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Abstruct

Every digital information processing is essentially represented
by a set of n functions of m variables on {0,1}. We propose a
method to reduce such a set of functions to one polynomial of one
variable on GF(ZN) ( extension field over GF(2) ). Such polynomials
have remarkable properties based on Frobenius-transforms, which :
are to serve for effective designs and productions of switching

circuists.



1., Introduction

We can say that with appropriate coding sjstems évery digital
information processing is essentially to determiﬁe the set of
functions

¥ 5= jelo,th,  (1.1)
It is well known that given a truth table, say table I, we can

fj(xo,x_l,...,xm_,l), j=0,1,...,1'1—1 [} Xi,y

construct the set of Boolean functions fj(xo,x1,x2) (j=0,1) re-
presenting the truth table, These are n(=2) functions on m(=3)
variables.

We propose a method to construct one funciion on one variable
representing any given truth table, by introducing extension

fields over GF(2) (%$2,%3%)., Further we show that the function ( a

‘kind of switching function) has a remarkable property based on

Frobenius cycles in extension fields (§4). This will serve to
designs or prodﬁctions of switching circuits for various digital

information processings.

2, The reduction to one function

For brevity first we treat the case ﬁ:n in (ﬁ.1). In this case
we can tzke both x=(x0,...,xm_1) and y=(y0,...,yn_1) as elements
in GF(2™), the extension field of order n over GF(2)., And we can
reduce (1.1) to

y= £(x), x,yeGR(2™) . o (2.1)
Then,.as a special case of theorom 3 or theorem 6, we have

Theorem 1. Any function f£(x) on GF{2") can be represented as a
polynomial of order r=2néT, that is

f(x)= ao+a1x+...+arxr, aie_GF(Zn) . (2.2)

And the coefficients ai(i=0,..;,f) are determined by



a,= £(0) |
a;= Z I‘-if(X) R 1<igr | (2.3)
x€GF(2") -
(note that x%1.even if x=0) ——--=

Every non zero element of GP(Z ) can be representea by a power
d; of a primitive element o (of GF(2®)), and at the same time
this can be written by a polynomial of o
' n-1 -
XX X +...+xn_1ol y Xy eGr(2) (2.4)
if the minimal polynomial over GF(2) of & is given. Thus we can

take the set of coefficients of (2.4) (xo,x1,...,x ) as a con-~

n=1
tent of the truth table,

Bample 1 A truth table (a correspondence (XO,XT,Xz) to
(yo,y1,y2)) is given in table I, Let ok be the primitive element 12££Jﬁ
of GF(23) and olo+0+1 be the minimal polynomial of&{ . Then oY can
be represented as left hand of table I, And the switching function
y=f(x) of table I can be written as -

f(x)= 1+o?x+dx2+dx3 3x4+o(2x6 ' (2.5)

( a0=uP=1, a1=a?, azzd, aBdX, a4qx3, aS=O’ a6=q2, a7=0 )
by theorem 1. (In table I (000) is represented by o formaly.)

%. Complex analysis in information processing

The following theorem is a well known result on finite fields
theorieé, so the proof can be omitted (see for’examplé £11).

Theorem 2 GF(ZN) has one and only one subfield GF(2M) iff
M{N (1 divides N). And if ol is a primitive element of the GF(2M)
then

g =, = (2M-1)/(2"-1) | (3.1)
H)

e —

is a primitive element of the GF(2



Based on the above theorem we can proceed to the general case
where m is not necessarily equal to n. In this case instead of
(2.1) we have _

y= £(x), xeGR(2™), yeor(2") . - (3.2)
Let 1 be the least common multiple of m and n,‘and consider a
GF(zl), then the 'GF(zl) has the unique GF(2™) and GF(2P) in itself
+» Thus we have |

Theorem 3 Any function f{x) in (3.2) can be represented as the
polynomial | | _

f(x)= ao+a1x+...$arxr (r=2"-1) : . (3.3)

x e6P(2"), f(x)€GF(2"), 2, cGR(2") (Osisr) |
where coefficients a; (i=0y.4+,7) are determined by
a,= £(0)

2= “re(x) T<igr o (3.4)
xeGF(2™)

The proof of this theorem will be stated in %A1. Formally theo-
rem 3 is almost same as theorem 1, but the meaning of.the former
are quite new, x cGF(2™) and y «GF(2™) are (coded) informations

1

about the real world; = e e frraend

. but 2,,a,,

seesl, eGF(2;) have no longer any meanings of the real world, . that
is these are in an imaginary world. Thus the informations about
real world are to be processed through an imaginary world; In this
sence theorem 3 might be called a kind of complex analysis in
information processing theories, |
Examole 2 A truth table is given in table I with m=3, n=2. ¢ (ald I

Thus 1 must be 6, and let o{ be a primitive element in GF(26) and

its minimal polynomial (over GF(2)) be N, +1, Then (3:;3? ang
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3’=u?1 are primitive elements in GF(2°) and GF(2%) respectively, .-

and minimal polynomials (over GF(2)) of f;and 7 will be easily

found as @3+@2+1 and 72+j+1 respectively. Thus every content in

truth table is represented by ?i or 49 such as in table I, |
By (3.4) we can calculate the coefficients a,(i=0,,..,7) and

construct the desired funection

y= f(x)= dﬁ3x+o?8x2+o?9x5+oﬁ6x4+C?Ox5+@?7x6 (3.5)

Example 3 Truth table is given in table W (m=4, n=2), In this (%%%éﬁ

case l=m=4 and let ol be a primitive element of GF(2%) and its
minimal polynomial be ot4ct41, Thus @:ds is primitive in GF(22) and
its minimalnpolynomial is f£+@+1. Like (:3.5) we can construct the
desired function

y= f(x)= dx+v@x3+uﬁx4+oﬁx6+sg3x9+dgx12‘ ' (3.6)

4, Frobenius cycles in swiiching functions

Polynomials in theorem 3, say (3.5) and (3.6), have remarkable
properties connected with Frobenius cycles. This is based on the
following theorem fundamental 6n finite fields.

Theorem 4 Tet I=CF{q') be an extension field of K=GF(q) (g be-
ing an prime power). Any fe¢ L is in K iff '

0= o - , (4.1)

proof First let 6 €K, If ©=0 then clealy ©%=6, so let us

* )
consider the case 640, Let K = K—{O}:{G,GZ,GB,...,B {, and if

-1
{62,060, ,00 o0 .} i : 140K .S

ei+ej then eei+eej, S0 166,,003,...,00,_ ;1 is equal to K. So
2 ' -

we have 06,0;...8, =0 (962)(683)...(86q_1), therfore 6% 121, .

that is © satisfies (4.1).



Conversely let us assume that 6 ¢ L satisfies (4.1). Let o Be a

primitive element of L, then © can be written as

1-1 .
e= ao+a1d+oto+al_1c{ . ) ai‘é K . (4.2)

Thus taking q-th power of (4.2) we have

_ q (1-1)q
O= a ta,oli+esatay

because of (4.1) and the fact that g=0 in L, Continuing this pro-

cedure up to q(1"1)-th power, we have
2

B—. 5 ~ PN — — . s
2 N2
- q (1-1)q
= ao+aﬂd Fewotdy 4
L N 1-1 1-1
- q (1-1)q
0= a +a, teaatay 4 .

Subtracting (4.2) from each of these formulae, we Have

= aﬂ(mg—00+...+al_1(051_1)q-08—1)

o 2 .
O= a1(dq -d)+...+al_1(o£1-1)q -2~

ces (4.3)
1-1 :

1-1
0 31 (O(q -d)"“coo"'al_a; (Ok(l—‘l)q —d-_'l)

The determinant of the coefficient matrix (a;qa;d}) is equal to
the so called Van der Monde determinant, which is well known to be
not equal to zero, Thus we have a1=...=a1_1=0, 50 B=a € K. w===-

In general, when a finite field L has a subfield K (SL), the
tran s:formation

6 — 0%  for any @¢L ( |Kl=q ) (4.4)
is called K-Frobenius trans:formation. Thus theorem 4 states that

@ €L is invariant by K-I'robenius trans formation iff 6 € K, Further
2 i-1 i
{0,0%,8% ,...,0% } is called a K-Frobenius cycle if 6% =0 ang

J .
ed +0 for j<i, and the sum of whole elements of a K-Frobenius cycle

- - - - -~



“including 6 is called a trace of © and written as
N 2 im1
tr(8)= o+e%re? 4, .406% (4.5)

J
Clealy tr(e? )=tr(®).
Theorem 5 TLet GF(2%)=GF(q)=K, then coefficiemts O T
in (3,3) satisfy the following condition '

as= aiq <—= j= iq (mod(2™-1)) (<—> means iff) (4.6)
Specificaliy we have
. . : ‘
as= a, L : (4.7)

proof Lebt us take L and K as GF(27) and GF(2%) in theorem 3
respectively. For any x( e GF(2™)) f(x)G:GF(zn), so from theorem 4

we have f(x)%=f(x), that is

ag+a%xq+a%k2q+...+agxrq= ao+a1x+32x2+...+arxr )  '" | (4.8)

For x €GF(2™) we have

L <%ﬁ¥>-k=iﬂtmod(2m-1)) R
so from (4.8) we have (4,6), ==w——-

From theorem 5 we can say that if aixi is a term in (3.3%)

then its GF{q)-Probehius transform agxiq can also be found in (3.3)
(q=2"), consequently whole terms in (3.3) are decomposed into
several GF(q)—Frobenius cycles, ‘

Example 4: All terms in (3.5) are decomposed into two:: eF(22)-

Frobenius cycles

A A

Z 0. 45
his s T 12
X i '

- — p; ,_}% — )
3,600 00 Tx%} (4.9)

L B
[ S

T
1

o K[

{OgBX’ 0%63-‘:-4’& K2}, {Oégx ’
Thus f(x) in:(3.5) can be written as
f(x)= tr(oﬁBx)+tr(Q?9x3) (4.10)

Example 5: All terms in (3.6) are decomposed into three GF(27)-

Frobenius cyeles
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fox, cax4}, {oéx3,0?x12}, { ol x 6,c33x9} . | (4.11)

Thus f(x) in (3.6) can be written as .
£(x)= trlx)+rtr(ele®)vir(lx8) | © (4.12)
phus instead of (3.5) and (3,6) we have only to bear (4 10) and
(4.12) respectively, in order to find values of f(x) for given x.
By this we can remarkébly reduce the size of memory and amouﬁts of

calculations of coefficients of desired polynomials.

5. Computational procedure
(ﬁ In actual computation, say in table I.or tgblelm, given (xo,x1,
xz)(=x) we are to find corresponding (yo,y1) by calculations in
(4.10). These procedures are as follows; |
i) find pi corresponding to (xo,x1,x2). It is‘PE;tfénsférﬁ (§Aé.);
In oar case it regqures about 2m/m nmenmories and only a little
amounté of computations, or o (at maximum) units of computations
without memories Q§A2.). | |
iL) find x=g =0’ =o)
-« 1lii) find two arguments . ‘
( %= Ot'j‘_3+'j=olir , o?9x3_=0(39+3_j=as _ (5.1)
of function tr() in (4.10). _
i) calculate tr(*) and trx®) and take the sum of them to get
(ygr¥q1)e
Tor i¥) it is necessary to get the minimal polynomial of « over

GF(2"). In our case, it is easily found to be

3 0L+J +7 v (5.2)
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Thus for example if (xo,x1,x2)=(1,1,0) is given, this is found
to be { by PE-transform, x=§5=o¢45.
WENRC U SN BN kR

tr(d'zs) = 425,37 22
=(:{2+3’9’.+ 320(2) + (1+j20\2) + ¥ ( EP-transform by (5-.2))
=7 | | -
'tI‘(O(48)-= 0(48'1'0(34'0(12 '
=(§ 2+ Y20 )+ (F Y DwoP )+ (1+02)  ( EP-transform by (5.2))
=0 . .
Thus f(x)= tr(d25)+tr(0(48)= 2f=(0,1)=(y0,j1).

C



- 10 -

A1. General theorems in Galeois switching functions

Here as a generallzatlon of theorem 1 we will demonstrate the
following theorem on a2 general Galois field GF(q) ( q being a prime
power).

Theorem 6 Any function on GF(q)

y= £(x) , x,yeGF(q) ' _ __ (A1.1)
can be represented by a polynomial of order r=g-1
2 r
fx)= ag=a,X-a,X =, e~a X, r=q-1, aiGiGF(q) R (A1.2)
where :
r-i.;. .
= £(0) , a;= 2__ £(t) , 1<isr (41.3)
re&@)

proof It suffices to show that if we put a; (Ogi<r) calculated
by (A1.3) for any given function f£() on GF(g) into the right hand
of (A1.2) then the value of the latter is equal to f(xj. |

right hand of (41.2)= a -j{'a x*

i
- £(0)- ‘i( D f(t))x
=1 t<€GF(q)
= f(oj- Z_ (itr‘lxl)f(t) (m‘.e;)
t & GF(q)"1=1 o

If =0 then (A1.4) is clearly egual to f(x), so let us suppose
x%o. If t=x then |

7=ty Eii s orxt= -1 ©(A1.5)
i=1 :
because X = xq 121 for non zero x and r=q-1=-1 in GF(q). If tx and -

t4+0 then

D W SRS A ol SR T N | (41.6)
=1 - =T
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a-1
because for any element © in GF(g) E 6 = 0. If t=0 then
=1 :
jii £ % = t%°%F= 1 (note that t°= 1 even if t=0) (A1.7)

i=1
So (A1.4) is equal to £(0)-(£(0)-Ff(x))= £(x).

Proof of theorem 3 We can demonstrate theorem 3 by the almost

same way as theorem 6,

Put ai(Q <i <r) of (3,.,4) into the right hand of (3.3) then
Ir
right hand of (3.3)= £(0)+ EZ: (zg:tr_ixi)f(t) (41.8)
t eGR(2™) i1

If x=0, (A1.8) becomes f(O)’so consider the case xi0,

r a -
5: b 1 . if t=x

=1 =1 if t4x, t=0
5 (47 10) atTs (8710 /(s-1)  if tx, L0
=7

where s=t 1x. Now s belongs to GF(2™) so s¥-1=0. Therefore we

have _

right hand of (3.3)= £(0)+(£(0)+f(x))=F(x). ==mmm

FPurther let us generalize theorem 6 to the case of m-variable
functions for wider applications,

Theorem 7 Any muvariable function on GF(q)

y= f(x1,X2,...xm) (X1 9Xp5e00Xyy ¥ €G(q)) (A1.9)

can be represented by an m-variable polynomial

i i i
f(£1,x2,...,x )= j{: ;;:.. j{: a; g 5 x51x2 2...xmm (A1.10)
=0 i=0 [N |

(r=a-1, a, F(G))
? 1112"'lm

where
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aoo...d= £(0,0,...,0)
aio O= -zxr—lf(xaognc.,O)
* a9 X
' r-1i
aOi..,O= -gx f(O,X,,..,O)
800,..1i7 -Z;x?-lf(o,o,...,x) (1<i<r)
25 50, ..0°(" 1)?E:>Xr Ly =3(x,7,0, .00 ,0)
. & (A1.11)
-1 r h|
aioj_-.-o ;_)y_ f(x O,J’n.o,o)
: a, oij=(—1)2;'X%r-lyr—Jf(0,0,..,,x,y) (1<i, j<r)
LI N ‘iy |
.I.l....l....%.'\_._...i..lli.‘:.. r— r-i .
m - 1 o m
al1i2;"i =‘-("1) /_ /_..C X1 X2 ...Xm f(x1 ’xz’.‘.’xm)
m 1){2 ;xm . . ) ‘ .

(1%11,12,...,im<r)

where in >L ’X:Aﬂ”’ X,¥ees TUR 2ll OVer GF(q).
X Xy

proof Let us demonstrate the case m=2, and it is only a formal

task to extend it to the general case.

right hand of (a1, 9);<I. :ioalax%x

00 io 0]
1=1 J=1 i=1 j=1
- £(0,0) =Y ( T he(x,00)xd - ¥ (T 32(0, %) )]
1=1 X J=1 %
+ Sr D_ ~iyt- Jf(x,y))x xJ (A1.12)
i=1 j=1 x y
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It cén be easily found by investigating the proof of theorm 6
that the second and third terms in the right hand of (At1.12) are
equal to f(O,O)—f(x1,O) and f(0,0)-f(O,xz) respectively. So we hav

right hand of (A1,9)= f(o,o)-(f(O,O)-f_(x1,0))-(f(0,0)-f(0,x2))

i i —
+7 Z (2 }xr’lyr":’f(x,y))X%xg . (A1.13)
i=1 j=1 x vy - :

Here if x1=0 or x2=0 then the last term of (41.13) is equal to

zero, and (A1.13) is clearly equal to f(x1,x2). So let us suppose

x,40 and x,$0. Let L be the last term of (A1.13) then
ul r . .- _l.- -
I-=>"E (Zxr'lzﬁ)(\L y I E(x,y) (A1.14)
xy i=1 - j=1 : .

By the same reasoning as the proof in theorem 6, we have

r
X?;r'lx%= -1 if x=x,
=t .o if x+x1, x40
= 1 if X=O
r - -
yr-3x5= -1 if y=x,
J=1 = 0 if yhx,, y4O
= 1 if y=0 -
Conseguently we have
L= f(0,0)—f(X,] ,0)—f(0!x2)+f(x1 ,X2) (A1.15)

which proves that (A1.12) is equal to f(x1,x2).
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42, Computations in Galois fields

In general let GF(qN) and © be an extension field of oxder y
over GF(q) ( g being a2 prime power) and its primitive element re-
spectively. Then if we know the minimal polynomial of 6, then as

(2.4) we have

N

N-1 -2 C O (A2.1)

j_ -
BY= ZO+Z 9+...+ZN_19 ) Z.-j_G GF(Q), OSJSQ

1
Let us call it EP-transform to find (20,21,...,ZN_1) from 69,
It is well known the amount of computation for EP-transform is

of order log(j)which relieve us from exponential amounts of com-

putations. ( for example let j£100. Expanding 100 in binéry number

. we have 100=20:27+222(2%+2%41)2%=((2+1)2%+1)22, S0 we have

6100 ((((020)2)20)2)2, and it takes 8 multiplications to get ©1°0C0,

)

On the contrary let it be called PE-transform to get j.from

(20’21""’ZN—1)' If N is comparavely small it is advisable to

gsearch all j=0,1,2,e«e untill to get the given (20,21,...,ZN_1)}

Ff£-=t 4= bhecause it takes one shift operation (ordinary 10_9second
) to get 83+1 from 69 with appropriate circuits. Otherwise it is
suitable to utilize the following relation between i and k

k_ 4 ' (A2.2)

6i+6
If i and k satisfy (A2.2) then let us write i=£f(k), and of course

we can also write k=f(i).

T

An example of (A2.2) is given in table V (for GF(25) with mini- @pﬁfl

mal polynomial e5+92+1), where each column & consists of a GF(2)-

Frobenius cycle. So we have only to bear initial relations{with

_parentheses in the table) for which the amouﬁt of memory is of

order 2Y/W in general.
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Now let us find § for (z,,%,,2,,25,2,)=(1,1,1,0,1) in GF(;5)
using tabvle V. '

04+02+0+1=07, o%+0%10=6% (j=£(x))

09+6+1=05"1,  07+0 =0t (k-1=£(1))

2]
therefore
1-1=Ff(2)=5, 1=6

k-1=£(6)=27, k=28, j=f(28)=26 Y
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X X, X4 %o x3 Yo ¥4 y
0O 0 0 O 0 O 6‘*;

1 1 0 00 [0 1 F=1

X 0 1 0 0 | O f1 é’: 1

£ 00 1 0|0 1 =1

® 00 0 1|0 1 F=1

_ 4 1100 |10 g=of
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B 1 0 10| 1 0 8 el

& 0 1 0 1 10 8 =

% 11 1 0 | 1 1 p2=ojo
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Table V

( ol+018- 1) ( 82+0%%= 1 ) ( 614022
02+8° = 1 6%+027- 1 ol4.e15,
0%+010- 612,623 4 628,926
08+620= 1 02401%= 622467
016,69 - 1 017,670, | 019,011
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