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ABSTRACT

This paper reeiamines the conventional goodness~of-fit test used in
the quadrat method and proposes an alternative goodness—of-fit test.
It is first shown that the conventional test should be used when
the number 'k of points is more than 4000 and the number n of
quadrats should be around n = .06k. Second the conventional

test is likely to migsjudge a random point distribution as non-random
when k <_4000 regardless of n. To avold this misjudgment, last

air alternative goodness-of-fit test is proposed.
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(1) INTRODUCTION

The statistical analysis of a spatial distribution of point-
like activity, such as a distribution of stores in an urban area
or that of cities in a region, has been one of the major subjects
of statistical geography. To deal with this subject, a variety of
methods has been proposed, (for example, see the methods cited in
Bartlett [1], Getis and Boots [5], King [6], Lewis [7], Rogers [9]).
Among those methods, the gaodness~of—fit test by quadrats or so-called

the quadrat method is one of the most frequently used methods

in the related literature. Conventionally the quadrat method takes
the following procedure: first, to cover a study area, where a
certain number, say k,.of poin;s are distributed, with an arbitrary
number, say =n, of equal quadrats; second, to count the number n_
of qugdrats having s points, s =0, 1, ..., k; third, to cal-

culate the value of

2
(o  -m)
2
s s
where m_ is given by -
25 e—k . :
mo=n T s=0,1, ..., {1-2)

and A = k/n; last, to test randomness by consulting the chi-square
table.

Concerning the theoretical basis of this test, it appears to

£



be accepted in the literature that the ordinéry goodness=of-fit
test developed by Pearson [8] is applicable to the quadrat method
and hence the test statistic given by equation (1-1) follows the
chi-square distribution if the number of quadrats is moderately
large. This paper reexamins this theoretical basis, That is, the
objectives of this paper are: f£irst to show that the conventional
method is likely to lead a blased conclusion; second to obtain
the appropriate number of quadrats that reduces a bias to an allow-
able level; last to propose an alternative goodness-of-fit test.

To this end, Section 2 brings attention to von Mises [11]
model which shows the exact distribution of n_ . (Note that this
model is different from the muléinominal distribution model
considered in the ordinary goodness-of-fit test), With this exact
distribution, the accuracy of approximation is analytically examined
in Section 3 and numerically investigated in Section 4. Based upon
these examinations, an appropriate number of gquadrats which brings
an allowable level of approximation is obtained. Since such a number
does not always exist for a given number of points, an alternative
goodness-of-fit test is proposéd in Section 5. The paper ends in

Section 6 summarizing the major results.

(2) THE EXACT AND ASYMPTOTIC DISTRIBUTION OF THE NUMBER OF
QUADRATS HAVING S POINTS

It is well known that the model underlying the goodness-of~fit
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test is the multinominal distribution model (See Pearson [8], or
Chapter 30 of Cramér [4], or Wise [12]). Stated.explicitiy, the
model considers the situation in which n observations are
randomly distributed into kil ;lasses with proﬁability P>

s =0,1, ..., k. One may attempt to relate these n, k, 5 and
P, with those of the quadrat metho@. (ps_ may correspond to
ms/n). This attempt, however, will not bé successful to gnder-
stand the quadrat method. Rather the model examined by von Mises
[11], which is almest ignored in the literature of the quadrét
method, is more relevant. 'Von_Mises considers the model in
which k balls are randomly placed in n boxies and obtains the
distribution of boxies having ; (=0, 1, ..., k) balls. Since von
Mises' result is indispensable for proceeding the following
ana;'.ys_is, his result are briefly summarized here.

Let X, be a random number of quadrats héving s points
when k points are randomly distributed over n quadrats. The
probability p{xs = m} of the random variable Xy being equal
to m is then given by

n-m . ' .
plx, =m} = () 2 &+ D)EDTC M
i=0
k-{(mti)s

ki(n - (m + 1))
O™k - @+i)s)! ot

% (2-1)

m=0,1, ..., k,
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where

1L if 0 < (m+ i)s < k,
§(m + L)s) =1 (2-2)
0 if otherwise.

The expected value E(xs) and variance Var(xs) of x_ are respec-

tively given by

Bz =m! = () (5)® @ -1y, (2-3)
k~2' ‘
Var(x_) = 6(2s) nln - l)%!(n = 2) : - m'2 + m!
s (s!)“(k - 28)! n & 3

(2-4)
The asymptotic distribution of equation (2-1) with respect to

n+e provided that k = An is written as

P{xS =mn} = ————r, m=0, l,'.., (2-5)

2)'(l)

_where | is given by equation (1- (Note that this Poisson

distribution should not be confused with that of equation (1-2)).

(3) THE LIMITING ACCURACY OF APPROXIMATION WITH RESPECT TO THE
NUMBER OF QUADRATS UNDER A FIXED NUMBER OF POINTS

When =x is a random variable, the transformed variable
(x -~ E(x))//Var(x) generally gives a crude approximation to the
standard normal variable. In fact if a random variable follows

the Poisson distribution, the variable (x - E(x))/VB(x)



approximately distributes standard-normally for a large E(x). In
the ordinary goodness-of-fit model, as is shown by Cochran (p.318

of [2]), a random variable X (i.e., a random number of obser-
vations belonging to the sth class), follows the Poisson distri-
bution and hence the random variable z(xs - E(xs))Z/E(xS) almost
shows the chi-square distribution. From this fact and equation (2-5)
one may consider that the use of the test statistic given by equation
(1-1) is also appropriate in the case of the quadrat method. It
should be noted, however, that in the ordinary goodness-of-fit model,
the random variable g exactly follows the Poiéson distribution

([2]), while in the model of the quadrat method, X, asymptotically

follows the Poisson distributioﬁ as n + « keeping X constant,
which impliies %k » «. In an actual situation, however, the
number k of points is given, (i.e., fixed), although the number
n of.quadrats can freely be chosen. Therefore the asymptotic
property obtained in equation (2-1) may practically be meaningless.
Rather the asymptotic property. with brespect to mn + = provided that .
k iz fixed Is of importance in an actual situation.- In this -
section this asymptotic property will be.e#amined and it will be
ghown that the ordinary goodness-of-fit test is not always appli-
cable to the quadrat method.

Before setting into the analysis, it may be worthwhile to
compare the exact distribution, i.e., equation (2-1), with the

approximated distribution, i.e., equation {2-7), in a numerical



example. The cases of k = 253 n = 25, 50; s = 0, 3 are depicted
in figure 1la ~ 1ld. It may be read from this figure that the appro-
ximation is bad in the case of s = 0 but it is fairly geood in the
case of s = 3, and that in the case of s = 0 the approximation
becomes worse as the number of quadrats increases, while it beccmes

better in the case of s = 3.

Figure 1 The exact and approximated distribution
of the number =xg of quadrats having
s . points when the number k of points
is 25: a) the number n of quadrats
=25, 8=0; b)n=25,s8=73; :
c)n=50,s=0; d) n= 50, s =3,

Now let us examine-the above observation analytically. In the
quadrat method, it is implicitly assumed that mé (given by

equation (2-3)) can be approximated by m (given by equation (1-2))

and that Var(xs) (given by equation (2-4)) can be approximated
by m - First concerning the expected value, let us compare

m - with m' by
s s

' k
R (n]s k)=zlﬁ=(1-i)'k'S _‘Isﬁl (1-= (3-1)
e ’ m n € k™
s i=
s=1
(Note that T (1L -4i/k) =1 for s =20, 1). On the limit, the
i=1
relation
s-1 i
m R (h]s, k) = W (L~ ) (3-2)
e =],



holds. This implies that if a large number of quadrat is used,
the approximated expected value m_ is equal to the exact expected
value m; for s =0 and 1, but m_ is not equal to mé for
s > 2. Thus the error exists in the case of s > 2 even if the
number of quadrats is large, but it will be shown later that this
error is negligible'in,an actual situation.

Concerning‘the variance, the difference between Var(xs). and -

m_ becomes crucial. To see it, let

Rv(n |s, k)
] Var(xa)
m
s
k
-1 -
MY J— L1y -2y
kW s (k-28)! n
2
_ k! 1 _Lly2%k-2s
stk ~ s)1? o571 n
t -
8 - Lykesy (33
kK(k~-5)!

Since the analysis deffers according to s =0, 8 =1 and s > 2,
these cases are separately éxamined,. First inthe case of s = 0,
equation (3-3) becomes

k

R [0, 1) = e® n{ - D - B - - Ly

TGSt (3-4)

n

-7 -
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Furthermore, noticing that

1.2k _ 2, 1.k _ 1 2. k-1
-0 =@ -2+5)% = 1 S a-LHEot
n i=0 n
equation (3-4) is written as
k K
: _.n 2.k _ 1 2. k~i
R (][0, k) =e {-a-2) o A -)
i=1n
ra-=k2, (3-5)
n
Taking the limit to n = =, equation (3~5) becomes
limR (n]0, k) =0. (3-6)

0

This equation shows that the difference between the approximated
variance and the exact variance becomes great when a large number

of quadrats is chosen, In the case of s = 1, equation (3-3) becomes

k
_n 1 _2k-2 _1.2k~2
R,@|1, k) =e {(k-1(1-3)A-%) k(1 - 2)
@ -kl (3-7)
n
It is easily seen from this equation that
lim Rv(nll, k) = 0. (3-8)

oo

Like the case of s = 0, this result shows that the approximated
variance is extremely larger than the exact wvariance when the number

of quadrats is large.



Last in the case of s > 2, it can be shown that

g—1 .
LimnR (n|s>2, k) =1 (1L-). (3-9)
v — . k
Tl i=1

Thus on the limit of n » «, the exact variancewill be close to the
approximated variance. (Note that lim Rv =1 for s=0,1 and
oo

that lim R, = 1).
Nroo, Koo

From the above examinations, (i.e., equations {3-6), (3-8)
and (3-9)), one would notice a difficulty in the choice of the
number of quadrats: if a large number of quadrats is used,
(n:.L - mi)zlmi, i =0, 1, in equation (1-1) (i.e., the conventional
test statistic of the quadrat méthod) will pro&ide an erroneous
value of XZ; if the nﬁmber of quadrat is not large, (ni - mi)zfmi,
i > 2, in equation (1-1) will produce a bias. Therefore if the ..
number of quadrats is arbitrary chosen, the conventional method is likely
éo lead a false conclusion. In the above analysis, however, the
accuracy of approximation is not quantitatively examined. There
might be a moderately large (or small) number of quadrats that will
produce an allowable level of approximation. To coéider this

problem a numerical analysis will be pursued in the next section.

(4) NUMERICAL EXAMINATION OF THE ACCURACY OF APPROXIMATION
In a practical situation, it may be assumed that the number

of points and quadrats is between ten and ten thousands and that
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the number of classes used in the goodness—of-fit test is around
five, i.e.,
n, k €J={1]10 <j <10000}; s e€L={j|0<j <4}
(4-1)
(Note that j is an integer). Under these assumptions, let us
numerically examine the accuracy of apprdximatidn.
First concerning the expected value, suppose that 1% error
is allowable and let § be the set of the number of quadrats and

that of points (n, k) that produce less that 1% error, i.e.,

8§ = {(n, k)

. 99 <R, (n, s, k) < 1.01 for all s e L}.
(4-2)

By numerical examination, S is obtained in figure 2. It can be
concluded from this figure that if the number of points is larger
than 114, the error in the expected value cén be reduced to less
than 1% by choosing an appropriate number of quadrats from § in

figure 2.

Figure 2 The number of quadrats and that of
points which produce less than 1%
errors in the expected value

Concerning the variance, lét us see, for example, the case of
k = 1000 in figure 3 where the value of Rv(n [s, 1000) is graphed
with respect to n e J and s ¢ L. First figure 3 shows that
Rv is less than one, This relation also holds in the others cases

(k # 1000), i.e.,
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0 E_Rv(n| s, k) <1 for n,ked, s e L. (4-3)

(The implication of this relation will be discussed in Section 5).

Second figure 3 shows that the value E; (nI 1000) defined by

R (n]k) = m;:n' & (s, K}, (4-4)

(i.e., the lower envelope of Rv(n[ k, s) with respect to s e L),
increases in the domain of 10 < n < 80 and decreases in n > 80.
This result numerically supports the analytical conclusion obtained in
Section 3, that-is, the conventional test statistic (given by
equation (1-1)) will bring a false comclusion if a very large number

of quadrats is chosen. In figure 3; the

Figure 3 The ratio of the exact variance to the
approximated variance (the number of
points ig 1000)

best accuracy is read as E; = ,94, which ﬁay not be within an
allowable level. Like the case of the expected value, suppose that
1% error allowable. Then the numerical examination shows that there
exists no n satisfying this level for all k ¢ J. Alternatively
suppose that less than 2% (5%) error is allowable, Then there exists

n satisfying this level. To be explicit, let T (T 05) be the

.02
set of the number of quadrats and points that brings less than 2%

(5%) errors, i.e.,

T 4o = {1 .98 < T (W) < 1.023, (4-5)

-11-



T g5 = {(r, 0| .95 <R (| k) < 1,051 (4-6)

From the numerical calculation T.OZ and T,OS are obtained

in figure 4. (Note that T.02’ T.OS < 8). This figure says

that if more than 27 (5%) error is not allowable and if the number
of points is less than 4000 (1200), the conventional test statistic
given by equation (1-1) should not be used. If the number of points

is mere than 4000 (1200); the number of quadrats should be chosen

from T'02

is 6% of the number of points. Obviously if the number of quadrats is

(T 05) in figure 4. Roughly speaking the number of quadrats

not chosen from T 02(T 05), the conventional test statistic is likely
to bring a false conclusion. If should be noted that many empirical

examples cited in the related literature do not satisfy this condition.

Figure 4 The number of quadrats and that of
points which produce léss than
2% or 57 errors in the variance

(5) AN ALTERNATIVE GOODNESS-OF-FLT
In an actual situation, the number k of points may be less
than 4000, Actualiy the case of k > 4000 can hardly be found in
the related literature. If Lk < 4000, as is sﬁown in Section 4,
the use of the conventional test statistic (equation (l—i)) is
misleading, Then what test statistic should be usgd when

k < 40007 To answer this question, let us examine a random

-12 -~



variable defined by

2
— 1
XZ =3 (xs ms)
. . Var(xs)

’ (5_’1)

where m; and Var(xs) are respectively given by equations (2-3)
and (2-4), If xz follows the chi-square distribution, randomness
can be tested by
: 2
2 (ns ms)

X =1I
s

Var(xs) ' (5-2)

To justify this.alternative test statistic, it has to be shown that
(xs - mé)//VEETE;T follows the standard normal distribution and

that .(xs - mé)//ﬁngggi ,8=0,1, ..., are statistically
independent .each other., First, to examine the normality, a numer-
ical method is used because the higher moments of X is analytically
éoo complex to obtain. In the case of s > 2, the goodness-of-fit

test shows that Ehe exact distribution can practically be approximated
by the Poisson distribution:tfthe number of quadrats is moderately
large. (Recall that this fact is analytically proved by equation
(3-9). As an example, see figure 1b, d). When xé follows the
Poisson distribution, it is-reported by Chochran [2], [3] that

even if the expected value is moderately small, the random variable
(xS - ms)z/mS can practically be approximated by the chi~square
distribution. (Also see Yarnold [13] and Roscoe and Byars [10]).

In the case of s = 0, 1, the goodnesg-of-fit test shows that the

-13 -
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fitness to the normal distribution is very good. An example is shown
in figure la, ¢ in which the normal distribution is depicted by a contin-
wous line. If may hence be concluded that the normality condition is
practically satisfied for all s ¢ L.

Second, to examine the statistical independence, let us see
](2)

the correlation coefficient Rst of. X and xt. Von Mises [11

shows that the covariance Cov(xs, xt) of X and X, is given by

al” kKt (n-p<~8"¢

Covix , x,) = -
e e -2 k-s-t)!n"

"—

stt

- m; m; s (5-3)

where m; and mé are given by equation (2-3). Hence the correlation

coefficient is obtained from

Cov(xs, xt)

» (5_4)

st f?ér(xs) Var(xt)

where Var(xs) and Var(xt) are given by equation (2-4). From this

equation it can be proved that

R, #0 (5-5)

However the numerical examiqation shows that the order of Rst
is smaller than 10—3. Hence the random variables X, and X,
(s # t) can practically be regarded as the statistically independent
variables.

Since the normality and independence conditions are practically

. ors . 2
satisfied, the random variable ¥ given by equation (5-1) will

14 -



approximately follow the chi-square distribution. This fact justi-
fies the use of the alternative goodness-—of-fit test given by
equation (5-2). It should be noted that this alternative test can
be used not only for ‘the case of % < 4000 but also for the case
of k > 4000. As is shown in Section 4, however, the conventional
test statistic becomes almost the same as the altermative test
statistic when k > 4000 and hence the conventional test statistics
may be used in that case, for the computational work becomes easier.
Last let us remark a bias brought by the use of the conventional
test., From equation (4-3) the relation ms=- VaerS) holds,
From this result and the fact that .m; can practically be approiv

imated by ms (recall section 4), it follows that

(n -m )2 @ -mn )2
E.L_g_._. < T 8 8 "'(5_5)
' m Var(x ) ° '
s s ) g

ﬁoticing that the left hand side is the conventional test statistic
and the right hand side is the alternative test statistic, this
relation shows that the conventional test statistic is likely to
misjudge a non-random point distribution to be z random point
distribution. This misjudgment will be crucial when the number of

points is leass that 4000.

-15 -
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(6) CONCLUSIONS

The major conclusions: of this paper are summarized as follows.

If less than 2% (5%) error is allowable, then

i)

ii)

iii)

the conventional goodness-of-fit test of the gquadrat method
gshould be used when the number k of points in more than
4000 (1200). 1In this case the number n of quadrats should

be chosen from T ( Y of figure 4. Roughly speaking,

02 Tos

n = ,06k.

When the number of points is less than 4000 (1200), the alter-
native goodness—of-f£it test given by equation (5-1) should be
employed.

The conventional goodness—of-test is likely to misjudge a non~
random point distribution to be a random point distribution,

especially when the number of points is less than 4000 (1200).

-16 -



FOOTNOTE
(1} Equation (2-1), (2=3), (2-4) and (2-5) respectively correspond
to equations (13), (4) (11) and (22) of von Mises [11],

(2) Equation (5-3) corresponds to equation (25) of von Mises [11].
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Figure 1 The exact and approximated distribution of the number x of quadrats having
s points when the number k of points is 25 and that n of quadrats is- 25 gy 50
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Figure 2 The number n of quadrats and that k of points which produce ..

less than 17 errors in the expected wvalue
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Figure 4 The number n of quadrats and
less than 2% (T 02) and 5% (T

that k of points which produce
05) errors in the wvariance




