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Abstract

We zive a dual algorithm for the problem of finding the minimum-norm
point in the convex hull of a given finite set of points in a Euclidean
space. Our algorithm repeatedly rotates a separating supporting-hyperplane
and in finitely many steps finds the farthest separating supporting-
hyperplane, the minimum-norm point in which is the desired minimum-norm
point in the polytope. During the execution of the algorithm the distance
of the separating supporting-hyperplane nonotonically Encreaées. The
algorithm gs closely related to P. Wolfe’s primal algorithm which finds a
sequence of norm-decreasing points in the given polytope. Computational

experiments are carried out fo show the behavior of our algorithm.
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1. Intreduction

P. Wolfe [9] developed a finite algorithn for finding the minimum-norm
point in a convex polylope expressed as the convex hull of finitely many
given points in an n-dimensional Euclidean space R". The problem is to

salve the following quadratic progromming problem:

(1.1a) Minimize 1 X!
(1.1 subject to X=F Piw;
i=1
(1.1¢) ;:ij=1
it
(1.1d) w; 20 C i=1,2,-,m ),
where P; ( j=1,2,,m ) are given points in R" and N <« Il is the Euclidean

norm in R". VWolfe’s algorithm finds a sequence of norm-decreasing points
in the polytope by generating simplices contained in the polytope.

[t should be noted here thai the polytope under consideration is
expressed as the convex hull of points but not as the intersection of
halfspaces.

The minimum-norm point problem arises directly or indirectly ina lot
of prohlems such as pattern recognition [1], the problem of mixing [51, the
nondifferentiable function minimization ( see [6] ), and the submodular
function minimization [3].

The minimum-norm point problem (1.1) is a special case of the
quadratic prograsiming pfob[em ( see [8] ) . The minimum-norm point problen
and its variants have been considered by P. Wolfe [9], E. G. Gilhert [43,
R. 0. Barr [2], B. F. Mitchell, V. F. Dem’yanov and V. N. Malozemov [6],

K. 6. Murty and Y. Fathi [71, and others.
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We propose a dual algorithm for the minimum-norm point probliem in
Section 2. Our algorithm keeps a supporting hyperplane which separates
the polytope and the origin, repeatedly rotates the separating supporiing-
hyperplane in such a way that the distance of the hyperplane monotonicaily
increases, and in finitely many steps finds the farthest separarting-
hyperplane, the minimum-norm point in which is the desired inimum-norm
point in the polytope. OQur dual approach aiso works for more general
nonlinear objective functions.

Our dual algorithm initially reguires a separating hyperplane between
the polytope and the origin. In Section 3 we describe methods for treating
the case where a separating hyperplane is difficult to find or may not
exist. We also discuss the relationship between our algerithm and Wolfe’s
primal one.

n Section & we give results of computational experiments to show the

hehavior of the proposed algorithm.

<. A Dual Algorithm for the Minimum-Norm Point Prohlem

For any set 0 of points in R® we denote the affine hull of @ by ACQ)
and the convex hull of 0 by C(Q).

Consider the minimum-norm point problem described by (1.1) in Section
1. We denote by P the set of the given m points P; ( j=1,2,--,m > in R".

We identify a hyperplane with the associated linear equation C7X ( =
cixi+rdcaxn ) =d, where CT=(ci,*,cn), XT=(x1,°",%n,) and T denotes the

transpose. A hyperplane CTX=d is called a geparating hyperplane of

nolytope CCQ) if either (i) 0=d and CTX=d for every X in C(Q), or i)

02d and CTX=d for every X in C(P). That is, C?X=d is a separating



hyperplane of C(P) if and only if the hyperplane ggnarates C{P) ard the
origin in R".

Also, a hyperplane CTX=d is called a supporting hyoerplane of C(Q) if

CTXzd for every X in C(P) and there exists a poini Xe in C(P) such that
(T¥a=d. For a supporting hyperplane C7X=d of C(P), a point Xe in C(P)

satisfying C"Xe=d is called a supporting point. A separating supporting-

hyperplane of C(P) is a supporiing hyperplane of C(P) which is also a
separating hyperplane of C(P).
For any point Xz in R" we denote by H(Xa) the hyperplane XaTX=HXe Il 2.

Now, a dual algorithm is'furnished as follows.

A Dual Algorithm

input: A set P of points P; ( j=1,2,++,m ) in R", a separating
supporting-hyperplane CTX=d of C(P) with I CI =1, and its supporting point
Xa=Py in P.

Qutput: The minimum-norm peint Xo of C(P).

Step 0: Put 0:={Ps}.

Step 10 If H(Xe) is a separating hyperplane, then stop ( Xeo is the
minimum-norm point in C{P) ). Otherwise, find the maximum value of A
( 0 A =1 ) for which the hyperpiane m (A ) expressed by

(2.1 (C 1-ACHAXo)T(X-Xa)=0 (0=AZ1)

is 2 separating hyperplane of C(P). Let A he the maximum value of such
A. Choose 2 point Ps in P lying on m(X)NC(P) such that

(2.2 XoTPy=Min £ XoTP; 1 =1,2,.m, P;€ m(R)NCCP) }

Put 0:=QU P, and if X >0, then put C=(1-ADC+A Xo and C:=C/ I CI.



Step 2. Let Y be the minimum-norm point in ACA). 1f Y is in the
relative interior of C{0), then put Xa:=Y and go to Step 1. Otherwise go
to Siep 3.

Step 3: Let Z be the point on the line segment C(A) NXaY which is
nearest to Y. Delete from § the points not in the minimal face of C(Q) on
which Z Ties. Put Xe:=Z and go to Step 2.

¢ End )

Step | rotates the current separating supporting-hyperplane while
keeping Xe to be a supporting point of C(P). The point, Py, in (2.2)
prevents the hyperplane from rotating. Moreover, it should be noted that
for Py chosen in Step | by (2.2) X=Py minimizes the foilowing linear

function in X for a sufficiently swall positive number £

(2.3) (X +e))CH(A +2 DX }TX.

Note that when (2.3) is minimized,

(1) X must lie on the hyperplane (X)) since £ is 2 sufficientiy

small positive number, and
(2) X minimizes (Xa-C)"X on 3 (A DNCCP).

Since we have 0= A <l, minimizing (Xa-C)TX on n(ﬁf)rWC(P) is equivalent

to minimizing Xa'X; to see this, eliminate CTX in (Xa-C)7X by using the

equation for m (X ).
Informally, Py in (2.2) is the point which prevents the current
supporting hyperplane from rotating and which is farthest from the

rotation axis through Xe.

It should also be noted that if F:>0 in Step 1, (2.2) is equivalent to
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(2.1) CTPy=Max { CTP; 1 j=1,2,-,m, P; ¢ n(?:)nc(P) 3

since 0<X <l and 7 (X) is given by €2.1) with A=A .

In Step 1 Xe is in the relative interior of C¢Q). After augmenting 0
as Q:=QU{Py} in Step 1, Steps 2 and 3 try to find a new point X» such
that new Xe is in the relative interior of the ney C{0). For these new @
and Xe the current separating supporting-hyperplane may be rotated.

By the rotation of the separating suporting-hyperplane the distance of
the hyperplane { from the origin ) increases.

We call the cycle formed by Steps 2 and 3 a minor cycle and the one
formed by Step 1 and possible repeated minor cycles a major cycle.

The behavior of the algorithm is illustrated in Figure 2.1 and Table 2.1
for a simple two-dimensional example.

The computationally most dominating part of the algorithm is to find
the minimum-norm point in the affine hull ACQ) of § in Step 2, where points
in @ are affinely independent. As shown in [21, the minimum-norm point in
ACQ) is found by solving the following system of equations.

(2.5) elw=1,

(2.8) e +0TQw=0,

where eT=(1,1,++,1), @ should be regarded as the matrix congisting of
column vectors which correspond to points in @, and A and W=, oo Wa )T
are, respectively, scalar and vector variables to be determined. Here Qu
will be the minimum-norm point in ACQ). As suggested by Wolfe [9], the
system of equations (2.5) and (2.8) is solved by Cholesky decompositian
with efficient updating when Q is changed ( see {91 ).

It should also be noted that in our dual algorithm we keep a

separating supporting hyperplane CTX=d ( HCH=1) and a supporting point



6
Ps
Figure 2.1
Tahle 2.1
Step X C Q Y L

0 Pa Ct Pa
| Ps Cy Pa,P2
2 P4 Cs Pa,P2 Rz
3 P2 C1 P
2 Pa Cz P2 P2
H P2 Cz Pa, Py
2 Rs Cs P2,P; Rs3
1 Stop

Xa and that d and I Xo Il are, respectively, the Jower and the upwver bound

of the norm of the minimum-norm point in C(P).

3. The Validity of the Dual Algoritm

In this section we shoew that the proposed dual altgorithw finds the

minimum-norw point in C(P) in a finite number of steus.

Lemma 3.1: Executing each major cycle does not decrease the distance

of the separating supporting-hyperplane.
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( Proof ) When the separating supporting-hyperplane is rotated ( i.e.,

X>0 ) in Step 1, the distance of the hyperplane increases, since the
distance of the hyperplane XaT(X-X2)=0 is greater than that of the
hyperplane CT(X~Xa)=0. Also Steps 2 and 3 do not change the current

separating supporting-hyperplane. O

Lemma 3.2° Executing each major cycle decreases the norm [ Xe ll of X
unless the algorithm terminatés.

( Proof ) Suppose that we are now carrying out Step 1 and the
algorithm does not terminate there. Then for the point Y obtained in the
next Step 2 we have WYl <iXall, since Xa?(Ps-Xa)<0, i.e., Py lies in the
near side of the halfspace determined by the hyperplane XaT(X-Xe)=0. |If we
further move to Step 3, Z satisfies I ZMl<liXe!l since HYIl<lXell, so
that Il Xe Il decreases. When we go back to Step 2, the current Xa is in the
re!;tive interior of C(Q) and the new Y in Step 2 satisfies HYIN = 1Xall.
IT Y is not in the relative interior of C(Q), tﬁen we have Y I < Xall .

Therefore, the present lemma follows by induction. i

At the begining of Step ! we have a set QCP and a point Xg in the
relative interior of C(Q) such that Xz is the minimus-norm point in the
affine hult ACQ) of Q. Hence, the hyperplane (A ) in Step 1 for each A

{0 =£A=1) contains 0. We call such a set Q@ a corral ( see [8] ).

Theorem 3.3 The dual algorithw terminates in a finite number of
steps.

( Proof ) Each major cycle completes with at most 1Q1 times
repeating minor cycles of Steps 2 and 3, where Q is the one obtained at the

begining of the major cycle and |1 Q1 denotes the numbher of points in Q.



This is because each Step 3 reduces (01 at teast by one.

From Lemma 3.2 each major cycle decreases 1 Xall, each corral
obtained at the beginning of Step 1 uniguely determines Xe ( the winimum-
norte peint of the ACQ) ), and there are only finitely many corrals for the
given set P. Hence the algorithm terminates in a finite number of steps.

a

4. Initial Separating Supnoriing-Hyperplanes

The duatl algorithm described in Section 2 requires an initial
separating supporting-hyperplane and its supporting point. We shall show
some methods to deal with the case where a separating supporting-hyperplane
is difficuit to find or may not exist.

We consider the (ntl)-dimensional Euclidean space R"*! by increasing
the dimension by one. For each point Py=(pij,=,pnsdT in R? define P;’=(pi;,
seypni, DT C j=1,2,,m ). Note that if we are given the minimum-norm point
Xo’=(x1e, ", Xne,1)7 in C(P*) for P’={ P1’,«,Pn’ }, then Xa=(x1a,,Xna)T
is the minimum-norm point in C(P).

Now, let C'X=d he any supporting hyperplane of C{P) with Xg being its
supporting point. Then CTX-dxn+1=0 is a separating supporting-hyperplane
of C(P’) and Xeo'=(Xa', 1)Tis a supporting point of C(P'). For example, a
supporting hyperplane of C(P) can he given as follows. For any k€{ 1,
> ,n } suppose
(4.1) min { pejy 1 §j=1,2,,m }=puj.
for some j-€{ 1,2,--,m}. Then, xx=px;~is a supporting hyperpiane of C(P)
with a supporting point P 1t should be noted that if Pup=0 in (4.1),

then Xe=p«; is a separating supporting-hyperplane of C(P).



We can also choose a separating supporting-hyperpiane of C(P’) in R"*!
as follows. Note that the hyperplane xn+1=1 is a separating supporting-
hyperplane of C(P’) and that any point P;’ is a supporting point { j=1,2,
«o,m ). If we choose a separating supporting-hyperplane in this way, the
dual algorithm becomes essentially the same as Wolfe’s primal algorithm
and the separating supporting-hyperplane is not rotated throughout the
algorithm. |t is interesting to see that YWolfe’s primal algorithm

correspond to the dual algorithm with the above reduction.

5. Computational Experiments

We carry out computationa{ experiments for two types of problems where

m points P; ( j=0,1,--,m ) are given as follows.

Type 1t m points P;=C prj,,pn; )7 C j=1,2,-,m ) are chosen at
random from the sample space where each component px; ( k=1,2,--,n; Jj=1,2,
«eum ) is uniformly distributed on { 1,2,-+,50 }.

Type 2: m points P;=C prj,=,pa; )7 ( j=1,2,+,m ) are chosen at
random from the sample space where each first component pi; ( j=1,2,-,m )
is uniformly distributed on [ 0.01-0.001, 0.01+0.001 J and other components
pri ( K=2,3,++,n; j=1,2,++,m ) are uniformly distributed on [ -0.001,

0.001 1. { This problem is also treated by Wolfe [8]. )

Initial separating supporting-hyperplanes are found by the method
described in Section 4. Note that we have pe=0 in (4.1) for the problems
of types 1 and 2.

Figure 5.1 shows a sample hehavior of viues ll Xall and C'Xe obtained

hy the dual algorithm for the probiem of type 2; the averaged behavior is
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atso shown in Figure 5.2.

Figure 5.3 shows the averaged number of major cycles for the problen
of type 1, and Figure 5.4 for the problem of tyne 2. The dual algorithn
requires mere major cycles than the primal one for the problem of type 2.
However, as shown in Figure 5.5, each set Q for the dual algorithm
consists of significantly smaller number of points than for the primal one.
Note that the reduciion of the size of Q strongly contributes to the
reduction of time for solving the system of equations (2.5) and (2.6).

We see from these computational experimenis that the efficiency of fhe
dual algorithm is comparable to primai one. However, the efficiency
heavily depends on the way of choosing an initial separating supporiing-
hyperplane.

The dual algorithm may be effective in the sensitivity or parametric

analysis with respect to the changing of the data P; ( j=1,2,-,m ).
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Figure 5.1. A sample behavior of the dual algorithm for the problem
of type 2 with m=100 and n=10.

X107
-“-l .
e I
10.0 } T TIiI T TTimme=
/'/
o |
-/ T
9.9 | 7 ("%
v
05|/
9.7 )
9.6 . A . .. e
4 8 12 16 20 24 steps

Figure 5.2. The minimum-norm Il Xa  in the affine set A(Q) and the
distance of the separating hyperplane as a function of the number
of the steps for the dual algorithm.

{ Type 2 problem; average of samples; m=100; n=10. )
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Figure 5.3. The number of major cycles as a function of dimension n.
( Type 1 problem; the average of ien samples; m=50. )
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Figure 5.4. The number of major cycles as a function of the number m
of given points. _
( Type 2 problem; the average of ten samples; n=10. )
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