost typical one, whéreas for the Diversity case the decrease is
less marked with some irregularities. Roughly, two orderings run in the
other directions. Otherwise, two Principles would have lost their independent
grounds of existence, since in Example 1 two orderings go in the same direction.
Example 2 obviously presents us harder problems than Example 1, but
the result of the Example 2 shows that our procedure does not fail us and

furnish us a sufficient distinguishébility.
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de?isi?n slits for strategic subsets
criteria
a; 332, 666
a, 256, 342, 751, 992
aq 55, 173, 222, 514, 741, 852
a, 77, 123, 312, 415, 541, 632, 778, 892
ag 77, 135, 289, 320, 451, 555, 641, 782, 852, 951
ag 5, 51, 111, 222, 278, 352, 462, 512, 586, 632,
708, 986
a, 6, 82, 142, 305, 315, 478, 492, 512, 641, 784
792, 831, 852, 890 :
ag 52, 142, 196, 245, 283, 301, 370, 452, 492, 562
583, 621, 752, 790, 881, 890
ag 7, 102, 230, 264, 305, 385, 410, 482, 512, 593
601, 652, 742, 803, 850, 912, 950, 983
310 5, 12, 76, 105, 190, 222, 285, 301, 395, 452
476, 520, 531, 666, 682, 701, 841, 892, 903, 957

Table 1.

decision criteria and strategic subsets (Example 1)



8 k T
s s )

1 5 0.00738
2 6 0.00176

3 7 0.00016

4 12 0.00619

5 51 0.03881
) 52 © 0.00196

7 55 0.00241

8 76 0.02170

9 77 : 0.,00079
10 .. 82 0.00528
11 102 6.02163
12 105 : 0.00352
13 111 0.00657
14 123 0.01436
15 135 0,01377
16 142 0,00755
17 173 0.03336
18 190 0.,01885
19 196 0.00379
20 222 0.02659
21 230 0.00525
22 245 ‘ 0.01421
23 256 0.,01549
24 264 0.00765
25 278 0.01292
26 283 0.00497
27 285 0.00123
28 289 0.00256
29 301 0.00898
30 305 000577
31 312 0.,00651
32 315 0.00352
33 320 0.,00620
34 332 0.01260
35 342 0.00897
36 352 0.00641
37 370 0.01859
38 385 0.01498
39 395 0,00999
40 410 © 0.01671

Table 2.

over—all strategic subsets
in slit representation and probabilities



m

s kg s

41 415 0.00740
42 451 0.03991
43 452 0,00128
44 462 0.00492
45 476 0,01650
46 478 0.00220
47 482 0.00400
48 492 0.06994
49 512 0.02221
50 5164 0.00051
51 520 0.00667
52 53] 0,01202
53 541 0,01304
54 555 1 0.01204
55 562 0.00861
56 583 0.02290
57 586 0.00382
58 593, 0.00378
59 601 0.01017
60 621 0.01821
61 632 0.00489
62 641 0,00794
63 652 0,01017
24 666 0.01016
> 682 0.,01999
gg 701 0,02016
708 0.00490
68 741 0403095
69 742 0,00196

;f 751 0.00772
752 0.00039
72 778 0.02985
73 782 0400260
;g 784 0.00077
790 0.00568
;? 792 0,00180
803 0.01313
;g 831 0.02615
841 0.01027
gg 850 0.00902
53 852 0.00301
52 881 0,02724
890 0.01186
gg 892 0.,00097
o 903 0.01076
6 912 0.00757
87 950 0,03157
28 951 0.00114
93 983 0.03132
o 986 0.00217
992 0.00748

(92) (1000) (0.00632)

Table 2. (Continued)
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-« Unity Princile DiversitylPrinciple
forsgizgiing Cgiiiii: Contributions Ai* CSESZE?? Contributions Ai*

al* ag 0.189255 aq 0.063217
az* 210 0.209990 214 0.060529
a3* ag 0.195014 ' ag » 0.041787
a4* ag 0.222506 a, 0.057174
as* ay _ 0.222556 ag 0.037830
a6* ag 0.274405 a, 0.032880
a7* 2, 0.580347 2, 0.017415
a8* ag 0.752933 a, 0.018960
ag* a, 0.436150 a, 0.008828
alo* ay 1.098336 _ a, 0.001676
Total —_— 4.181492 —_— 0.340296

Table 3.

orderings of decision criteria.
by two principles
(Note) The logarithm is to the base e = 2,71828 +++ .
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ii;isii: slits for strategic subsets
a 110, 156, 208, 386, 418, 463, 527, 572, 776, 926
a, 112, 193, 228, 309, 329, 603, 782, 837, 884, 901
a, 37, 39, 175, 241, 305, 326, 482, 611, 695, 722
a, 41, 42, 90, 161, 187, 281, 305, 724, 753, 821
a 5, 18, 76, 116, 190, 256, 436, 553, 608, 922
a, 83, 190, 324, 330, 368, 482, 731, 845, 849, 962
a, 74, 169, 424, 477, 488, 538, 572, 946, 947, 993
ag 104, 217, 302, 528, 633, 665, 687, 737, 955, 975
ag 75, 344, 395, 401, 634, 670, 794, 816, 907, 927
a, 45, 54, 143, 251, 368, 513, 643, 652, 724, 837

Table 4.

decision criteria and strategic

subsets (Example 2)



IR )
P

s k T

5 . 5
1 5 0,00594
2 18 0.,01283
3 37 0.01595
4 39 0.,00215
5 41 0.00348
6 42 0,00122
7 45 0400445
8 54 0400951
9 74 0,02092
10 75 0,00158
11 76 0,00185
12 83 0,00471
13 90 0.01024
14 104, 0,01368
15 110 - 0.00656
16 112 0.00086
17 116 0400569
18 143 O 0.02813
19 156 0,00817
20 161 0400512
21 169 0,00684
22 175 0,00821
23 187 0401235
24 199 0,00467
25 193 0.,00234
26 208 0401147
27 217 0,00802
28 228 0,01145
29 241 0,00994.
30 251 0,00725
31 256 0.00483
32 281 0,02564
33 302 0.02417
34 305 0.00249
35 309 0.00294
36 324 0,01777
37 326 0,00131
38 329 0,00366
39 330 0,00132
40 344 0.015643

Table 5.

over—~all strategic subsets
in slit representation and probabilities

16
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Table 5. (Continued)

T
s S
41 368 0.02324
42 386 0,01736
43 395 0.00717
A 401 0,00395
45 418 0.01756
46 424 0.00775
47 436 0,01104
48 463 0.02887
49 477 0.01347
50 482 0.00389
51 488 0.,00587
52 513 0.02185
53 527 0.01157
54 . 528 0.00138
55 538 0.01196
56 - 553 i 0401663
57 572 0.01978
58 : 603 0.03238
59 608 0,00368
60 611 0.,00364
61 633 0.02210
62 . 634 0,00057
63 643 - 0.01043
64 . 652 ¢ 0.00924
65 665 0.01551
66 = 670 0.00351
67 - 687 0.01822
. 68 695 0.00764
67 722 0.02730
70 124 0.0C306
71 731 . 0.00769
72 737 0.00309
73 753 0.,01972
74 . 776 0.02189
75 782 0.00760
76 794 0,01048
77 - 816 0,02190
78 : 821 . 0,00536
79 837 0.01685
80 B45 0.00759
81 849 0.,00445
82 ) 884 " 0.03291
83 : 901 0,01395
84 907 000630
85 . 922 Oellésl
86 : 926 0,00597
87 927 0.00152
88 946 002101
89 947 0.00041
90 955 0,00536
91 962 0.00739
92 975 0.01638
93 993 0,01569
(94)" (1000) (0,00631)

17
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Unity Principle Biversity Principle
symbols Ordered , . & | Ordered . . %
for Ordering |[Criteria  Contributions Ay | o iicri,  Contributions A,
él* ag 0.134260 ag 0.042946
.

a, a0 , 0.130650 a, 0.037712
* T
a, a, 0.140497 a, 0.Q35618

. ;
a, a, 0.172319 ag 0.045909
*
ag a, 0.179558 ag 0.024805
®
ac 2 0.217718 ag 0.028221
%
a, ag 0.304661 a, 0.022470
*
ag ag 0.512323 a, 0.013382
*
ag a, 0.703153 a0 0.006655
alo* - 1.772983 - 0.017454
Table 6.

orderings of decision criteria
by two principles



