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1. Introduction

Several procedures are available for the estimation of linear simultane-
ous equation models with autoregressive errors [Sargan (1959, 1961, 1973),
Amemiya (1966}, Fair (1970, 1972), Dhrymes, Berner and Cummins (1974),
Hatanaka (1976), and Hendry (1971, 1976), Bowden and Turkington (1984)
among others]. Since these procedures are based on the assumptions that
(1) stochastic regressors are correlated with the error terms and that (2)
the errors are serially correlated, for most empirical work there is a need
to test these assumptions. Godfrey (1976, 1988) discusses testing for se-
rial correlation in simultaneous equation models. Sargan (1973) discusses
misspecification tests in the context of instrumental variable procedures.

In this paper we propose a Bayesian test of highest posterior density
credible set (HPDCS) test of independence of stochastic regressors in the
presence of the serially correlated errors. We can easily test independence
of stochastic regressors and serially independent errors, but for empirical
work, the basic concern may be whether or not one can use a familiar single
equation ethod such as the Cochrane-Orcutt procedure in tle presence
of the serially correlated error. Accordingly, we shall focus our attention
on testing whether or not the equation of interest can be treated as the
classical regression with the serially correlated errors. If one is interested
in testing any other hypothesis, our test statistics can be modified to serve
the purpose. For simplicity, we assume a vector autoregressive process of
order 1, VAR(1), for the errors, but the test statistics can be extended to
the VAR(p) error processes, assuming that p is known.



The organization of the paper is as [ollows. In section 2 we derive test
statistics and in section 3 we present results of sampling experiments, and
we apply the test statistics to Klein’s model 1. Concluding remarks are given
in section 4.

II. Test Statistics

Let the simultaneous equations model be given by

YT+ XB=U (1)
U=U_R+E (2)

where equation (1) describes the m structural equations and equation (2)
specifies the VAR(1) process for the errors. The notations are defired in
Appendix A. Let us express the structural equation of interest as

n=Yim+ X1k +w (3)

where y; is an (n X 1) vector of observations on the dependent variable;
Y7 is an (n X mq) matrix of observations on stochastic regressors; X7 is a
(n x k1) matrix of exogenous variables included in the equation; %, is the
(n x 1) vector of the structural error terms; 4y is a (m; x 1) vector and Sy
is a (k1 x 1) vector of structural regression coefficients.

As shown in Appendix A from equations (1) and (2) we may derive

11— m1h-1 = M -m¥-m + (X - X208
+Y_1ToRa + X BeRoi 4+ ¢ (4)

Let ¥} be the #-th row of ¥, and €7 be the t-th element of ;. I'rom equation
(4) it is clear if
Cov(in,en1)=0 and Ry =0

then equation (4) can be treated as a single equation classical regression
model with the AR(1) error. IMence, the hypothesis of interest for most
empirical work may be put as

H, - { Cov(Yi1,e1)
' 2o

:I =0 versus Iy: [ C'OV(.‘;:H:QI) ] £0 {(5)
Aty



If we are certain that the stochastic regressors ¥;; are correlated with €,
then we may test

. COV(}’{],GHJ # 0 .. ] COV(}‘:‘_I,E“_) 7’-‘ 0
Hy: [ Rop = 0 versus Ko : Ray £ 0 (6)

Assuming that Cov(Y¥;1,€n) # 0and Ry; = 0, Sargan (1961) and Amemiya
{(1966) derived a limited information maximum likelikood estimator and
modified Sargan’s two-stage least squares estimator, respectively. For some
empirical work one may be interested in testing .

In the following, we shall focus our attention on deriving test statistics to
test Hy versus I{;. The test statistics to test Hy versus Ko can be similarly
derived. To test the hypothesis H; versus Ky, let us focus on the system

-1 ,-1 = (1 - Y-+ (K - X o)
+Y_1I2Roy + Xy Bo By + €
= M-mNam+ X -mXi )b+ U iR+ (7)
Yi = Xl +Y T+ X84+ W S (8)

where Uz 1 = Y_1T'2 + X_1B;. From equations (7) and (8) we derive in
Appendix A the highest posterior density credible set (HPDCS) [or highest
posterior density region (HPDR)] test:

P _ (SSR. = SSR,)[(m — 1+ my) (%)
m—1+m1,n—2m1—k1—m+! = SSRH/(R " omy - kl “m+ 1)

where SSR, is the unconstrained sum of squared residuals under K, and
S8R, is the constrained sum of squared residuals under H;.

The test statistic (9) is conditioned on ry9, I3, Ty, B2,z and By and we
need to estimate them. The estimates of II3, Ty, and ®; are obtained from
equation (8) as the posterior means or the maxium likelihood estimators
{MLE’s). There are two ways to estimate 'y and By, one under the null
and the other under the alternative hypothesis.

The first way of obtaining estimates of I's and B3 is to estimate structural
equations in the system under the null hypothesis. From an equation just
below equation (26) of Appendix A, we have

n-ray-1 = (M -raVie)n 4+ (G -mX )bk
-|—)"_1T‘-21?21 + ‘X—_'[ BgRgl -+ [;15 + E; (10)



and under the null hypothesis Hy, equation {10) becomes
n—ruh,-r =M Yo (XN - X )b+ & (11)

We obtain estimates of 41 and B1, 41 and B1. The SSR, is the sum of squared
residuals from equation (11). As for the SSR,, we use the estimates 4; and
ﬁ, from equation (11) for the ¢-th structural equation and form T and B
and obtain the SSR, from

n—ruyp,—1 = (Yi-rma¥i—)m + (X - X 05
+U2,—1R21 + V64 ¢ (12)

where Ty _; = Y To+ X 1By and ¥ = ¥) — XM - Y., T3 — X185, Let
us call the F test (9) using this procedure as the FTH.

The second way of obtaining I's and Bs is to use equation (10) by re-
placing V1 by ¥, and estimate 7, and 81, 51 and ﬁl From the estimates, 4;
and f; fo the i-th structural equation , we make T’y and B, and obtain the
SSR, from

1 —-riy,-1 = (1—-raYi-i)n + (X - X -5
ﬁ2,—1R21 + V6 + 6; (13)

where ffz,_l = Y_1T2+X_1B2. Let us call the F test (9) using this procedure
as the PTIK. '

If the structural errors are not autocorrelated, i.e. R = 0, then the FTH -
and FTK are identical and they reduce to the Wu-Hausman test statistic [Wu
(1973) and Hausman (1978), and Nakamura and Nakamura (1931)]. The F
statistics, FTH and FTK, are asympotically distributed as x2,_;,,.. /(m —
1+ m1) under the null hypothesis, ;.

I11. Sampling Experiments

As for the designs of the sampling experiments, we modify the model
in Tsurumi (1990). for the AR(1} errors. The design of experiments are
explained in Appendix B in detail. The model consists of three structural
equations and we focus on the first equation which has one stochastic re-
gressor (my = 1) and four exogenous variables (ky = 4):

Yer = Y1ede2 + P + Bizves + Pisis + Srriver +
a2 =.222, fn = 6.2, Ba=.7, P15 = .96 Bz = .06.



~ Asshown in Appendix B the performances of the F test statistics depend,
among others, on R? (the coefficient of determination of the reduced form
for y2) and on multicollinearity among the exogenous variables. Hence we
control sampling experiments for R? as well as for multicollinearity. As for
the matrix of the autoregressive coefficients, »;; of R in equation (2), we use
four cases which are given in Table 1.

Table 1: The Matrices of the Autoregressive Coefficients R Used in the
Sampling Experiments -

8 0 0 [2 0 0] 2 0 0
Ril=|0 8 0|, R2=|0 8 0|, R3=|0 2 0
0 0 4 0 0 4| 0 0 4
2 2 0
Ra=10 2 0
0 0 4

R1, R2 and R3 are all diagonal matrices. R4 has one nonzero off-diagonal
element, o = 0.2.

The results of the sampling experiments are given in Tables 2-6. For
Tables 2-6, we made sampling experiments for (1) low R? (R? = .3) and
high R? (R? = .9); (2) sample sizes of n = 40, and # = 100, and (3) with
and without multicollinearity. The values of p? (the squared correlation
coefficient between 32 and €;1) are set at 0, .3, .5, .7, and .9. The figures in
parentheses are the empirical powers of the tests that are adjusted so that
the empirical sizes of the tests become the 5% significance level when the null
hypothesis, Hy is true (i.e. p? = 0 and Ra; = 0). For each combination of
R?, p?, and n, the number of replications is 1000. In all cases we estimated
711 by the grid method to obtain the value of r; that minimizes the sum of
squared residuals. Table 6 present the sampling results for n = 500, R? = .3,

with multicollinearity and for the matrices of autocorrelation coefficients of
R1 and R2.

The results of the sampling experiments may be summarized as follows:

(1) The sizes of the tests are larger for I'TK than for TH. In most cases
the sizes of the tests are reasonably close to the nominal level of 5%.

5



(2) Given the R matrix and R?, multicollinearity reduces the powers of
the tests.

(3} Given the R matrix and sample size, the higher is R?, the larger are
the powers of the tests.

(4) As the sample size increases from n = 40 to n = 100, the powers of
the tests increase.

(5) The cases of 717 = rop yield low powers of the tests than the cases of
711 F To2, where 74; is the ith diagonal element of R. For the cases of
the low values of vy (ryy = ren = .2), the powers of the tests are quite
low when multicollinearity exists, and R? is low. However, if the 1-2
element of R, ry9, is not zero {i.e. R4 matrix) the powers are better
than those for the B3 matrix.

(6) From Table 6 we see that as the sample size increases to n = 500 the
powers of the tests increase even for the case of multicollinearity with
R? = .3, and r1 = Toa.

In summary the sampling experiments show that both the FTH and I'TK
have sizes of the tests close to the nominal size of 5% and that the powers
of the tests are sensitive especialy to the presence of multicollinearity. The
sensitivity of the powers of the tests to multicollinearity, R?, and sample
size can be explained by the noncentrality parameter of the I' statistics.
Conditionally on § = (¥y,_1, 1) and on 73, the F statistics (FTH and
FTIK) have the noncentrality parameter under the alternative hypothesis:

n=E8 MpS¢jona

where £ = (Ryy,61), E = (Y1 - riYio1, X1 — ruX1-1), and Mg =
I-FE(E 'E')_IEJ. The noncentrality parameter, 7, is proportionately related
to the sample size, R?, p2, and multicollinearity. Table 7 gives how 7 is
affected by n, R?, p2, and multicollinearity.



Table 2: Empirical Sizes and Powers of the FTH and FTK; Rl—Matri.\:

Without Multicollinearity

R? | p* - n=40 n =100

FTH FTK FTH FTK

6o 35 (5.0)| 75 (5.0)| 48 (5.0)| 59 (5.0
0.3 || 24.8 (24.3) | 28.6 (22.6) || 91.8 (92.2) | 925 (90.5)
03|05 | 452 (44.2) | 48.6 (43.8)| 99.3 (99.3) | 99.3 (99.2)
0.7 | 65.1 (64.5) | 68.8 (63.4)| 100 (100) | 100 (100)
0.9 | 81.9 (81.4) | 84.5 (82.2)| 100 (100} | 100 (100)
0.0 52 (5.0)| 75 (5.0)| 57 (5.0)] 59 (5.0)
0.3 || 621 (61.1) | 68.0 (80.5) | 99.8 (99.7) | 99.8 (99.6)
09|05 | 92.0 (91.3) |94.0 (90.0) | 100 (100) [ 100 (100)
0.7 || 99.1 (99.1) | 99.2 (98.8) || 100 (100) | 100 (100)
0.9 | 100 (100) | 100 (100) || 100 (100) | 100 (100)
With Multicollinearity
0.0 40 (5.0)| 84 (5.0)| 33 (50)| 59 (50)
03 49 (56)| 81 (48)| 40 (57| 64 (52)
0305} 50 (5.7)| 86 (5.5)| 49 (7.1)| 84 (7.4)
0.7 42 (5.0)| 86 (4.5)) 58 (8.5) 1Lt (9.5)
09 50 (59)]11.2 (7.6)[ 11.9 (15.8) | 24.5 (22.0)
0.0 45 (50)| 7.7 (5.0) || 48 (5.00| 63 (5.0)
03] 6.8 (7.7)]102 (6.0} 33.8 (34.1)|3381 (34.8)
0.9 | 0.5 { 120 (12.7) | 145 (10.3) || 67.2 (67.3) | 70.6 (68.1)
0.7 | 20.3 (21.9) | 254 (18.3) | 92.8 (92.9) | 947 (93.6)
0.9 | 44.0 (46.0) 1549 (45.6) || 99.3 (99.3) | 99.5 (99.5)

Noles: (1) FTH = the F-statistic using parameters estimates under Hy;
TR = the [-statistic using parameter estimates under I;.
(2) R? = the coefficient of determination in the reduced form equation for ys.
(3) p* = the squared correlation coefficient between y,2 and €.
(4) Figures in parentheses are empirical powers adjusted to make the
sizes of the lests equal to 5% when I, is true.
(5) The number of replications is 1000 for each combination of R*, p%, and ».
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Table 3: Empirical Sizes and Powers of the FTH and FTK; R2 Matrix

Without Multicollinearity

R? | p? n = 40 n = 100

FTH FTK PTH FTK

0.0 40 (5.0)] 54 (5.0)] 44 (5.0)| 54 (5.0)
0.3 | 51.1 (54.7) | 55.4 (54.6) || 97.8 (97.9) | 97.8 (97.8)
03|05 | 87.9 (89.7) | 90.2. (39.6) || 100 (100) | 100 (100)
0.7 | 99.2 (99.5) | 99.3 (99.3) || 100 (100) | 100 (100)
0.9 | 100 (100) | 100 (100) || 100 (100) | 100 (100)

00 45 (50)] 84 (BO)[ 52 (5.0)] 55 (5.0)
031661 (67.1)| 742 (66.1) | 99.7 (99.7) | 99.7 (99.7)
0.9 |05 1| 92.7 (93.4) | 96.3 (92.7) | 100 (100) { 100 (100)
0.7 [| 99.5 (99.5) | 99.6 (99.5) || 100 (100) [ 100 (100)
0.9 || 100 (100) | 100 (100) || 100 (100) | 100 (100)

With Multicollinearity

00 36 (5.0)] 58 (5.0)] 28 (5.0)] 47 (5.0)
0.3 || 51.5 (56.6) | 61.4 (59.9) || 96.1 (97.3) | 97.1 (97.3)
03|05 || 87.5 (89.7) | 93.3 (92.8) || 100 (100) | 100 (100)
0.7 || 98.3 (98.5) | 99.8 (99.8) || 100 (100) | 100 (100)
0.9 || 981 (98.5) | 100 (100) || 100 (100) | 100 (100)

00 29 (50)] 46 (5.0)] 3.3 (5.0)] 44 (5.0)
0.3 || 51.7 (60.0) | 58.7 (59.4) || 96.2 (97.1) | 96.5 (96.6)
0.9 |05 || 874 (90.6) | 91.2 (91.4) | 100 (100) | 100 (100)
0.7 || 99.2 (99.7) | 99.5 (99.7) || 100 (100) | 100 (100)
0.9 | 99.9 (99.9) | 100 (100) || 100 (100) | 100 (100)

Notes: Sece the footnotes under Table 2.
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Table 4: Empirical Sizes and Powers of the FTH and FTK; R3 Matrix

Without Multicollinearity

RZ | 52 n = 40 n = 100

FTH FTK FTH FTK

00 29 (GO} 51 (5.0)| 43 (5.0)] 52 (5.0)
0.3 | 10.5 (14.5) | 13.3 (13.2) || 522 (56.8) | 53.1 (52.2)
0.3 |05 || 183 (23.7) [ 220 (21.8) || 872 (83.7) | 874 (87.2)
0.7 || 32.6 (39.1) | 37.0 (36.8) || 982 (98.5) | 985 (98.5)
0.9 || 62.0 (67.8)|67.6 (67.5) | 100 (100) | 100 {(100)

00 36 (5.0)] 48 (5.0)[ 59 (5.0)] 6.7 (5.0)
0.3 || 58.7 (63.1) [ 63.2 (63.7) | 99.6 (99.4) | 99.7 (99.4)
0.9 | 05| 88.3 (90.7) | 90.3 (90.5) | 100 (100) | 100 (100)
0.7l 98.1 (98.1) | 99.5 (99.5) || 100 (100) | 100 (100)
0.9 | 99.8 (99.9)| 100 (100) || 100 (100) | 100 (100)

| With Multicollinearity

00| 33 (5.0)| 59 (3.0)| 30 (5.0)| 56 (5.0)
03] 35 (5.2)| 61 (49 36 (52)| 61 (54)
03|05 29 (4.0)| 53 (46)[ 35 (52)| 61 (54)
0.7 2.8 (42)| 55 (44)} 35 (52)] 68 (5.8)
09 22 (32)| 62 (53)| 36 (8.2)| 95 (7.7)

0.0 [ 3.2 (50)] 60 (50)] 34 (5.0)] 6.3 (5.0)
03l 47 (64)| 62 (1)} 70 (101)] 99 (82)
0.9[05) 45 (65)| 6.0 (5.1)§ 129 (17.4) | 16.8 (14.4)
0.7] 54 (7.9)| 7.0 (65)] 267 (31.1)]323 (29.1)
0.9 || 10.3 (13.7) | 15.2 (13.6) | 60.5 (65.6) | 63.4 (65.4)

Notes: See the footnotes under Table 2.
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Table 5: Empirical Sizes and Powers of the FTH and FTK; R4 Matrix

Without Multicollinearity

R? | p? n = 40 n = 100

FTH FTK FTH FTI

0.0 28 (50)] 41 (5.0)| 44 (5.0)] 51 (5.0)
0.3 || 10.0 (15.3) | 145 (15.7) || 57.0 (62.1) | 61.2 {60.8)
03|05 || 21.7 (28.6) | 263 (28.3) || 91.9 (93.6) | 93.1 (92.8)
0.7 || 41.7 (51.7) | 489 (51.3) || 99.6 (99.7) | 99.6 (99.6)
0.9 | 80.6 (85.4) | 85.2 (86.3) || 100 (100) | 100 (100)

00[ 41 (50)] 53 (5.0)] 57 (5.0)] 61 (5.0)
0.3 |l 585 (61.3) | 61.6 (61.3) || 99.5 (99.4) | 99.5 (99.3)
0.9 |05 | 89.4 (90.4) | 904 (90.4) || 100 (100) | 100 (100)
0.7 || 99.1 (99.1) | 99.5 (99.5) || 100 (100) { 100 (100)
0.9 || 100 (100) | 100 (100) || 100 (100) | 100 (100)

| With Multicollinearity

00 34 (50)] 59 (5.0 31 (5.0)] 6.1 (5.0)
03] 45 (59)| 81 (6.7)| 52 (8.5)}101 (9.0)
03|05 64 (9.7)]14.0 (12.6) ]| 186 (26.2) | 20.5 (27.2)
0.7 || 14.9 (21.6) | 30.2 (27.4) ]| 581 (66.1) | 726 (69.9)

)
0.9 | 58.6 (64.8) {80.0 (77.9) | 99.2 (99.4)} 100 (100}
00 33 (50)] 59 (5.0)] 34 (5.0)] 6.3 (5.0
03| 51 (72)] 73 (6.7)| 98 (14.6)}13.2 (10.7)
0.9 05| 89 (123)]11.6 (11.1)] 332 (40.7) | 37.6 (32.4)
0.7 || 19.7 (24.6) | 24.0 (22.8) || 75.9 (81.0) | 79.3 (75.8)
0.9 | 58.1 (64.5) | 644 (62.6) || 99.2 (99.4) | 99.5 (99.4)

Notes: See the footnotes under Table 2.
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Table 6: Empirical Sizes and Powers of the FTH and FTI; R1 and R2
Matrices with Multicollinearity, n = 500, R? = 0.3

Multicollinearity, n = 500

R? | p? R1 Matrix R2 Matrix
FTH FTK FTH FTK
00 30 (50)] 50 (5.0) | 24 (5.0)] 46 (5.0
03| 88 (121)|11.6 (11.6) | 100 (100) { 100 (100)
03]05| 914 (94.3) 935 (935) | 100 (100) | 100 (100)
0.7 | 99.1 (99.4) | 99.5 (99.5) | 100 (100) | 100 (100)
0.9 || 99.8 (99.9) [ 100 (100) | 100 (100) | 100 (100)

Notes: See footnotes below Table 2.

From Table 7 it is clear that the noncentrality parameter, 7, is relatively
insensitive to the choice of the VAR(1) matrix, R in equation (2) when mul-
ticollinearity is absent. This explains why the powers of the tests are similar
across the different values of the VAR(1) matrices when multicollinearity
does not exist. When it does, however, the noncentrality parameter, n, is
sensitive to the choice of the VAR(1) matrix. With the use of R2 matrix,
the nocentrality parameter n under the presence of multicollinearty is close
to that under the absence of of multicollinearity, whereas with the R1 ma-
trix, the noncentrality parameter is reduced drastically under the presence
of multicollinearity. The values of the noncentrality parameters for the R3
and R4 matrices are close to those for the R1 matrix.

The I statistics, FTH and FTK, are derived under the assumption that
the structural error process is VAR(1). Suppose that the true error process
is VAR(2):

U=zU_ Ry +UyRe + F (14)

with

R[ =

o O oo
S oy O
SN OO

3 0 0
and Hy=|0 3 0
0 0 5
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Table 7: Effects of Multicollinearity, R?, p* and Sample Size on the Aver-
age of Noncentrality Parameter [R1 and R2 Matrices for the VAR(1) Error
Process] .

without multi- || with multi-

collinearity collinearity
R*| n | p° Rl R2 Rl R2
0.0 0 0 0 0

0.3 3.60 4.10 1.94 3.61
3 | 40 { 0.5 6.80 8.41 3.94 7.46
0.7 13.83 } 18.07 3.17 | 16.72
0.0 0 Q 0 Q
0.3 5.53 5.52 2.20 3.67
9 | 40 0.5 11.25 | 11.37 4.75 7.68
0.7 23.16 | 23.34 || 10.35 | 17.18
0.9 | 8039 | 8241 [ 33.17 | 58.94
0.0 0 0 0 0
0.3 12,57 | 15.07 2.74 | 12.55
3 | 100 | 0.5 2533 | 31.63 5.45 | 27.02
0.7 5502 | 65.50 || 11.11 | 56.00
0.9 || 163.29 | 229.66 | 41.22 | 201.76
0.0 0 0 0 0
0.3 20.17 | 20.14 5.83 | 13.08
.9 1100 |0.5 42.27 | 42.22 9.85 | 27.74
0.7 || 8387 | 8351 | 21.93 | 57.64
0.9 || 285.19 | 297.13 || 83.98 | 208.28

Notes: 2 = the coefficient of determination of the reduced
form equation for ¥7. '
? = the squared correlation between Y;; and €.
n= er‘ﬂfIES'f/a'u.g is the noncentrality parameter.
The value of 3 is the average of 1000 replications.
R1 = VAR(1) matrix in Table 1.
R2 = VAR(1) matrix in Table 1.

12



but we use the FTH and FTK tfo test H; versus K;. The sampling experi-
ments for this set-up are presented in Table 8, and the results show that the
FTH and FTK are fairly robust in terms of the sizes and powers under the
VAR(2) process.

One may wonder if a test statistic that is derived assuming that £ = ¢
is robust when a VAR(1) error process exists. Among many test statistics
that are derived under R = 0, let us choose the Wu-Hausman test (WHT)
[Wu (1973),and Hausman (1978)}, since as we mentioned earlier the FTH
and FTIK collapse to the WHT when R = 0. Table 9 report the results
of sampling experiments for R1 matrix in Table 1. The numbers under
FTH and F'TK are the same as those in Table 2. The results show that
when multicollinearity is absent, the sizes of the WHT are much higher
than the nominal 5%, indicating that the WHT is more likely to reject
the null hypothesis of independence of stochastic regressors when the null
hypothesis is true. When multicollinearity is present, the powers of all the
three statistics are equally poor.

Let us apply the test statistics to Klein’s mode I. Klein’s model I has
been used frequently as an example of simultaneous estimation prdcedures
[Zellner and Theil (1962), Theil (1971), and Pindyck and Rubinfeld (1981),
among others.] There are three behavioral equations in the model: con-
sumption, investment, and labor demand equations. The FTH and FTK
are given in Table 10 for each of the three quations. Table 10 shows that
the null hypothesis H; is rejected for the consumption and investment equa-
tions but it cannot be rejected for the labor demand equation, which may
be treated as the single equation with an AR(1) error process.

IV. Concluding Remarks

In this paper we derived test statistics for testing whether or not the
structural equation of interest can be regarded as the classical regression
with the serially correlated error, and we conducted sampling experiments
to see how the test statistics perform. We find that the sizes of the tests
are reasonable, and the powers of the tests are sensitive to the existence
of multicollinearity, the value of R2, and to the values of the matrix of
autocorrelation coefficients, R. When R is close to 0 {i.e. case of R3) and

13



Table 8: Empirical Sizes and Powers of the FTH and FTK; VAR(2) Error

Without Multicollinearity

R* | p? n =40 n = 100

FTH FTK FTH FTK
001 53 (5.0)] 6.4 (5.0) || 49 (3.0)] 56 (5.0
03| 66.2 (65.9) | 69.3 (64.3) || 100 (100) | 100 (100)
0.3 |05 925 (92.5) |94.0 (91.6) | 100 (100) | 100 (100)
0.7 | 99.0 (99.0) | 99.0 (98.7) || 100 (100) | 100  (100)
0.9 || 99.6 (99.6) | 99.6 (99.6) | 100 (100) | 100 (100)

00 32 (0)] 63 (0)[ 49 (5.0)[ 56 (5.0)
0.3 || 67.5 (67.1) | 70.6 (66.7) | 100 (200) | 100 (100)
0.9 )05 | 94.2 (94.1) 951 (93.8) | 100 -(100){ 100 (100}
0.7 || 99.4 (99.5) [99.4 (99.1) || 100 (100} [ 100 (100)
0.9 ff 100 (100) | 100 (200) | 100 (100) | 100 (100)
| With Multicollinearity '
0o 53 (5.0)| 76 (5.0)]| 57 (5.0)| 63 (5.0)
0.3 || 51.2 (50.2) [ 55.9 (47.6) [ 99.8 (99.7) | 99.8 (99.7)
03|05 | 77.7 (77.0).| 80.5 (76.1) || 99.8 (99.8) | 100 (99.9)
0.7 | 88.7 (88.4) | 90.2 (88.2) | 99.9 (99.9) | 99.9 (99.9)
0.9 || 91.6 (91.6) | 92,9 (91.9) || 99.9 (99.9) | 99.9 (99.9)
00 54 (50)] 74 (5.0)] 57 (5.0)] 63 (5.0)
03 | 62.6 (61.7) | 67.1 (61.2) || 100 (100) | 100 (100)
0.9 05 90.5 (90.2) {922 (89.9)| 100 (100) | 100 (100)
0.7 | 98.0 (98.0) | 985 (97.9) | 100 (100) | 100 (100)
0.9 1 99.9 (93.9) | 99.1 (93.9) || 100 (100) | 100 (100)

Notes: See the footnotes under Table 2.
The VAR(2) process U/ = U_1 By + U_o Ry + I is generated with
Ry = Diag(.8, .8, 4) and Ry = Diag(.3, .3.5).



Table 9: Empirical Sizes and Powers of the FTH, FTIK and WHT; R1 Matrix

Without Multicollinearity

B P;: n = 40 n— 100

FTH FTK WHT FTH FTK WHT

001 55 (50)| 75 (50)| 85 (50) | 48 (5.0)| 59 (5.0)] 154 (5.0)
0.3 Il 24.8 (24.3) | 28.6 (22.6) | 35.0 (27.5) || 91.8 (92.2) | 925 (90.5) | 74.8 (55.9)
0.3 |05 [l 45.2 (44.2) | 48.6 (43.8) | 56.8 (49.4) || 99.3 (99.3) [ 993 (99.2) | 74.8 (58.9)
0.7 I| 65.1 (64.5) | 63.8 (63.4) | 78.7 (74.9) || 100 (100} | 100 (100) | 99.2 (97.9)
0.9 | 81.9 (81.4) | 845 (82.2) | 93.0 (91.4) || 100 (100) | 100 (100) | 100 (100

0.0 52 (50)] 75 (50)]241 (50)] 57 (60)] 59 (5.0)]320 (5.0)
0.3 | 62.1 (61.1) | 65.0 (60.5) | 79.5 (52.1) || 99.8 (99.7) | 99.8 (99.6) | 97.1 (83.4) |
0.9 |05 || 920 (91.3) | 94.0 (90.0) | 95.1 (82.7) || 100 (100) | 100 (100) | 99.8 (99.1)

07 ] 991 (99.1) | 99.2 (98.8) | 99.1 (96.6) || 100 (100) [ 100 (100) | 100  (100)
09 || 100 (100) | 100 (100) | 100 (100) || 100 {100y | 100 (100) | 100 (100)

With Multicollinearity

00 40 (5.0)] 84 (5.0)] 81 (3.0} 33 (50)] 59 (50)| 33 (5.0
03] 49 (56)| 8.1 (48)| 69 (39} | 40 (57| 64 (52)| 43 (6.1
0305 50 (57)| 86 (55)| 48 (35} 49 (7.1)| 84 (74)| 38 (6.6
07 || 42 (5.0)| 86 (45)| 67 (40) || 58 (3.5) |101  (95)| 32 (6.1
09| 50 (59| 112 (76} | 82 (5.6) | 11.9 (15.8) | 245 (22.0) | 7.3 (i3.1

00 45 (501 77 (5.0)] 66 (5.0) ] 48 (5.0)] 63 (50)] 31 (5.0)
03] 68 (77)|102 (6.0} | 7.8 (6.8) || 33.8 (34.1) | 381 (34.8) | 177 (24.9)
0.9 |05 | 120 (127) | 145 (10.3) | 119 (9.9) | 67.2 (67.3) | 70.6 (68.1) | 36.2 (d46.6) |i
0.7 || 203 (21.9) | 254 (18.3) | 21.6 (18.7) | 92.8 (92.9) | 947 (93.6) | 64.6 (73.3) |
0.9 || 44.0 (46.0) | 54.9 (45.6) | 51.0 (47.6) f 99.3 (99.3) | 995 (99.5) | 93.9 (95.2) |

Notes: See [ootnotes below Table 2.
WHT = the Wu-Hausinan test.



Table 10: The FTH and FTK Applied to Klein’s Model T

FTH | FTK
Consumption equation 5.1927 | 5.131*
Investment equation 10.127° | 8.580*
Labor demand equation 1.690 | 1.275

Notes * indicates significance at 1% level.

multicollinearity exists, the sizes of the tests are close to the nominal values
but the powers are poor except when the correlation between the endogenous
variable in the right hand side of the equation of interest and the error
term, p, is high. But as shown in Tsurumi (1990} when multicollinearity
exists, simultaneous equation estimators are not so much better than the
ordinary least squares estimator, and thus even if the exogeneity tests lead
one to a choice of an inappropriate estimator its cost may not amount to
any significance.

Although we assumed that the structural errors follow the AR(1) process,
we can extend the test statistics to the AR(p) process as long as p is known,
The derivation of the test statistics become cumbersonte as the value of p
mcreases. Since for most empirical work one does not know the value of p, an
interesting question is whether the test statistics that are derived under the
AR(1) process are criterion robust or not. As shown in Table 8, it appears
that the FTH and FTK are robust.

Appendix A. Derivation of the System (7) and (8) in the Text

Let the simultaneous equations model be given by

Yr+XB=U (15)
U=U_R+FE (16)
o= Yir + XaB +uy (17)

where

R ~ mxm, B=(e,FE)~nxm

vee{ B’} ~ N(0,/@5) T~ mxm, positive definite
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4
lnxm -

-ank =

Unxm -

I"m)(m -

YI' =

Bixm =

By =

XB =

The system

and thus

(71, Y1, ¥a);
yp~nxl Yi~nxm, Yo~nXmy, ma=m-m—1
(.X]_,XQ);
Xi~axk, Xo~nxk
(w1, Ur, Ua);
yp~nxXl, Ui~nxmy, Uz~nxm

1

-7 T2 ], m~mixl, Tpr~emx(m-1)
0

1
(yi, Y1, Y2) | =m0 T2 | ={y1 — Y1, ¥T2)
0
[ ~B
By
i 0
[ B Bia~ kB X (m -1) IBQQ ~ kg X (m - 1)
BZ"Z b ]
-
(X1, X2) By | = (-X1B1, X By)
0
becomes
YI'+XB = U
i"_]].-\*l- X._lB = U_l or
}"_1FR -+ ;Y..]JBR = U__IR
YI'=-XB+Y s TR+X1BR+FE (18)

The reduced form is

V=XTT+Y T+ X 4,04V (19)

where [l = —BT™Y, T =TR[I!, &= BRI Y and V = ET7L. Let V be
partitioned as

V={(,VN,WV) mp~axl, Vi~nxm, W~nxm

L7



and post-multiply the reduced form by

1 0 0
A= —71 Im1 0
0 0 In,
and obtain
YA = XTIA + Yo, TA + X 3A+ VA (20)
The each term in equation (20) is given by
1 0 0
YA = (yl,Ylg}"z) -1 Im, 0 = (yl-— 1’1’)’1;}’1:}“’2)
0 0 In
1 0] 0]
. . I II If
‘KHA = (Xh"l?) l Hll le H13 :| -1 Iml 0
g1 Ilap Iz 0 0 I,
My — Moy 2 s
= (X1,X }
(%3, X2) [ M2 — Mooy IMap Ilpa
= [Xi(Ily1 — Waom1) + Xo(Tay — Mopy1), X Tlg, X ;5]
wlere
ISP II1a
I, = , Il =
[T T2 Tia 1 0 0
YaTA = (y1,-1,Y1,-1,0%-1) | Tar Yoo Tos -1 dmy O
| Yar T3z Tas 0 0 I,
[ Ty = Tun Tz Yz
= ($1,-1,¥1,-1,Y2-1) | Yoo — YToon Yoz Yoz
| Ys1— Tazmn Yoo Ta
= [y1,-1(T11 — Yaom) + ¥1,-1(Ta1 — Tooy1) + ¥o,1{ T — Ta271),
YorTa, Yo Ts) (21)
where
Y12 Tx
Ty=| To |, Ta=| Ta
T3z Tas



e P12 P13

Dy B 0o3 e m 0

0 0 Im,

P11 — Pr1on P12 Pys
X141, X ‘
(X1-1,X2,1) { By — Poayn Doz B

[(X1,-1(P11 — Byoma) + X -1 (P21 — Poayr), X1 By, X1 B3]

1 0 0
JY-I@J’\. = (Xl,—ls){Z,-—l)[ ]

where
@y _ | @13
$y = [ Doy ] , and @3 = l oy
and
1 0 0]
VA= (‘UI: I/l? 1;/2) TN Im; 0 (Ul - I/1")"1:' V-l, ];/2)
0 0 In,

So the first equation of (20) becomes

1 — Y1 = X111 = Hien) + Xo(Ilar — Maom) + v1,-1(T11 — Tioam)
+¥1,-1(T21 — Toom) + ¥, -1{ a1 — Taom) + X1,-1(P11 ~ Py211)
+X9,-1(®21 — Poom1) + 1 — Vi (22)

and we have v; — Vi3 = €1. On the other hand the structural equation is

given by equation (18). The first equation in (18) is unscrambled as follows.
Let

1
=) -n I
0
B
B = By |, By~kx(m—=1)
0
_orua B
R—[Rzl szz]’

where Ryp ~ (m—=1yx 1, Rypg~1x(m—1), R~ (m-1)x{m—1).
Then
1
YU = (nY,Y9) | -1 Do | = (?}1 - Y1711.YT)
0
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~B
XB = (X]_,Xz) BQ =(—,Y1131,XBQ)
0

1
r . . R
}"11—1‘12 ('yl,-—-layl,_l,}z‘_l) -7 1"2 I: }7211 R12 }
. 0 21 422

= [(y1,-1 = Yi,-1m)m +Yo1T9Ror, (11,1 — Ya,~171 ) Biz + Y_1T2Ryo)

-h
_fY_l_BR = (.X]_,_]_,XQ,_.l) _Bg R
0

= (—ruX1,-161 + X_1BaRy, —X1,-151R12 + X_1B2Ras)
Hence the first equation becomes

n—Yim o= X+ —Yioam)ra +YoiTaRy
=X1,-1fru+ X 1By Ry 4 €
or :
1 —rmiy-1 = (Yi—rmat-m + (X —raX-1)8

+Y_1ToRyy 4+ X_1BoBoy + ¢4 (23) -~

Comparing (23) to (22), we see
(1) i —Ihem = B
(2) Toy ~— Iloam = 0
(3) r11 +di = Y11 — T1271, where d; is the first element of 'y Ry;.

(4) —11711 + D2 = To1 — Y271, where Ds is the
2,---,(my + 1) elements of [y Ry;.

(68} Da = Ya1 — Yaay1, where Dy, or the last mgy elements of I'aRay.
(6} —Biri1 + (I, 0)B2Ro = @1y — Bromy
(7} (0,11,) B2 Ry = 21 — Poom

And from equation (20) we get

Yy = XTo 4 Yoy Yo+ X_y®y 4+ 1 (24)
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Equations {23) and (24} are jointly normal and the likelihood fuction is
given by

€71, P1,m11, Ror, I, T2, 82,0 | data)
x |9 exp {-——;—tr [ﬂ‘l(W - ZO)'(W - ZG))]} (25)

where W = (yl—?'11y1,~1: Yl), Z = (Yl—?'nYl,—l, Xi—rmXy,-1, X, ¥Yq, Xg);

0E! 0

J5) 0

0= 0 I,
IRy Yo

ByRy @,

and 0 is the covariance matrix

Q= 711 Ql-z - Va-l‘(ﬁﬂ) COV(G;,.YH)
Qo O Cov(Yn,en)  Var(Yn)

Using the identity

g1o| 1 0][og, O 1 —01205,)
T -0540 T 0 9} |]o I

where o110 = 011 — 9129521 Q31, we see that equation (25) becomes
€71, 81,111, Ra1, a2, Yo, 8o, 011 2,5 99 | da,ta) o oy 2 2| Qgp |72
1
xp | —=—— xp 4 —=t
exp [~ o) exp { -3 [037001)] | (26)

where § = Q55 Qp1, and

Quny=de, Q) =WVW

()

- -1 — (1 - ¥ -0m - (G —ra X -06
—Y_yT3Ryy ~ X1 By B — Vhé
M —=Tal,-1— (YI - 7‘11}"1.-1)’}’1 - (Xl - ?'11X1,—1)ﬁl
—~Us 121 ~ V18
Yi— XTI — Y17 — X_ 19y

._,
Il
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where UQ,..l = Y...]PQ + .X-_'lBg.
Let the prior probability density function (pdf) be given by
p(71: 51,711, Rox, 2, T, Bo, 01108002 ) o o3l | Qo |71

then after integrating out 29, we derive the conditional posterior pdf given
71151-[22) T?? (I)Z: P?:BQ

p(71, 81,111, Ray,y 0110, 8 § 111, T2, Y2, @2, T2, B, data)
2-1 1 ”
& ‘-Tnnz{ exp [“ o1 Q(yl)] (27)
J11-2
Integrating out ¢yy.2,71, and f;, we obtain the conditional posterior pdf for
5 = (R2136 ) :

Q(é.) ] —(v+mi4+m—1}/2

p(€ I TII:HQ:TL (I)Z:I‘Z:BZ: da*t'a') & |:-1 + S.S'Ru

(28)
where v = n —2my — ky — (m — 1) and
Q&) = (¢ —&)'S' MpS(E - )

§ = [Ua,-1,V4], E = (imrnYso1, Xa—ruXamr), Mg = [[-E(E'E)E), é=
(s MpS)~ g’ Me(y1—ruy, —1), SSRy = (y1—T11y1,-1) Mp{y1—r1191,-1), Mp =
I— P(P'P)~1P and P = [E,S]. The quantity

Q(E)/(m — 14 my)
SSR,/(n—2my — kg —m+ 1)

(29)

is distributed « posieriorias F with (m — 14+ mq, n—2my =k —~m+ 1)
degrees of freedom [c.f. Box and Tiao (1973, p.117)}. We may employ the
highest posterior density credible set {HPDCS) [Berger (1933,p.140] or the
highest posterior density region (HPDR} [Box and Tiao (1973, p.125)] to
test the hypotheses Hy versus K; which are changed to

H : [ R;I ] versus K : [ R ] #0 (30)

Since & = 92_2]9?1: testing Cov(}i1,en) = Q21 = 0is the same as testing
6 = 0. Rewriting (29) we have the test statistic for { =0

P _ SSR.~SS5R,)[(m =1+ m)
m—1+my n—2m—kyj—m$1 = SSR,,/(?L —omy —fy—m 4+ 1)

(31)
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since Q(0) = §'MpS§ = SSR. — SSR,. Equation (31) is equation (13) in
the text.

Appendix B: The Design of the Sampling Experiments

We set up a linear simultaneous equations system consisting of three
structural equations for our direct Monte Carlo method of sampling exper-
iments. The model is a modification of the model used in Tsurumi (1990).

YI'=XB+U (32)
where

B2 44 4.0

0 .74 0
1.0 -.267 -—.087 JaJ 0 .53

= -.222 1.0 0 B = 0 0 .11

0 —.048 1.0 96 13 0

0 0 .56

06 0 0

We shall use the first equation of interest:

Y1 = Ti2¥e2 + Buza + rstia + Pisvis + Pirrer + un (33)
e =.222, fn =6.2, f13 = .7, P15 = .96 fr7 = .06 .

The variance-covariance matrix of the row of E, Couv(e,), is specified as

1.0 p, .28,
Cov (€;) = 36.0 po 10 O (34)
25, 0 1.0

where the values of the parameter, p,, are chosen so that the correlation
between 0 and €3, p12 will be controlled. The exogenous variables, other
than the constants, z;9,---, 247, are drawn from uniform distribution over
the interval [0,a], where a is a scalar whose value will be specified so that R
(the coefficient of determination of the reduced form for y) is controlled.
The combination of the values of p,, a, and R? are given in Table 11. The
value of a is affected by the sample size, R?, and multicollinearity whereas
the values of p, are only influenced by the degrees of simultaneity, p?.
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Table 11: Combinations of R?, Sample Size, p,,, and a Used for Sampling
Experiments

Without Multicollinearity With Multicollinearity
R2| n | plh | pu a R | n |ola]| pu a
O 1100 0 -.25 | 83.39 S (1w00] 0 -.25 | 45.04
3 ) -T1 ) T2.64 3| -71 | 39.49
S5} -.823 ) 69.43 5o -.823 | 37.74
g =90 | 67.02 7] -.90 | 36.39
9 | -.963 | 65.00 9 | -.936 | 35.18
9| 20 0 -25 111114 ) 9 | 20 0 -.25 | 53.70
G| -.71 | 94.49 3 | -71 | 47.08
5| -.823 | 89.76 5 | -.823 | 45.07
7 -.90 36.39 7 -.90 1 43.58
9 | -.963 | S83.96 9 | -.963 | 42.41
B3| 100( O -25 | 21.57 | 35100 | O -25 | 12.49
3| -.T1 19.51 3| -7l | 1159
5 1 -.823 | 18.76 S -823 ] 11.14
7| -.90 18.14 O -90 | 10,72
9 | -963 | 17.55 9 1 -.963 | 10.24
351 20.1 0 =25 | 3782 || .35 | 20 0 -.25 | 19.05
3 -7l 34.46 3 -7l | 19.23
b -.823 | 32.39 5 -.823 | 18.57
g ) -90 | 30.35 g -90 | 17.72
9 1 -963 ) 28.03 9 | -.963 | 16.54

Notes: R.2= the coefficient of determination of the

reduced form equation for ¥i.

n= sample size.

p*= the multiple correlalion cocflicient between
Y2 and €.

po= parameter in Couv(e,) in (27).

a= upper limit of the uniform distribution, [0,a]
from which the exogenous variables, x,;, are
drawn.
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As the structure of the correlation among the exogenous variables, we
use the following correlation matrices, one for almost nonexistence of mul-
ticollinearity and the other for high multicollinearity:

Correlation Matrix of X,Corr(X)
No Multicollinearity Multicollinearity
&3 T4 T5 Tg T7 T3 Ty X3 Tg €7
29 || -15 -11 -.18 -37 -18 .99 .93 .87 .69 .60

23 18 -.01 -27 -.03 93 88 .73 61
4 -15 =37 .02 87 67 64
s 09 .05 75 69
e 56 35

Det(Corr(X))=.3074 Det(Corr(X)) =.0000393

The determinant of the correlation matrix for the case of no multi-
collinearity is .3074, indicating a low degree of multicollinearity among 2;’s,
whereas that for the case of multicollinearity is .0000393, which shows a high
degree of multicollinearity.
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