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I INTRODUCTION

(poly-)matroid intersection problem of J. Edmonds [Edm70], the submodular
flow problem of J. Edmonds and R. Giles [Edm+Giles77], the independent
flow problem of the author [Fuji78a] and the polymatroidal flow problem of R.
Hassin [Hassin82] and E. L. Lawler and C. U. Martel {Lawler+Martel82].

Submodular functions are discrete analogues of convex functions. In Chap-
ter 4 we develop a theory of submodular functions from the point of view of
convex analysis [Rockafellar70], which we call the submodular analysis. We
will make clear the close relationship between the submodular analysis and the
results obtained in Chapter 3.

Finally we consider nonlinear optimization problems with submodular con-
straints in Chapter 3. A decomposition algorithm is shown for a separable
convex optimization problem over a base polyhedron and it lays a basis for the
algorithms of the other problems such as the lexicographically optimal base
problem, the weighted max-min (min-max)} problem and the fair resource al-
location problem. We also consider a neoflow problem {the submodular flow

problem) with a separable convex cost function.

Basic Definitins and Notations

We denote the set of reals by R, the set of rationals by Q and the set of
integers by Z.

For any finite set X we denote its cardinality by {X|. When X is a subset
ofaset Y, we write X C Y, and when X is a proper subset of ¥ (ie., X C Y
and X #Y), we write X C Y.

Let V and A be finite sets, where V 1s called & vertez sef and A an arc set
We are also given two functions 87,87 : A — V. For each arc « € 4 874 is the
initial end-vertex (or the tail) of @ and 87 a is the terminal end-vertex (or the
head) of a. We call G = (V,4;8%,57) a graph (or a directed graph). When
there is no possibility of confusion, we also denote the graph by G = (V, 4).
We often express an arc @ by the ordered pair (8% a, 8 a) of the end-vertices
when such a pair uniquely determines the arc. '

When we do not distinguish 81a from &« for each a in A or we are not
concerned with the orientations of the arcs, we call the graph G = (V, 4) an
undirected graph and call each a € A an edge instead of an arc.

We define for each vertex v € V

§Tuv={a| e €4, §a =1}, (0.1)

§"v={e¢| €A, 8 a=0v}. (0.2}
Also define for each subset IV of V7

A+D'={a|aEA, & a €U, da €V -U}, (0.3)

2



Chapter I. Introduction

Introduction

In 1935 H. Whitney [Whit35] introduced the concept of matroid as an
abstraction of the linear dependence structure of a set of vectors. Several sys-
tems of axioms for defining a matroid are now known, each of which is simple
but substantial enough to yield a deep theory in Combinatorial Optimization
and to have a lot of applications in practical engineering problems (see [Iri83],
- [Iri+Fuji81], Murota87], [Recski]). Matroidal structures are closely related to
a class of efficiently solvable combinatorial optimization problems; a careful ex-
amination of an efficiently solvable problem often reveals 2 matroidal structure
which underlies the problem. A

In 1970 J. Edmonds [Edm70] combined the matroid theory with polyhe-
dral combinatorics and lead us to the concept of polymatroid. A polymatroid
polytope, called an independence polytope, 1s expressed by a system of linear
inequalities with {0,1}-coefficients and the right-hand sides given by a sub-
modular function which is the rank function of the polymatroid. The relation
between matroids and polymatroids is similar to that between matchings in
bipartite graphs and flows in networks.

The rank function of any polymatroid is a monotone nondecreasing sub-
modular function on a Boolean lattice 2% for a finite set F. The monotonicity
of the rank function does not play any essential téle in characterizing the com-
binatorial structure of the polymatroid polytope since the monotonicity is not
invariant with respect to tramslations of the polytope. The concepts of sub-
modular and supermodular systems [Fuji78b,84] naturally come up with this
observation. The rank function of a submodular (or supermodular) system
is a submodular function on a distributive lattice, a sublattice of a Boolean
lattice. The duality is defined between a submodular system and a super-
modular system, which dissolves the clumsy definition of pelymatroid duality
[McDiarmid73]. Submodular systems are not only theoretical generalizations
of matroids and polymatroids but also significantly extend the applicability in
practical problems.

In Chapter 2 we first mtroduce the concepts of submodular and supermod-
ular systems and their associated base polyhedra by following the historical
generalization sequence of matroids, pelymatroids and submodular systems.
We then examine algorithmic aspects of submodular systems and basic struc-
- tures of base polyhedra.

In Chapter 3 we consider a class of Tmetwotk flow probléms with submod--
ular boundary constraints, which we call the neoflow problem. It includes the

1



ATU={a|a€A 8 a€U 87acV-U}. (0.4)

A directed path in G is an alternating sequence (vo,a1,v1,82, ", k-1, 2k, Uz )
of vertices v; (i = 0,1,-+,k) and arcs ¢; ({ = 1,2,---,k) such that 8ta; =
Vim1, 07ai =v; {+ =1,2,--- k). vy is the initial vertex of the path and v is
the ferminal vertez. We also say that the path is from vy to vx. A directed
path is called a directed cycle if its initial and terminal vertices coincide with
each other.

A bipartite graph G = (V1 ,V~; A) is a graph with two disjoint vertex sets
V™ and V™ and with an arc set A consisting of arcs o such that 87a € ¥V
and 0"a € V7. A matching M In the bipartite graph 7 is a subset of the
arc set A such that for any distinct arcs ¢,a’ in A we have 8Te 2 8te! and
8" a # 8 4. Also, a cover (UT,U~) of Gis the ordered pair of U+ C ¥+ and
U~ €V~ such that for any arc a € A we have dta € Ut 0xr 8¢ € U~.

A graph G = (V, A) is a directed tree if it is connected and for each vertex
v € V there exists at most one arc ¢ € 4 such that 8 ¢ = v. In a directed iree
G = (V, 4) there exists one and only one vertex vy € V such that § vy = 9.
We call v the root of the directed tree G.

us






Chapter II. Submodular Systems and Base Polyhedra

In this chapter we gi've basic concepts on matroids, polymatroids and sub-
modular systems and show the natural generalization sequences of these con-
cepts from matroids to submodular systems. We also examine the fundamental
combinaterial structures of submodular systems and associated polyhedra.

For basic properties of matroids and polymatroids shown without proofs
in this chapter, readers should be referred to [Tutte65], [Lawler76], [Welsh76].
The knowledge about matroids and polymatroids is not prerequisite to under-

standing submodular systems, though 1t certainly helps.
i For general information on submodular and supermodular functions see,

e.g., [Bdm70], [Faigle87], [Frank + Tardos88], {Fuji84c], and [Lovdsz83].

1. From Matroids to Submodular Systems

!

1.1. Matroids

The concept of matroid was introduced in 1935 by H. Whitney [Whit33]
and independently by B. L. van der Waerden {Waerden37]. The term, matroid,
15 due to Whitney. As the term indicates, a matroid is an absiraction of linear
independence and dependence structure of the set of columns of a matrix.

Let F be a finite set. Suppose that a family 7 of subsets of E satisfies the
following (10)~—(12):

(Io) 6eT.

(1) h CLelI=hLET.

(I2) [, LeZ,|h|<|hl=3ececl,-L:jU{e} €T.

We call the pair (F,7) a matroid. Each I € T is called an independent sef of
matroid (B,7) and T the family of independent sets of matroid (£,7).

An independent set which is maximal in 7 with respect to set inclusion is
called a base.

A subset of F which is not an independent set is called a dependent sef. A

dependent set which 1s mimimal with respect to set inclusion is called a circuii.
We define the rank function p:2% — Z of matroid (E,Z) by

o X)=max{|l| | ICX, €T} (1.1)

5



IL. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

for each X C E. The rank function p satisfies the following (p0)—(p2):

(s0) YX C B: 0 < p(X) < |X].

(1) X CY CE = p(X) < p(Y}.

(02) YX, Y CE: p(X) +p(Y) 2 o(X UY) +p(XNY).
Any function p satisfying (p2) is called a submodular function on 2%. From
(p0})—(p2) we see that p has the unit-increase property, i.e., forany X,Y C E

with X CY and |X|+ 1 =|Y| we have p(Y} = p(X) o1 p(Y) = p(X) + 1.
Also define the closure function cl: 2% — 2% of matroid (B, T) by

(X)={e] c €5, p(X U{eh) = p(X)} 12

for each X C E.

For any independent set I € 7 and any element ¢ € ¢I(I) — I, there exists
a unique circuit contained in 7 U {e}. Such a circuit is called the fundamental
" ctreutt with respect to I and e, and is denoted by C(I|e}. For any ' € C([le),
(Iu{e}) — {e'} is an independent set.

It 1s well known (see [Welsh76]) that each of the family 7 of independent
sets, the family B of bases, the family C of circuits, the rank function g and the
closure function ¢l uniquely determines the matroid which defines it. Giving a
system of axioms for each of the family B of bases, the family C of circuits, the
rank function p and the closure function cl, we can define a matroid. We denote
sych a matroid by (E, B), (E,C)}, (B, p) and (E, cl), respectively. For example,
(p0)—(p2) give the system of axioms for the rank function p of a matroid. Any
integer-valued function p: 2F — Z satisfying {p0}—(p2) defines a matroid (E, o)
with the family 7 of independent sets given by

T={I]1CE, D) =1} (1)

For a matroid M = (F,B) with a family B of bases, the family 5™ of the
complements of bases of the matroid is also a family of bases of a matroid. The
matroid M* = (E, B*) is called the dual matroid of M = (¥, B). The dual of
M" is equal t0 M, t.e., (M™)* = M.

Examples of a Matroid

(1) For a graph G = {V, F) with a vertex set V and an edge set E let G(7)
be the set of those edge subsets each of which does not contain any cycle of
G. Then M(G) = (E,G(7)) is a matroid with G(7) being the family of inde-
pendent sets. A matroid which can be obtained in this way is called a graphic
matroid. (iven an independence oracle for the membership in the family of
independent sets, the graphicness of a matroid is effictently discerned and if

6



1.2. POLYMATROIDS

graphic, a graph representing it can also efficiently be constructed by combin-
ing the algorithms of P. D. Seymour [Seymour80] and the author [Fuji80a] (also
see [Bixby+Wagner88]).

(2) For 2 matrix A = [ag,---,a,] over some field with column vectors
ay, v, a, let £ = {1,---,n} be the column index set and A(T) be the set
of those subsets of £ each of which forms independent column vectors. Then
M(4) = (E,T(4)) is a matroid with T(A) being the family of independent
sets. A matroid which can be obtained in this way is called a matric matroid
or a linear maitroid. A graphic matroid is a matric matroid represented by the
incidence matrix of the associated graph.

(3) For a bipartite graph G = (V't,V~; 4) with left and right end-vertex
sets VT and V™ and an azc set A. Define

It ={8"M | M: a matching of G}, (1.4)

. where &t M is the set of left end-vertices of matching A. Then Mt =
(V+,7%) is 2 matroid with Z% being the family of independent sets. M+
is called a ftransversal matroid. Transversal matroids are matmc.

(4) Let B be 2 finite set with cardinality |F| = n > 0. For any nonnegative
integer k < n define

T, ={I|ICE, |I| <k} (1.5)

Then (E,Z:) is a matroid. It is called a uniform matroid of rank % and is
usually denoted by Ui ,. In particular, U, , = (&, 28 is called a free matroid
and Ug , = (£, {8}) a trivial matroid.

1.2. Polymatroids

Let E be a finite set and p be a function from 2% to R. Here, R is the set
of reals but throughout this monograph R can be any totally ordered additive
group such as the set Z of integers, the set Q of rationals etc. unless otherwise
stated. Suppose that the function p: 27 — R satisfies

(£0) p(8) = 0.

(1) X CY CE= p(X) < p(Y).

(h2) VXY CE:p(X) +p(Y) 2 p(X UY) +p(X NY).
The pait (E,p) is called a polymetroid and p the rank function of the polyma-
troid ([Edm70}). The rank functin p is a monotone nondecreasing submedular
function on 2% with p(#) = 0 and does not necessarily have the unit-increase

property as the rank function of & matroid. When p is the rank fanction of a
matroid, polymatroid {F, p) is called matroidal

7



II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA
Define
Prylp)={z]c€R” 220, VX CE:2(X) <p(X)}, (L)

where for eack X C F ard ¢ € R¥

z(X) = Z z(e). (1.7

ec X

P1y{p) is called the independence poIJhedron assoctated with polymatroid
(E,p). Also define

p) ={z |z €P5)(p), 2(E) = p(E)}. (1.8)

We call B(p) the base polyhedron associated with polymatzoid {5, p). The base
polyhedron B{p) is always nonempty. (See Fig. 1.1.)

pis)
22) B(p)
- /

Blp)

R_—:-)(P)

X))

() (b)

Figure 1.1.

It can be shown (see [Edm70]) that the convex hull in R® of the charac-
tenistic vectors of the independent sets (or bases) of a matroid on F with the
rank function p, where R 1s the set of reals, is the independence polyhedron
(or the base polyhedron) associated with the matroidal polymatzoid (B, p).

Each « € P(1)(p) is called an independent vector and each @ € B(p) a base
of polymatioid (&, p).
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1.2. POLYMATROIDS

For an independent vector z € Pyy(p) define
D(e)= (X | X C B, o(X) = p(X)}. (19)

D () is closed with respect to set union and intersection, i.e., X, ¥ € D(e) =
XUY, XNY € D(z). For, f X, Y € D(z),

0=p(X)=2(X)+p(Y)=2(Y) > p(XUY)—2(XUY)+p(XNY)—2(XNY) >0,

(1.10)
where p(XUY) —2(XUY) > 0and o(XNY)—2(XNY) > 0since & € P4 {p).
It follows that X UY, X NY € D(z). So, D(z)} is a distrtbutive lattice with
set union and intersection as the lattice operations, join and meet. Denote the
unique maximal element of D(z) by sat(r), ie.,

sat(z) =U{X | X CE, ={(X) = p(X)}. (1.11)

" The function, sat: P(4y(p) — 2%, is called the saturation function (see [Fuji78a]).

Informally, sat(z) is the set of the saturated components of z. More precisely,
sat(z) ={e| e € B, Ya > 0:z+ ax. € P(4)(p)}, (1.12)

where x, is the unit vector with x.(e) =1 and x.(¢') =0 (¢! € E — {e}). The

saturation function s a generalization of the closure function of a matroid.

¢ For an independent vector « € P(1y(p) and an element e € sat(z) define

D(r,e) ={X | e € X CE, 2(X) = p(X)}. (1.13)

- We have D(z,¢e) C D(z) and D(z,e) is a sublattice of P (z). Denote the unique

minimal element of D(z,e) by dep(z, ), lLe.,

dep(m,e):ﬂ{X lee X CE, z(X) =p(X)}. (1.14)
For each e € F — sat(z) we define dep(z,e) = @. The function, dep: P(.y{p) x
E — 2% s called the dependence function (see [Fuji78a]). For z € P4) (o) and
e € sat(z),

dep(z,e) ={e' | ' € F, Fa > 0:z + axe — xer) € Py (p)}- (1.15)
The dependence function is a generalization of a fundamental cizenit of a ma-
troid.
For & € Pyy(p) and e € E — sat(2) define
dz,e) =max{a | @« ER, z+ax. € P1){p)}, (1.186)

3



IL SUBMODULAR SYSTEMS AND BASE POLYHEDRA

which is called the saturation capacity associated with z and e. The saturation
capacity 1s also expressed as

&z, e) =min{p(X) - z(X) e€ X C £} (1.17)

For any « such that 0 € @ € &(z,¢) we have z + ay, € Py (o)
For 2 € Pryy(p), ¢ € sat(e) and e € dep(z,e) — {e}, define

w,e,e') =max{a e €R, ¢ +a(x, — Xet) € Pyeth (1.18)

which is called the ezchange capacity associated with ¢, e and ¢'. The exchange
capacity 1s also expressed as

iz,e,e) =min{p(X)—2(X) | e€ X CE, ¢ ¢ X}. (1.19)

(See Fig. 1.2.) For any o such that 0 < o < &(z, ¢, ¢') we have z+a(xe—xe) €
Py (o).

x(2)
"

c(x,14,2)

E(‘&)?—)/

> (1)

Figure 1.2.

A vector v € R¥ such thatz < v forany z € Pryy(p)is called a dorinating
vector of (B, p). For a dominating vector v of the polymatroid P = (&, p) define
pfﬂ}: 2% = R by

Py (X) = 0(X) +p(E = X) - o(B) (X C E). (1.20)

10 .



1.2, POLYMATROIDS

’I(?-}\ _

OI’

Cx) = e
P(-!—) ( Pﬁ(z"-‘)
P(-t—)(p)
> x({)

0 ¥

x(2)
Figure 1.3.

Then PE'” = (E, pfv)) is a polymatroid and is called the dual polymatroid of
P =(F, p)) with respect to v ([McDiarmid75]). (See Fig. 1.3.)

*  For most polymatroids there is no reasonable and physically meaningful
way of choosing a dominating vector v and the arbitrariness of dual polyma-
troids remains, though the choice of v = (p{{e}):e € E) may be reasonable.
For matroidal polymatroids, the matroid duality corresponds to the polyma-~
troid duality with respect to the vector I of all the components being equal to
1.

Examples of a Polymatroid

(1) Multiterminal flows: For a capacitated flow network /M = (G =
(V,A),c,5%,57) with the underlying graph G = (V, A), a nonnegative capac-
ity function ¢: 4 — Ry and S* and S~ are, respectively, the set of entrances
and the set of exits, where §*, S~ CV and St NS~ =0. We assume without
loss of generality that there 1s no arc entering S+ or leaving S~. A function
p: A— Ris a feasible flow in N if

Va € 4: 0 < ¢(a) < c(a), (1.21)
Yo eV —(STUST): 8p(v) =0, (1.22)

11



II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

where 8¢:V — R 1s the boundary of ¢ defined by

dp(v)= > wla)— > ¢la) (weV). (1.23)

acsta cES v

Here, §Tv (or § ) is the set of the arcs whose initial (or terminal) end-vertices
ate v. It is shown (see [Megiddo74]) that the set {(890)3+ | ¢: a feasible flow in
N} istheindependence polyhedron of a polymatroid on the set ST of entrances,
where (890)3+ is the restriction of 8¢ on ST. Similatly, we have a polymatroid
on the set S of exits. :

(2) Linear polymatroids: Let A be a matrix with the column index set
. Suppose that F is partitioned into nonempty disjoint subsets Fy, Fy, -,
Fy, and define & = {1,2,---,n}. Also define for each X C F

o(X) = rank4?, (1.24)

where A¥ is the submatrix of A formed by the columns of A with the indices
in | J{F; |t € X}. We see that (E, p) s a polymatroid, which is called a linear
polymatroid,

(3) Entropy functions: Let =y, 3, -+, , be random variables taking
on values in a finite set {1,2,---,N}. For the set £ = {®1, '+, 2.} of the
random variables, define for each nonempty subset X of ¥

2

the entropy of X in the Shannor sense (X # 0)

&) ={ 0 (X =1)

(1.25)

For example, if X = {&1,22, -, 2:} (1 £k < n),

N N
MH) == 3 Y pler = in, oy mn = i) loga oy = in, ooy = i),
i1—=1 =1
(1.26)
whete p(zy = i1, ', T; = i;) 1s the probability of the event that zy =y, - -+,
zp = i;. The function h:2F — R 15 called an entropy funcéion. Entropy
function k is a monotone nondecreasing submodular function with A{#) = 0,
i.e., (E,k) is a polymatroid. See [Fuji78¢| for polymatroidal problems in the
Shannon information theory.

(4) Convex games: Consider a characteristic-function game (see, e.g.,
[Shubik82]). Let B = {1,2,.-+,n} be a set of n persons, called players. A
characteristic Tunciion v is a nonnegative function defined on the set of coali-
t1ons which are subsets of E.

19



1.3. SUBMODULAR SYSTEMS

A characteristic-function game (F,v) is called a convez game ([Shapley])
if the characteristic function v is supermodular, i.e.,

VX, Y CE: v(X)+v(Y) <v(XUY)+2(XNnY). (1.27)
The core of the game (F, v) is the set of payoff vectors defined by
{z |z €RE, VX CE:2(X) > v(X),2(E) = v(E)}. (1.28)
Define the function v#: 2¢ — R by
v (E - X)=u(E) - u(X) (X CE). (1.29)
Then we can show that v# Is a polymatroid rank function and that the core
given by (1.28) coincides with the base polyhedron B{¢#) of the polymatroid.
1.3. Submodular Systems
Let £ be a fimte set and D be a collection of subsets of £ which forms
a distributive lattice with set union and intersection as the lattice operations,
join and meet, 1.e., for each X, Y € D we have X UY, XNY € D. We assume
that 8, £ € D, i.e., § and E are, respectively, the unique minimal and maximal
elements of D, Let f:D — R be a submodular function on the distribntive
lattice D, Le.,

VX, YeED: f(X)+fY)>f(XUY)+f(XNY). (1.30)

We have the following fundamental lemma concerning submodular funec-
tions.

Lemma 1.1: Let f: D — R be an arbitraty submodular function on a dis-
tributive lattice D C 2%. Then the set of all the minimizers of f given by

Do={X|X €D, }(X)=min{f(¥)|Y € D}} (1.31)

forms a sublattice of D, i.e., for any X, Y € Dy we have X UY, XNY € Dy.
(Proof) For any X, Y € Dy,

HX)+ 1Y) 2 F(XUY) + F(XNY), (1.82)

where min{f{X UY),f(XNY)} > F(X} = f(Y). Hence we must have f(X U
Y)=fXNY)=fHX)=#(Y)), 1e, XUY, XNY €Dy. Q.E.D.
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Il SUBMODULAR SYSTEMS AND BASE POLYHEDRA
For a submodular function f on a distributive lattice D C 27 with 8, F € D
and f(0) =0, we call the pair (D, f) a submodular system on E, and f the rank
function of the submodular system (see [Fuji78b, 84]). We call f(&) the renk
of (D, £).
Define a polyhedron in R by
P(fy={z|z€R?, VX € D: 2(X) < }(X)}, (1.33)

We call P(f) the submodular polykedron associated with submodular system
(D, f). Also define

B{f) ={ez | = € P(f), =(E) = f(B)}. (1.34)

We call B(f) the base polyhedron assoclated with submodular system (D), f).

(
(See Fig. 1.4.)
/A B(f)
/
P
> x(1)

Wz

Figure 1.4.

X (2)

N

N
Q

N

Proposition 1.2: The base polyhedron B{f)} is the set of all the maximal
vectors in the submodular polyhedron P(f). In particular, B(f) # 0. Here,
the order €< among vectors in R is defined as follows: for z, ¥ € R® we have
z < yif and only if z(e) < y{e) for all e € E.
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1.3. SUBMODULAR SYSTEMS

A vector in the base polyhedron B(f) is called a base of (D, f) and a
vector in the submodular polyhedron P(#) is called a subbase of (D, f). From
Proposition 1.2 we see that for any subbase ¢ of (D, ) there exists a base y of
(D, f) such that z < 3.

The saturation function, the dependence function, the saturation capacity
and the exchange capacity introduced for polymatroids can easily be extended
for submodular systems. For any subbase z € P(f) define

D(e)={X|=€D, «(X)=F{X)}. (1.35)

Then P(z) is a sublattice of D. (This follows from Lemma 1.1 since D(z) is the
set of minimizers of the nonnegative submodular function f —z: D — R.) The
unique maximal element of D (z) is denoted by sat{z). sat: P(f)} — 2% is the
saturation function.

For any subbase z € P(f) and e € sat(z), define

D(z,e)={X |e € X €D, «(X) = #{X)}. (1.36)

Then D(z,e) is a sublattice of D. (Note that D{z,e) is the set of minimiz-
ers of the nonnegative submodular function f — z on the distributive lattice
D(e) ={X|e € X € D}.) The unique minimal element of D(z,e) is denoted by
dep(z, e). For any ¢ € E —sat(z) we define dep(z,e) =B. dep: P(f) x B — 2%
1s the dependence function.

. For any ¢ € P(f) and e € E — sat(z) the saturation capacity &z, e) is
defined by

z,e) =min{f(X)—-2(X)}|e€c X € D}. (1.37)

For a nonnegative o, we have z + ax, € P(f) if and only if 0 < o < &=, e).
Moreover, for any ¢ € P(f), ¢ € sat(z) and ¢ € dap(z,e) — {e} the
ezchange capactty &{z,e,e') is defined by

&(z,e, ey =min{f(X)—z(X)|e€e X €D, ¢ ¢ X} (1.38)

For a nonnegative o, we have & + alx. — x./}€ P(f) if and only if 0 < «
< &z, e,e'). (Note that if z € B(f), then z + a(x. — xr) € P(#) implies
z +0='(Xe - Xe’) € B(f))

A function g D — R on the distributive lattice D 1s called a supermodular
function if —g is a submodular function, i.e.,
VX, YED: g{X)+4(Y) < g(XUY)+g(XNY). (1.39)
The pair (D, g) is called a supermodular systemn. Define

Plg)={z |z € R®, VX eD: 2(X) > g(X)}, (1.40)

15



Il. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

B(g) = {= | = € P(g), 2(F) = g(E)}. (1.41)

P(g) is called the supermodular polyhedron and Blg) the base polyhedron as-
sociated with the supermodular system (D,g). A vector in P(g) is called &
superbase and a vector in B(g) a base of (D, g).

A function which 1s submodular and at the same time supermodular is
called a modular function. For a& modular function 2: D — R, P(«) should
be considered as either a submodular polyhedron or a supermodular polyhe-
dron according as we consider  as a submodulaz function or a supermodulas
function. There will be no confusion by the use of this notation.

¥ we constder the dual order € * of the ordinary order < among R {where |

the dual order < ™ is the one such that o <™ §1if and only if § < @, for
each &, 8 € R}, then a supermodular function g¢ D — R with respect to
(R, <) is a submodular function with respect to (R, < *). In the same way
the supermodular polyhedron P(g} ard a superbase = € P(g) with respect to
(R, £) is a submodulaz polyhedron and a subbase with tespect to (R, < *).

For a submodular system (D, f) on £ define a function f#: D — R as
follows.

D={E-X|XeD}, (1.42)
JHE-X)=f(E)Y-f{X) (XeD) (1.43)

f# is a supermodular function on the dual lattice D of D. We call the pair
(‘ﬁ F#) the dual supermodular system of (D, §). (See Fig. 1.5.) Similacly, we
define the dual submodular systern (D, g%) of a supermodular system (D, g),
where D is defined by {1.42) and ¢¥ by (1.43) with f replaced by g.

Lemma 1.3: We have B{f) = B(f#) and (y¥)# = .

The proof is immediate and is omitted. It should be noted that Lemma
1.3 holds for eny function f on T without submodularity.

The submodular/supermodular polyhedron and the base polyhedron of a
submodular system also arise from more general functions. A family 7 C 2% 1s
called an infersecting family if for each intersecting X, Y € F (e, X, Y € F
and X NY # 8) we have XUY, XNY € F. A function /:F — R on the
intersecting family F is called intersecting-submodular if for each intersecting
X, Y € F we have the submodularity inequality

JX)+fY) 2 f(XUY)+ f(XNY), (1.44)
Moreover, a family & C 2% is called a crossing family if for each crossing
X, YEF (le, X\,;,7 YEF, XNY #6, X -Y £0, Y —X # 0, and
XUY # E)wehave XUY, XNY € F. A function f: F — R on the crossing

16



1.3. SUBMODULAR SYSTEMS

X2y A

0 7 \ > (1)

Figure 1.5.

family F is called crossing-submodular if for each crossing X, ¥ € F we have
the submodularity inequality (1.44) (see [Edm+Giles77]). Note that the term,

submodular, without any modifier is used for such a function f: D — R on a
distributive lattice D that satisfies (1.44) forall X, Y € D.

The following theorem, due to the author [Fuji84b], concerning intersecting-
and crossing-submodular functions on intersecting and crossing families plays
a very important réle in the combinatorial optimization problems described by
intersecting- or crossing-submodular functions on intersecting or crossing fam-

ilies, and reveals the essential combinatorial structures of the problems (which
will also be seen in Chapter III}.

Theorem 1.4 [Fuji84b]:
(i) Let f be an intersecting-submodular function on an intersecting family
F C2% with 9, E € F and f(8) =0. Define
P(f)={« |z €R®, VX € F: 2(X) < f(X)}. (1.45)
Then there exists a unigue submoduia.r system (D1, f1) on E such that
P(f) =P(f1). (1.46)

Moreover, if f is integer-valued, then f; is also integer-valued.

17



II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

(i1) Let f be a crossing-submodular function on a crossing family 7 C 2%
with @, # € F and f{8) = 0. Define

B(f)={c |z €R®, VX € F: e(X) < f(X), 2(E) = #(B))} (1.47)

and suppose B{f) # 0. Then there exists & unique submodular system (D3, f2)
on & such that

B() = B(J2). (1.48)

Moreover, if f 1s integer-valued, so is f;.

Theorem 1.5 [Fuji84b]:

(i) Let f be an intersecting-submodular function on an intersecting family
F C 28 with 8, E € F and f(#) = 0. Then the rank function f; of the
submodular system (Dy, f1) in (i) of Theorem 1.4 is given by

Y= mm{z A | {Xi]i €1} apartition of ¥,
el
X,;eF(tel} (1.49)

for each Y C E, where f1(Y) = +oco (i.e., the minimum is taken over the empty
set) if and only if ¥ ¢ D,

(i1) Let f be a crossing-submodular function on a crossing family F C 2%
with , E € 7 and f(8) = 0. Define

fo(B) = min{) _ f(X;) | {Xi|i €I} a partition of B,

el
X €F (i € 1)}, (1.50)
(%), (E) = max Zf# I {X;|¢ € I}: apartition of &,
iel
E-XieF(iel}, (1.51)

where f#(X) = f(E)} — f(E = X) (E = X € F). Then B(f) defined by (1.47)

1s nonempty if and only if

F(B) = £,(B) = (1#),(8) (1.52)
SO S HEY Y X (1.53)
ied el

oy
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for any partitions {X; [{ €I} and {Y; | j € J} of B with X; € F (i € I) and
E-Y,eF (j€J)

Moreover, if B(f) # @, the rank function f; of (Dg, f2) ir (ii) of Theorem
1.4 is given, in terms of its dual, by

:#(Y)(=HE) - f2(E-Y))

= ma,x{Z(fp)#(X;) | {Xi|i€I}: a partition of ¥,
ief
E~XieF,(i €}, (1.54)

where

Y)—nun{Zf(X | {Xi]i€I}: apartition of ¥,

el
X;eF(ieD} (YCB), (155
Fp={X | X C B, f(X) < +co}, (1.56)
(f)¥(X)=F(B)~ f,(E—X) (BE~X€TF), (1.57)
Dy={X|XCE, fo(X) < +o0} (1.58)

and the minimum (or maximum) taken over the empty set is equal to +oco (or
—~o0).

. Since B(f) = B(f#), beginning with /¥ instead of f, we car also obtain
a dual formula for f;.

It should be noted that for a crossing-submodular function f on a crossing
family 7 the polyhedron P(f) defined by (1.45) may not be a submodular
polyhedron but that any intersection of P(f) with a hyperplane z(F) = %
(const.), if not empty, is & base polyhedron (see Fig. 1.6).

Examples of a Submodular System

Matroids and polymatroids are examples of a submodular system. We
show some non-polymatroidal submodular systems.

(1) Cut functions: A typical non-polymatroidal submodular system arises
from network flows.

Let N = (G = (V,4),¢,¢) be a capacitated network with the underlying
graph G = (V, 4) and the lower and upper capacity functions ¢ A — RU{—o0}
and & A — R U {+co} such that c{a) < T(a) for each arc a € A. Define a
function kg7 2€ — R U {+co} by

rez(U)= 3 Wa)— > cla) (UCW), (1.59)

ac AT sEAU
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%(3)
A . //

> X(2)

P(f)

Figure 1.6.

where A+ U is the set of azes leaving U in G and A~ U is the set of arcs entering
Uin G. For each U, W € 2V such that s z(U) < 400 and ke z(W) < +o0, we
have ke z(UUW) < +o0, 6, z(UNW) < +00 and
K.E‘E(U') + HE,E(W) - RE,E(U UW)— EQJE(U Nnw)
=> {ea) —cla) e €4, 0T €UNW, 6 a €V — (UUW))
+> {ele) ~cla) | a €4, 7 a€UNW, 8Ta €V - (UUW)}
> 0. (1.60)

Therefore, D (g, €) C 2% defined by
D) ={U[UCV, r.z(U} < +o0} (1.61)

is a distributive lattice with @, V' € D{¢,¢). Denoting the restriction of KT 10
D(c,@) by ez again, we have a submodular function kez on the distributive
lattice D(g,T), where #,z(8) = 5. z(V) = 0. We call 5.7 the cut function
associated with network /' = (G = (V, 4),¢,¢). The cut function x,z is not
monotone nondecreasing for nontrivial networks. A feasible flowpin N = (G =
(V,A),¢0) is a funtion ¢: A — R such that (e} < ¢{a) < & a) for any a € A.
The set of the boundaries 3¢ of feasible flows ¢ in N = (G = (V, 4),¢,) is

wo
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given by

8% = {0p | v: A — R, Va € A:¢le) < pla) £ %(a)}
= B(#¢,7), (1.62)

which is the base polyhedron associated with the submodular system (D (g,2),
Ko7} (See (1.23) for the definition of the boundary Jp.)

The fact that each base in B{x,z) is expressed as the boundary d¢ of a
feasible flow ¢ in A can be shown by the use of the feasible circulation theorem
of A. Hoffman [Hoffman60] as follows.

For any z € B(s,z), consider a new vertex ¢ ¢ V and new arcs (s,v) (v €
V), and define ¢(s,v) = ¢(s,v) = z(v) (v € V). Denote the augmented network
by M' = (G = (VU {s},AU {(s,2) | v € V}),¢,E). There exists a feasible
circulation {a feasible flow with the zero boundary) in &' if (and only if) for
every U C VU {s} we have '

S )z Y o) (169

aCATU eCA-U
where A* and A~ are with respect to G'. {1.63) is equivalent to z € B(x. 7).
Therefore, there exists a feasible circulation ¢ in A'. Restricting ¢ to 4, we

obtain a required feasible low in A whose boundary is equal to .
The converse, 88 C Blx,7), is immediate.

(2) Cross-free families: For a finite set B let 7 C 2F be a cross-free family,
ie., for each X, Y € 7 X and Y do not cross, where we assume 9, E €
F. Then for any function f: 7 — R with f(8) =0, £ B(f) = {z | z €
RE, VX € F:2(X) € #(X), =(E) = f(E)} # 0, B(f) is a base polyhedron
due to Theorem 1.4, since F is a crossing family and f is a crossing-submodular
function.

Moreover, if F is laminar, i.e., for each X, Y € F X NY # 0 implies
X CY or X DV, then for any function f on F P(f) ={c |z € RP, VX €
F:z(X) < f(X)} is a submodular polyhedron due to Theorem 1.4. Note that
laminar F is an intersecting family and that f i1s an intersecting-submodular
function on F .

2. Submodular Systems

In this section we give basic properties of submodular systems.

2.1. Fundamental Operations on Submodular Systems

We show several fundamental operations on a submodular system (D, f)
on F. '
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(a) Reductions and contractions by sets

For any A € D define
DA={X|AD X €D} (2.1)

AX)=HX) (X eDh). (2.2)

Then (D4, 74} is a submodular system on 4 and is called the reduction or the

restriction of (D, f) to A. We denote (D4, f4) by (D, f)- 4 o1 (D, )~ (E—A4).

Also definefor A €D
DA={X—-A|A(;XQ'D}, (2.3)

fa(X)=F(XU A}~ f(4) (X EDy) (2.4)

Then we have a submodular system (Dy4, f4) on E — 4, which is called the
" contraction of (D, f) by A and is denoted by (D, f)/A o1 (D, f) x (E — A).

We call a submodular system obtained by repeated reductions and/or con-
tractiens of (D, f) by sets a set minor of (D, f).

Lemma 2.1: For any A € D let z* be a base of the reduction (D, f) - A of
submodular system (D, f) to A and 24 be a base of the contraction (D, f)/4
of (D, f) by A. Then the direct sum & =e* @z, of 22 and 2z, defined by

| zi(e) (e€A)

(Q?A@-‘"J’A)(e):{mf;(e) (eEE““A)

(2.5)

is a base of (D, f). Conversely, for any base & of (D, f) satisfying £(4) = f(4),
restricting & on A (o1 on E — A} yields a base of (D, f) - A (or (D, f)/4).

(Proof) Easy. Q.ED.

Lemma 2.2: For any X € D there exists a subbase z € P(f) such that
z(X) = f(X). Furthermore, for any X € 2% — D and any K > 0 there exists a
subbase X € P(f) such that =(X) > K.

(Proof) The first half follows from Lemma 2.1. The second half is shown as
follows. For any X € 2% ~D thereexist ¢ € X and ¢’ € F—X such that for each
YeD withe€Y wehavee' €Y. Henceforany y € P(f), y¢ = y+d{xe —xo)
belongs to P(f) for any d > 0. Therefore, the value, y4(X) = y(X) +d, can be
made arbitrarily lazge. Q.E.D.

(b) Reductions and contractions by vectors

Cgg
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For any vector # € RF define a function f*:2¥ — R by
FX)=min{f(Z)+2z(X~-2) | XD Z €D} (2.6)

for each X C £. Then the function f%:2¥% — R is a submodular function on

the Boolean lattice 2%. For, denoting by Zx a minimizer Z of the right-hand
side of (2.6), we have foreach X, Y C F

X+ =fGZx)+ (X - Zx)+ f(Zy) + X(Y - Zv)
> f(ZX UZY) +a:((X UY) - (ZX UZY))
+fH(ZxNZy)+z(XNY) - (Zx N Zy))
> (X UY) + /(X NY). (27)

We call the submodular system (ZE, F%) the reduction of (D, f) by vector =.
Define

()" = {y| y € P(S), ¥ < o}, (2.8)

. which is the set of subbases of (D, f) smaller than or equal to = (see Fig. 2.1).

x(2)
A

= X(1)

Figure 2.1.

Theorem 2.3: The submodular polyhedron associated with the reduction
(2%, £7) of (D, §) by vector x is given by '

P(f*) =P(f)". (2.9)
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II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA
When z is a superbase of (D, £}, i.e. & € P(f#), then
B(#7) =B(#)”, (2.10)

where B(7)* = {y |y € B(f), v < o},
(Proof) For any y € P(f®), we see from (2.6)

VX eD: y(X) < f(X), (2.11)

Ve € E: y(e) < z{e). (2.12)

Hence y € P(f)*. Counversely, for any y € P(f)* we have (2.11) and (2.12).
Forany 7, XCEwith X D Z € D, '

W X)=u(Z)+ (X -Z) < F(Z)+2(X ~ Z). (2.13)

Hence y € P(f*). Moreover, (2.10) follows frem (2.9) since from Proposition
1.2 there exists a base y € B(f) such that y < z. QED.

For a supermodular system (D,g) on £ we define the reduction of (D, g)
by a vector 2 € R% in a dual manner. Define 9::2% — R by

9e(X) =max{g(Z)+2(X-2) | X2 Z ¢ D}, (2.14)

Plg)e ={v |y €P(g), y > z}. (2.15)

Then (2%, g,) is the reduction of (D, g) by = and its associated supermodular
polyhedron is given by
P(gz) = P(g)s (2.16)

due to Theorem 2.1.
From Lemma 2.2, Theorem 2.3 and (2.6) we have the following min-max
relation.

min{f(Z} +2(E ~Z) | Z € D} = max{y(E) | y €P(f), y < 2}. (2.17)
In Particular, for ¢ = 0 (2.17) becomes
min{f(Z) | Z € D} = max{y(E) | y € P(§), y < 0}. (2.18)
Next, for any subbase @ € P{f) define a function f,:2% — R by
o X) =min{f(Z) - 2(Z ~X) | X C Z €D} (2.19)
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for each X C F. Similatly as in {2.7), we see that f.: 2% _ R is a submodular

function on the Boolean lattice 2Z. We call the submodular system (27, f.)
the contraction of (D, f) by vector z € P(f).

Theorem 2.4: For any subbase z € P(f) we have

(f2)# = (%), (2.20)
B(f.) = B(f)- (2.21)

~ {Proof) Since z € P(f), we have f,(E) = f(E). (2.20) easily follows from (2.19)

and the definition of the dual function. Furthermore, from (2.20), Theorem 2.3
and the duality shown in Lemma 1.3 together with the remarks given after it,
we have

B(f:) = B({(£)¥) =B{(#¥)) = B(*) = B(f)e (2.22)
QED.

The contraction of (’D,J_‘_) by ¢ € P(f)} corresponds to the reduction of its
dual supermodular system (D, f#) by z (see Fig 2.2).

t 2x(2)

i 7 _—
% PCF#),)
v

i
/2 = (1)

Figure 2.2
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For any subbase ¢ € P(f) define

P(N)]l. ={y]| vy €R", e Vy € P(y)}, (2.23)

whete 2 Vy is the vector in R defined by (2 Vy)(e) = max{z(e), y(e)} (e € E),
i.e., the join of ¢ and g in the vector lattice RE. We can show -

P(fe) =[P (s (2.24)

In a dual manner we define the contraction (2%, ¢%) of a supermodular
system (D, g) by & vector « € P(g), where g* = ((g¥)*)#.

A submodular system obtained by repeated reductions and/or contractions
of submodular system (D, f) by vectors in R is called a vector minor of (D, f).

Theorem 2.5: If vectors ¢, y € RY satisfy (i) = <y, (il) B(#). # 0 and (iii)
B(f)? # 8, then we have B(f){ (= (B(f).)* = (B(f)7).) #0.-

(Proof) Since  EP(f), y EP(f#) and & < y, we havey € P(f#), = P((f.)#).
Hence, B(f)! = B(f)¥ =B((f.)¥)7 # 0. QED.

For any * € R¥ the tank of the reduction of (P, f) by = is denoted by
r¢(z)(= f°(E)). The function r;: RF — R is called the vector rank function
of (D, #). From the definition, r; is a concave function {see (2.6)).

(e) Translations and sums

For any vector @ € R¥ the translation of a submodular system (D, f) by
« 1s the submodular system whose rank function is given by f +2: D — R,
where z should be considered as a set function (a modular function) on 2% by
z2{X) =}, .cx z(e) (X C E). For the translation (D, f + x),

P(f +=2) =P(f) +{=}, (2.25)
B(f + ) =B(f) + {z}, (2.26)

'y

where z in the right-hand sides is in B” and the sums in the right-hand sides
denote the vector sum (see Fig. 2.3).
It should be noted that a contraction of (D, f) by = € P(f) followed by a -

translation by —a corresponds to an ordinary contraction of a (poly-)matroid
{see [Fuji80b]). The combinatorial structure of the submodular polyhedron and
the base polyhedron is invariant with respect to translations and the rank func-
tion can be made monotone nondecreasing by an appropriate translation (see
Lemma 2.19 in Section 2.3.a). Therefore, the monotonicity of the rank func-
tion plays no essential rdle in the theory of submodular systems but sometimes
makes it easler for us to find an initial feasible solution in algozithms. Also,
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2.1. FUNDAMENTAL OPERATIONS ON SUBMODULAR SYSTEMS

€(2)
M

__< % B()C+x)

P(ch-x)

P(£)
B(f)

| X1

Figure 2.3.

any results obtained in (poly-)matroid theory which are invariant with respect
to translations can easily be extended to submodular systems. For example,
we will generalize the polymatroid intersection theorem of Edmonds [Edm70]
to submodular systems in Section 3.1.

For two submodular systems (Dy, f1) and (Ds, f2) on E the sum of the two
submodular systems is defined as the submodular system (D) N Dy, f1 + f2) on

. We have

P(f1+ f2) = P(f1) + P(f2), (2.27)
B(f1 + f2) = B(f1) + B(f2), (2.28)

where the sums in the right-hand sides denote the vector sum. (Relations (2.27)
and {2.28) will be shown in Section 3.2.) Note that a translation is a special
case of a sum.

(d) Other operations

For a submodular system (D, f) on E let » be an arbitrary nomnegative
element in R. Define

L(X)=HX) (XeD—{B}), (2.29)
f



II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

Then (D, f-,) is also a submodular system on E and is called the r-fruncation
of (D, f). Similatly, we define the »-truncation, (D, gs,), of a supermodular
system (D, g) by
g+ (X)=g(X) (X €D ~{E}), (2.31)
04+ (B) = g(B) + . (2.92)

The dual of the r-truncation of the dual supermodular system of the submodu-
lat system (D, f) is called the r-elongation of (D, f) ([Tomi8la]) (see Fig. 2.4).

x{2)
A i

B{f)

Figure 2.4.
Denoting the r-elongation of (D, f) by (D, f+,), we have

For = (7)) *. (2.33)

Similarly, in a dual manner we define the »-elongation of a supermodular sys-
tem.

For any parttition Il == {Aq, A,, -+, 4;} of E a subset X of £ is said to be
compatible with II if, for each 4; € I, A; N X # 0 implies 4; C X. Define

D) ={X | X €D, X is compatible with I} (2.34)

and denote the restriction of f to D(H) by frr. The pair (D (1), fr7) is a submod-
ular system on E' and is called the aggregation of (D, f) by II. Aggregations play
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2.2. GREEDY ALGORITHM

a fundamental réle in a decomposition theory for submodular systems [Fujis3]
which generalizes the decomposition theory of graphs by Tuite [Tutte66].

2.2. Greedy Algorithm

In this section we consider a linear optimization problem over the base
polyhedron and give an algorithm, called a greedy algorithm, for solving the
problem. Before getting into the problem, we fizst examine the structure of the
distributive lattice D C 2% and show the one-to-one correspondence between
the set of distributive lattices D C 2% with 9, E € D and the set of partially
ordered sets {posets} on partitions of E.

(a) Distributive lattices and posets

For a distributive lattice D C 2% the cardinality |D| of D can be as large
as 212} and listing all the elements of D to represent it is not practical even for
medium-sized £. We shall show how to efficiently express a distributive lattice
as a structured system, a poset, on 5.

Let D C 2% be a distributive lattice with 8, & € D. A sequence of
monotone increasing elements of 7

D: Sy CS8 G- CS (2.35)

i called a chain of D and k is the length of the chain C. If there exists no chain

which contains chain C as a proper subsequence, C is called a mexrimal chain

of D. If C given by (2.35) 1s a maximal chain, we have Sp =0 and S} = E.
For each ¢ € E define

D(e)=(Y{X|ee X €D} (2.36)

D(e) is the unique minimal element of D containing e. Note that for any e € £
and ¢' € D{e) we have

D(e') C D(e). (2.37)
Also let G(D) = (E, A(D)) be a (directed) graph with a vertex set F and an
arc set A(D) given by
A(D)={(e,e') | e € E, ' € D(e)}. (2.38)

Suppose the graph G(D) is decomposed into strongly connected components
Gi = (Fi, A;) (1 € I). Let <p be the partial order on the set of the strongly
connected components {G; | i € [} naturally determined by the decomposition.
That is, Gi, ZpGy, for iy, i2 € I ifand only if there exists a directed path from
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1. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

a vertex of Gy, to a vertex of Gy, . Note that from (2.37) G(D) is transitively
closed (i.e., if there is a directed path from a vertex vy to a vertex ws, then
there is an arc (vy,2) in G(P)). Therefore, if G;, <pG,,, there exists an arc
from any vertex of &y, to any vertex of G, .

Denote the set of the vertex sets F; (1 € I) of the sirongly connected
components G; (1 € 1) by

O(D)={F; | i eI} (2.39)

II(D) is & partition of &. In the following we regard <p as a pa,rtla.l order on
(D) by identifying G; with F; for each ¢ € [. '
Now, we have obtained a poset P (D)= (I(D), -<p), which 1s called the
poset derived from distributive latfice . An example of a distributive lattice
D and the poset P (D) derived from it is shown in Fig. 2.5.

e

{1,2,3,4,5)
/ {3} (4,5}
42,3 12,4 5} \
P /
§ |

{1,2 11,2}

|
?

(a) @ (b)Y P(D)

v

Figure 2.5.

For a (general) poset P = (P, <), a set J C P is called a {lower) ideal of
P if for each e, ' € P we have

et €J=ec€ J (2.40)

Theorem 2.6 [Birkhoff37]: Let D C 2F be a distributive lattice with §, B € D.
Then, for the poset P (D)= (II(D), <p) derived from D the following (i} and
(ii) hold.
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(i} For each ideal J of P (D),

\H{FIFeJ}eD. (2.41)
(i1} For each X € D, there exists an ideal J of P (D) such that

x=|{J{F|FeJ} (2.42)

(Proof) (i): Put X = U{F | F € J}. Since J is an ideal of P (D}, it follows from
the definition of P{D) that D{e) C X for each e € X. Then, X =U{D(e) | e €
X} and we have X € D since D(e) € D from (2.36).

(ii): For a given X € D, X and any F € II(D) do not cross, i.e., either
FCXor FCE-—X,due to the definition of P (D). Therefore, J={F | F €
O(D), F C X} is & partition of X. Moreover, because of the definition of P (D)
“F1<pFy C X” imples “Fy C X*. Consequently, J = {F | F €lI{D), F C X}

_ is a desired ideal of P (D). QED.

From Theorem 2.6, (2.41) {or {2.42)) determines a one-to-one correspon-
dence between D and the set of all the ideals of P (D). It should be noted that
for any poset P = (P, <) on a partition P of E the set D(P) defined by

D(P)={J|J: anideal of P}, (2.43)

. J= JiF I Fed} (2.44)

forms a distributive lattice with 8, F € D(P). We can also see that the mapping
which assigns each D to its derived posets P (D) is a one-to-one correspondence
between the set of distributive lattices D C 2% with §, B € D and that of
posets P = (P, <) on partitions P of E.

From Theorem 2.5 we can easily show

Corollary 2.7: Given a distributive lattice D C 2% with @, E € D, let
C:0=5C85C- - CS5H=F (2.45)
be an arbitrary maximal chain of D. Then we have
(D) = {8 — 811 | i=1,2,- k). (2.46)

In particular, the length of any maximal chain of D is independent of the choice
of a maximal chain and is equal to |II(D)|.

We call D simple if the partition II(D} is composed of singletons of E only,
ie, (D) = {{e} | ¢ € E}. For 2 simple distributive lattice D we regard P (D)
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as a poset on B and write P (D) = (E,<p). Conversely, the set of all the
(lower) ideals of a poset P = (F,<) on E forms a simple distributive lattice
D € 2% and we denote such a simple 2 by 27. A submodular system (D, #)
with simple D is called stmple.

For a non-simple submodular system (D, f) on E, define

X={F|Fe(D), FCX} (XeD), (2.47)
D={X|X €D}, (2.48)
fX)=7(X) (XeD). (2.49)

Then we have a simple submodular system (D, f) on XY{D), which we call the
simplification of (D, f).
(b) Greedy algorithm

) For a submodular system (D, f) on £ we consider a linear optimization
problem described as follows.

P, : Minimize Z w(ejz(e) (2.50a)
ee ;B
subject to = € B(f), (2.50b)

where w: E — R is a given weight function. An optimal solution of P, is
called a minimum-weight base of (D, 7) with respect to the weight function w.
Similarly, a mazimum-weight base of (D, f) with respect to the weight function
w 1s an optimal solution of Problem F_, with the weight function —w.

Fundamental structural properties of the base polyhedron B{(f) is given
by the following theorems.

Theorem 2.8: The base polyhedron B(f) is pointed (or has extreme points)
if and only if D is simple, i.e., D = 27 for some poset P = (&, <).

(Proof) A polyhedron is pointed if and only if its characteristic cone (o1 re-
cession cone) does not contain any line ([Stoer+Witzgall], [Rockafellaz]}. The
characteristic cone of B(f) is the solution set of the following system of in-
equalities and an equation:

(X)) <0 (X €D, (2.51)
z(E) = 0. (2.52)

Therefore, B(f) is pointed if and only if the system of equations
z(X)=0 (XE€eD) (2.53)
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2.2. GREEDY ALGORITHM

has the unique solution & = 0, where note that £ € D. We see from Corollary
2.7 that (2.53) is equivalent to

2(F)=0 (F€I(D)). (2.54)

System {2.54) has the unique solution # = 0 if and only if |[F| = 1 for each
F e O(D}, i.e., D 1s simple. Q.E.D.

It should be noted that the rank of the coefficient matrix of the left-hand
side of (2.53) is equal to the height of D, the length of maximal chains of D.

Theorem 2.9: The base polyhedron B(f) is bounded if and only if D is the
Boolean lattice 2% i.e., D is simple and complemented.

(Proof) If D = 2%, then B(f) is included in the following bounded solution set
of
z(e) £ f({e}) (e€BE), z(E) = J(E). (2.55)

* On the other hand, if D # 2%, there exist distinct elements e, ¢' € E such that

for each X € D ¢ € X implies ¢’ € X. Then for any base z € B(f) the ray or
half-line

z+a(xe —xer) (@20 (2.56)
in contained in B{f). So, B(f) is not bounded. Q.E.D.

When (D, #) is not simple, Problem P, is unbounded if w(e) # w(e’) for
any e, ¢ € F € II{D). Therefore, if P, has an optimal solution, w: F — R is
constant on each F € TI{D), and hence it suffices to consider the simplification
of (D, f).

We suppose without loss of generality that in the minimum-weight base
problem P, described by (2.50) B(f) is pointed, i.e., D =27 with P = (&, <).

Theorem 2.10 [Fuji+Tomi83]: Problem P, in (2.50) has a finite optimal
solution if and only if w: F — R is a monotone nondecreasing function from
P = (E,<) to (R, <), ic., Ve, ¢ € Bi e % o' = w(e) < w(e').

(Proof) The “4” part: Suppose that w is a monotone nondecreasing function
from P = (E, <) to (R, <) and that the distinct values of weights w{e) (¢ € E)
are given by

Un <w2<“'<wp. (2.57)

Define
A,‘={€|€€E; w(g)gw;} (7::1:2;“'113): (258)

where note that A, = F. Thesets 4; (1 = 1,2, --,p) form a chain A; C 42 C
-+ C Ay of D. From Lemma 2.1 there exists a base ¢ € B(f) such that

x(Ac) =f(A:) (3= 1}2:"'}17)' (259)
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II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA
Then for any base y € B{f) we have from (2.57)—(2.59)

2 wleyle) = 3 wlez(e)

ecE ecE
=3 T wily(e) —ale)
i=lecA;-Ai-s
=2 {wily(4) = a(43) = wi(y(4ia) = (4i-1))}
= Z(-w,- — i1 ) (y(4i) — 2(4)) + wy (y(4,) = 2(4,))

I

(’wi+1 - 'wi)(f(A:‘) - ?J(Ai))

v
20
ury

(2.60)

where we define Ap =0, and recall A, = £, This shows the optimality of =
The “only if” part: Suppose that w 1s not a monotone nondecreasing
function from P = (&, %) to (R, <), i.e., forsome k (1 < k < p) A; defined by
(2.58) does not belong to D. Then there exist elements ¢ € A; and ' € B — A4,
such that for any X € D with e € X we have ¢' € X. Hence, for any base
z € B(f) we have &z,e,e') = +oo and © + a(x, — xe) € B(f) for any & > 0.
Since w{e) < w(e'), Problem P, is unbounded. Q.ED.

Corollary 2.11: Let P,' be the problem given by P, where B(f) is replaced
by P{f). Problem P,’' has a finite optimal solution if and only if w: & — R is
a nonpositive monotone nondecreasing function from P = (F, <) to (R, <).

Furthermore, we have the following

Theorem 2.12: Suppose that w 15 a monotone nondecreasing function from
P = (<) to (R,<), 1.e,thesets 4; ¢ =1,2,---,p) defined by (2.58) form
a chain of D. Foreach: = 1, 2, ---, p let f; be the rank function of the set
minor (D, f)} - A;fAi-1, where Ag = 8. Then the set of all the optimal solutions
of Problem P, is given by

B(fi)eB(f) e --@B(f)
={$1@32®“'92“P I Ti EB(f.) (Z 31)27"':}))}1 (2'61)

where the direct sum @ is defined by (2.5). That is, ¢ € B(f) is an optimal
solution of P, if and only if z restricted on 4;~A;_ 1 1s abase of (D, f)-A; /41
foreachz = 1, 2, ---, p.

- gg
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(Proof) It follows from the proof of the “if” part of Theorem 2.9 that z €
B(f1) @ - - ®B(/,) is an optimel solution of Problem P, .

On the other hand, if # is an optimal solution, then we must have dep{z, €)
C A;foreachs = 1, 2, ---, pand e € A;. This implies z(4;) = F(4;)
(: = 1,2,---,p) since 4; = U{dep(z,e) | e € 4;}. Therefore, we have ¢ €
B(f1) @ - - ®B(f,) due to Lemma 2.1. Q.E.D.

Theorem 2.13: A base z € B{f) is an optimal solution of Problem P, if and
only if for each ¢, ¢ € F such that ¢' € dep(z,e) we have

wle) > w(e). (2.62)

. (Proof) The “only if” part is trivial. The “if” part follows from Theorem 2.12.

For, if (2.62) holds for each e, ¢' € E such that ¢’ € dep(z,e), then we have
(2.59) for A; (1 =1,2, -, p) defined by (2.58). Note that 4; = U{dep{z,e) |e €

A} fori = 1,2, -+, p. Q.E.D.

Theorem 2.13 says that the local optimality with respect to elementary
transformations implies the global optimality.

The proof of Theorem 2.10 provides us with an algorithm, called a greedy
algorithm, for solving Problem P, .

A sequence (e1,e2, -, ex) of all the elements of £ (a linear or total order-
ing of E) is called a linear exstension of P = (F, <) if{ < j whenever &; < ¢;
(), 5 = 1, 2, -+, p). Furthermore, a linear extension (ey, ez, --,e,) of
P = (E,<) is called monotone nondecreasing with respect to w: F — R if
w(ey) < wlez) € '+ € wley). Such a monotone nondecreasing linear exten-
sion of P = (&, <) exists if and only if w is a monotone nondecreasing function

from P =(E, <) to (R, <).
A greedy algorithm

1° Find a monotone nondecreasing linear extension (ey,ep, --,e4) of P =
(E, <) with respect to w.

2° Define a vector 2 € R¥ by

z(e;) = f(S;) — f(Si-1) (¢=1,2,---,n), (2.63)
where for each ¢ = 1, 2, -+, n S; is the set of the first ¢ elements of
(e1,€2,"",ea) and Sy = B. Then 2 is a minimum-weight base of (D, f)
with respect to weight w.

(End)

It should be noted that # = Sy C Sy C --- C 8§, = E is a maximal
chain of D containing 4, (t =1,2,---,p) defined by (2.58) and that conversely
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such a maximal chain of D gives a monotone nondecreasing linear extension
(e1,e2,"  ,en) of P by {e;} =5, —Si_1 (# =1,2,---,n). Also note that due
to Theorem 2.12 every extreme minimum-weight base can be obtained by the
greedy algorithm by appropriately choosing a monotone nondecreasing linear
extension (eq, es, ", e,) in Step 1°.

Corollary 2.14: Problem P, has a unique optimal solution if and only if

w: B — R i3 a one-to-one monotone increasing function from P = (E,<) to
(R, ). -

Theorem 2.15: Let f:D — R be a function on a simple distributive lattice
D C 2% such that §, E € D and F{#) = 0. Define

B(f) = {z | 2 €R®, VX €D: o(X) < £(X), 2(B) = /(B)}. (260
_ Then, the greedy algorithm described above works for B(f) defined by (2.64)

if and only if f 15 a submodulaz function on D.

(Proof) It suffices to show the “only if” part. Suppose that the greedy algorithm
works for B(f). Then, for each maximal chain

C:0=8CHC CS8=E (2.65)

of D the vector ¢ € RP defined by (2.63) belongs to B(f). For any incomparable
X, Y € D choose a maximal chain € of (2.65) containing X NY and X UY
and define ¢ by {2.63). Since € B(f), by the definition of = we have -

#(X) < J(X), oY) < H(¥), o(XUY) = {(XUY), 2(XNY¥) = f(X NY).
(2.66)
Hence we have

HX)+ (1Y) 2 2(X) +=(Y)
=e(XUY)+e(XNY)=fXUY)+ f(XNY). (2.67)

LS

It follows that f 1s a submodular function on D. Q.ED..
The linear programming dual of Problem P, in (2.50) is given by

P,": Maximize Z MX) (X)) (2.68a)
‘ XeD

subject to » {MX)| X €D, e € X} > w(e) (e € F), (2.68b)
MX)<0 (X eD-—{E}). (2.68¢)

3
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For an optimal solution = obtained by the greedy algorithm we have

S w(e)e(e)

ec
?
=Y wi(f(4:) = f(4i1))
4 =1
. = Z i — wip1)f(4i) +w, F(E), (2.69)
where w;, 4; (1 = 1,2, -+,p) are defined by (2.57) and (2.58) and A = 0.
| Define
MA) =wi—wipn (i=1,2,---,p—1), (2.70)
ME) = w, (2.71)

and A(X) = 0 for other X € D. Then X is a dual feasible solution and it follows
from (2.69) that the valnes of the objective functions of the dual problems
coincide with each other. Hence A given above 1s an optimal solution of the
dual problem P,*. From (2.70) and (2.71), for any integral w such that the
primal problem P, has an optimal solution there exists an integral optimal -
solution of the dual problem P,*. A system of linear inequalities and equations
with this property is called totally dual integral ([Hoffman74], [Edm-+Giles77]).

{

Theorem 2.18: The system of inequalities and an equation given by

(X)L f(X) (XeD-{E}), (2.72)
() = #(E) (2.73)

1s totally dual integral.

Since the system of (2.72) and (2.73) is totally dual integral, if the rank
function f is integer-valued, each face of B(f) contains an integral vector and
in particular, each vertex is integral ([Hoffman74}, [Edm~+Giles77]), which can
also be seen from the greedy algorithm (cf. Theorem 2.18 below).

=

Corollary 2.17: The system of inequalities
2(X) < J(X) (X €D) (2.74)

is totally dual integral.

(Proof) The proof is similar to that of Theorem 2.16. Use Corollary 2.11.
QED.
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2.3. Structures of Base Polyhedra
Suppose that {D, f) is a simple submodular system on £.

(a) Extireme points and rays

From the greedy algorithm and Corollary 2.14 we have

Theorem 2.18 (The extreme point theorem) [Fuji+Tomi83}: A base ¢ € B(/f)
is an extreme point of the base polyhedron B{f) if and only if for a maximal
chain

C:®=SQCS]_C“‘CS,;=E (2.75)

of D we have
m(ei) =f(S:) —f(‘—qi-—l) (£=1:21'”rn)1 (276)

_ where {¢;} = 5; — 5;_1.

Theorem 2.18, when D = 2% has been shown in [Edm70], [Shapley71] and
[Lovdsz83].
Define a vector @ € R¥ by

D)= {{X|e€X €D}, (2.77)

ale) = f(D(e)) — F(D(e) — {e}) (e € E). (2.78)

Then, by the submodularity of f and Theorem 2.18, vector & is the least upper
bound {or the join) of all the extreme points of B(f) in the vector lattice R®.
In particular, for each X € D,

FX) £ a(X), (2.79)

since there is an extreme base @ € B(f)} such that 2(X) = f{X). Because of
{2.79), @ can be used for estimating an upper bound of f, 1.e,,

max{f{X)] X € D}< max{a(X) | X € D}
<> {a(e) | e€ E, ale) >0} (2.80)

Also note that given any base z € B(f) a lower bound of f is given by

min{#(X) | X € D} > minf{e(X) | X €D} 2 Y {a(e) | ¢ € B, 2(e) < 0.
(2.81)
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2.3. STRUCTURES OF BASE POLYHEDRA

Moreover, denote by o the greatest lower bound {or the meet) of all the
extreme points of B(f) in the vector lattice R®. ¢ is given similarly as (2.77)
and (2.78} in a dual form:

D e)=| {X |e¢ X €D} (e€B), (2.82)

ale) = f(D"(e)u{e}) — f(D"(e)) (e€E). (2.83)

Lemma 2.19: The rank function f of a simple submodular system (D, f) is
monotone nondecreasing if and only if @ > 0. In other words, f is monotone
nondecreasing if and only if every extreme point of the base polyhedron B(f)
belongs to the nonnegative orthant R¥.

{Proof) This easily follows from Theorem 2.18 and the definition of . Q.E.D.

1t follows from Theorem 2.18 thatif the rank function f of (D, f) 1s integer-
valued, every extreme point of B(f) is integral. In particular, we have the
following polyhedral characterization of matroids due to Edmonds [Edm70].

Corollary 2.20 [Edm70]: For a matroidal submodular system (2%, p), where
p is the rank function of a matroid M on F, the base polyhedron B{f) is the
convex hull of the characteristic vectors of all the bases of the matroid M.

« From Theorem 1.4 we can easily see that if f is a nonnegative integer-
valued crossing-snbmodular function on a crossing family F and if the polyhe-
dron given by

B(f}) ={z |z €B(f), Ye€ E:0 < z(e) <1} (2.84)

is nonempty, then B(f]) is the integral base polyhedron obtained by the re-
duction of B{f) by vector 1 = (1(e) = 1: e € F) and the contraction by zero
vector 0 and 1s a base polyhedron of a matroid. Hence, from Corollary 2.20 we
see that

[X| X CE, VY €F: |XnY| S AY), [X[=F(B)}  (2:85)

is a family of bases of a matroid. This is & result by A. Frank and E. Tardos
[Frank-+Tardos81].

If the rank function f of a simple submodular system (D, ) is integer-
valued and has the unit-increase property (i.e., forany X, Y ED with X CY
and |[X| +1 = |Y] we have f(Y) = f(X) ot f(Y) = f(X)+ 1), then all
the extreme points of B(f) are {0,1}-vectors. Therefore, we can develop a
matroid-like theory for such a submodular system (D, f), which corresponds to
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IL SUBMODULAR SYSTEMS AND BASE POLYHEDRA

Faigle’s geometry on the poset P = (B, <) with D = 27 [Faigle79], [Faigles0].
In fact, Theorem 2.18 gives a polyhedral characterization of the family of bases
of Faigle’s geometry.

Next, denote the characteristic cone of the base polyhedron B(f) by C(f),
which i3 given by

C(f) ={z |2 €R®, VX € D: o(X) <0, o(E) =0}.  (2.86)

Let G = (&, A} be the graph with vertex set F and arc set A which represents
the Hasse diagram of the poset P = (F, <), i.e., (¢,¢') € 4 if and only if e
covers e (or ¢' < e and there Is no element " € E such that €' < ¢' < ¢). Also
define a capacity function ¢ on 4 by

e(a) =+4co (a € A4). (2.87)

_ Then we easily see that C(f) in (2.86) coincides with the set of the boundaries
8¢ of nonnegative flows ¢ in the network N = (G = (£, 4), ¢). Consequently,
we have :

Theorem 2.21 (The extreme ray theorem) [Tomi83]: The exireme rays of
the characteristic cone C(f) of the base polyhedron B(f) are exactly those
represented by the vectors

Xe = Xe (2.88)

[}

for all e, € € F such that e covers ¢’ in P = (&, X).

Theorem 2.10 characterizes the dual cone C*(f) of C(f), where

C'(H={ylveR®, Ve € C(): Y a(e)yle) < 0}. (2.89)
ec B

Theorem 2.10 says that —C* ()} consists of monctone nondecreasing functions
from P = (B, <) to (R, <) or that C*(f) consists of monotone nonincreasing
functions from P = (&, <) to (R, <). C*(f) is generated by the characteristic
vectors of the (lower) ideals of P.

(b) Elementary transformations of bases

For any base z of submodular system (D, f) on £ and for e, &' € F such
that ' € dep(z,¢) — {e} we have

z+alx. —x.) €B(f) (0<a<Hzee)). (2.90)
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The transformation of base z € B(f) into such a base z + alx. — xe) € B(§)
is called an elementary transformation of base z € B(f).
The following theorem is important from an algorithmic point of view.

Theorem 2.22: For any two bases z, y € B(f) base z can be transformed into
base y by at most |[F]%/4] repeated elementary transformations such that each
component z(e) with z(e) < y(e) monotonically increases and each component
z(e) with z(e) > y(e) monotonically decreases.

(Proof} Consider the following algorithm.

1° If 2 = 3, then stop.

2° Choose any element e E E such that a:(e) < y{e).

3° Choose any element e' € dep(w,e) such that z(e') > y{e'). Put o
min{y(e) - ‘r’v(e): a“(e}) - y(e’,): E(:L', £, 6})}-

4° If o < y(e) — @(e), then put & — z + ax. — x.’) and go to Step 3°.
Otherwise (@ = y(e) — z(e)) put z — 2 + a(x, — X} and go to Step 1°.

" Note that if z # y, there is an element e such that z{e) < y(e) and that

if z(e) < y(e), there is an element &' € dep(z,e) such that z(e') > yle'),.
since otherwise, putting X = dep(z,e), we would have f(X) = z(X)} <
y(X), a contradiction. Also note that if o < y(e) — z(e) in Step 4°, we have
o = min{z(e') — y(e'), &z, e,¢')} and the number of elements in {&" | &" €
dep{z,e), z(e") > y(e")} decreases by at least one after the elementary trans-
formation z «— z + o(x, — xer). Therefore, the case where o < y(e) — z{e) is
rgpeated at most |ST| times, where $™ = {e¢ | e € E, z(e)} > y(e)} for the
initial base z. Defining ST = {e | e € E, ={e) < y(e)} for the initial z, the
total number of the elementary transformations is at most {ST| x |S~|, which

is bounded by [|E|%/4]. Q.E.D.

Consider a capacitated network N = (G = (V, 4),¢, &) with an under-
lying graph G and lower and upper capacity functions ¢, ¢ A — R with
e £ ¢ Let s 9Y — R be the cut function associated with the network

= (G = (V,4),c,¢) (see (1.59) in Section 1.3). The set of the boundaries
of feasible flows in A is the base polyhedron associated with the submodular
system (2Y, 5. 7). Note that there exists a feasible circulation (a feasible flow
@ such that 8¢ = 0) in N if and only if 0 € B(x,z). Since 8¢ € B(kgz),
there exists a feasible circulation in A if and only if the base 8¢ € B(x.7)
is transformed into 0 by repeated elementary transformations as in Theorem
2.22. A standard algorithm for finding a feasible circulation by the use of a
max-flow algorthm consists of such repeated elementary transformations (cf.
[Hoffman60], [Ford+Fulkerson62]). ‘

For a (directed) graph G = (V, 4) and a {0,1}-valued function ¢: A —
{0,1} define the graph G, as the one obtained from G by reorienting arcs
a € A such that ¢(a) = 1. We say ¢ defines the reorientation G,. A graph
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II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

G = (V, A) is strongly k-connected (k: a positive integer) if for each nonempty
proper subset U of vertex set V there exist at least & ares from U to V = U,
We call p: A — {0,1} a strongly k-connected reorientation if G, is strongly
k-connected, Define a capacity function ¢: A — R by

o) =1 (a€A), (2.91)

and let x: 22 — R be the associated cut function, ie., x(U) = (A1) =
[ATU) for U C V. Also define

k(U) ~k (Ue2¥-1{6V) )
0 (U ef{s, V). (2.92)

Then «(#):2Y — R is a crossing-submodular function on 2% and defines a base
polyhedron B(x(*#}), if B(x(*)) # #, due to Theorem 1.4. B{x(#)} is called the
k-abridgment of B(x) in [Tomi81la, 81b]. It can easily be seen that

B(x¥) = {8p | ¢ defines a strongy k-connected reorientation of G} (2.93)

Here, we assume that the underlying totally ordered additive group R is the
set Z of integers. Also note that the strong k-connectedness of a reorientation
of & depends only on the boundary 8¢ of ¢ which defines the reorientation.
Because of this fact and Theorem 2.22 we obtain a theorem of Frank [Frank82al:

“Let G' and G" be strongly k-connected reorientations of G. Then there

exists a sequence of strongly k-connected reorientations G' = Gy, G, -+ -,
Gm = G" of G such that for each i = 1,2,---,m G} is obtained by
reorienting axcs in & directed path or a directed cycle in Gy_4.”

{

Note that an elementary transformation of a base (or a boundary d¢) in
B(x{*)) corresponds to a transformation of the reotientation of G (defined by
@) by reversing the arcs in a directed path and possibly directed cycles and
that reversing arcs in a directed cycle does not change the boundary &ep.

(e) Tangent cones
For any base ¢ € B(f) assoclated with submodular system (D, f) on E the
tangent cone of B(f) at z, denoted by TC(B(f), z), is defined by
TCB(),e)= Py | 120, y €RE, ok y €B(A)).  (2.09)

Here, the underlying totally ordered additive group is assumed to be the set R
of reals.

Given & base # € B(f), we call an oxdered pair (e, ¢') of elements of £ an
exchangeable pair assoclated with z if ¢' € dep(z,e) — {e}.

- 42



[y

2.4. RELATED POLYHEDRA

Theorem 2.23: The tangent cone TC{B(f), z) of B(f) at a base z is generated
by the set of the following vectors:

Xe — Xe’ (e ek, e' € dep(z, e} — {e}) (2'95)

In other words, for any vector v € TC(B(f),z) there exist some nonnegative
coefficients (e, e') for exchangeable pairs (e,e') such that

Y = Z{';\(e,e’)(xe —xet) | {(e,€'): an exchangeable pairs associated with z}.
(2.96)

(Proof) Let C be the cone generated by the vectors in (2.95). It follows from
the definition of dependence function that

C C TC(B(f),=). (2.97)

Suppose that there exists a vector y € TC(B(f),z) — C. Then there exists a

" vector w € RZ such that

¥z €C: Yy wle)z(e) >0, (2.98)
ec B
> w(eyle) < 0. (2.99)
eElR

From Theorem 2.13 and (2.98) the base ¢ is a minimum-weight base with
respect to the weight function w but (2.99) implies that for a sufficiently small
a >0 2+ ayis a base and the weight of the base  + ay is smaller than that
of z. This is a contradiction. Se, we must have C = TC(B(f},z). Q.E.D.

A constructive proof of this theorem for polymatroids was given in [Fuji
78a, Lemma 9]. It should also be noted that Theorems 2.21 and 2.23 are closely
related. We can show Theorem 2.23 by using Theorem 2.21 and vice versa.

Suppose that (D, f) is a simple submodular system on F and that z is an
extreme point of B{f)}. Then,

D) ={X| X €D, 2(X) = HX)} (2.100)

is also a simple distributive lattice and let P (z) = {E,=<,) be the poset
corresponding to D(z) (i.e., D(z) is the set of all the ideals of P(z)). Let
H(z) = (E, A(z)) be the Hasse diagram representing the poset P (z). We can
show that

Xe =xer  ((e,¢') € A(2)) (2.101)

constitute the unique minimal system of generators of tangent cone TC(B(f),z)
at . Let y be another extreme point of B(f) and H{y) = (F, A(y)) be the

43



II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

Hasse diagram representing the poset P (y). We can also show that the two
extreme points @ and y of B(f) are adjacent if and only if there exist an arc
(e,e') € A(z) and its reomentation {e',e) € A(y) such that contracting (or
shortcircuiting) the azc (e,e') in H{z) and contracting the arc (', ¢) in H(y)
yield the same graph. The proof is left as an exercise (see [Fuji84d] for more
detail).

2.4. Related Polyhedra

We show some polyhedra which are closely related to base polyhedra and
submodular/supermodular polyhedra.

(a) Generalized polymatroids

A.Frank [Frank81] introduced the concept of generalized polymatroid. Sup-
. pose that a submodular system (D1, f') and a supermodular system (D, ¢') on
E' satisfy

VX EDy, VY €Dy X ~Y €Dy, Y -~ X €Dy,
FX) =g} 2 f(X-Y) -g(¥Y = X). (2.102)

Then the polyhedron P(f', g') defined by

' P(f ) ={z |z € RF, VX €D1:2(X) < (X)), |
VY € Dre(Y) > 4 (V) (2.103)

13 called a generalized polymatroid or g-polymatroid. {The same polyhedron is
also considered by R. Hassin [Hassin82] for the case where Dy = Dy = 2¥'))

Generalized polymatroids are characterized by the following theorem,
which is irnplicit in [Frank81] (also see [Schrijver84]) (see Fig. 2.6).

Theorem 2.24 [Fuji84a]: For the base polyhedron B(f) associated with a
submodular system (7, f) on F, the projection of B{f) along an axis ¢ € E
on the hyperplane ¢(e) = 0 is a generalized polymatroid P(f',¢') in RZ' with
E'=FE ~ {e}, where

Di={Xle¢g XED}, (2.
Dy={E~X|e€ X €D}, 2

f! 1s the restriction of f to Dy and g¢' is the restriction of f# to Ds.
Conversely, every generalized polymatroid in RE' is obtained in this way.

For each generalized polymatroid P(f',g') with D; € 2% (4 =1,2) such a base
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Figure 2.6.

polyhedron B(f) in R¥ with E = E'U{e} is unique up to translation along the
new axis e, and the two polyhedra P(f', ¢') and B(f) are isomorphic with each
other under the projection of the hyperplane z(F) = f(&) onto the hyperplane
z(e) = 0 along the axis e.

The proof is left as an exercise. It follows from Theorem 2.24 that exireme
points, extreme rays, faces etc. of P(#', ¢') are chazacterized by the correspond-
ing results for B(#) (cf. [Fuji84d]). Moreover, since the greedy algorithm works
for B(f), it also works for P(f',g') (cf. [Hassin82]).

Frank [Frank81] originally defined generalized polymatroids in terms of in-
tersecting families. This corresponds to the fact (Theorem 1.4) that a crossing-
submodular function on a crossing family determines the base polyhedron as-
soclated with a submodular system. Note that if D C 2% is a crossing family,
then D; (i =1,2) defined by (2.104) and (2.105) are intersecting families. (For
more details on generalized polymatroids, see [Frank+Tardos88].)

(b) Pseudomatroids

The concept of pseudomatroid was introduced by R. Chandrasekaran and
S. N. Kabadi [Chandrasekaran+Kabadi88]. The same or similar concepts were
independently considered by A. Bouchet [Bouchet87] as A-matroid, A. Dress
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[Dress + Havel86] as metroid, M. Nakamura [Nakamura88] as universal poly-
matroid and L. Qi [Qi88] as ditroid. We shall consider pseudomatroids of
Chandrasekaran and Kabadi from the point of view of submodular systems.

Denote by 3% the set of all the ordered pairs {X,Y) of disjoint subsets of &,
Let f: 3¥ — R be a function with #(8,) = 0 suck that for each {(X:,Y;)) € 3%
(t=1,2)

HXL 1) + f(Xe, Y2)
2 f{X1UXy) - (N UY,),(YiUYs) — (X1 U X))+ (XN Xe, Y NT).

(2.106)
Define a polyhedron
Pf)={z| 2 €R¥, V(X,Y) €3": 2(X) -2(Y) < H(X,Y)}. (2.107)

. The polyhedron P.(f) is called a pseudomatroid [Chandrasekaran-+Kabadiss]
and f 1ts rank function (see Fig. 2.7).

xA(2)
A

o

Ps (£)

> (1)

Figure 2.7,
We call a pair (S,T) € 3% such that SUT = E an orthant of RE. For
each orthant (5,T) denote by 2(5:7) the set of all the pairs (X,¥) such that
XCSandY CT. -
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Now, choose an orthant (S,T). Then for each (X;,¥;) € 28T) (; = 1,2)
we have from (2.106)

FXLY) +F(X2,Y2) > f(X1U Xy, aUYR) + F(Xy N Xy, Vi NYa) (2.108)
This means that for the orthant ($,7T) the function f': 2% — R defined by
FX)=f(85NnX,TnX) (XCE) (2.109)
is a submodular function on 2Z. Define
P () ={z |z €R”, ¥(X,Y) € 25T :2(X) —2(¥) < f(X,Y)}. (2.110)

The polyhedron P(s 7)(f) is expressed by the submodular polyhedron P(f')
assoclated with the submodular system (22, ') as follows.

Peey () = (& | 3 € P(f'), Ve € S:a(e) = y(e), Ye € T:a(e) = —y(e)}.
(2.111)
Therefore, the combinatorial properties of P(s 7)(/f) aze the same as P(f') and
the greedy algorithm described in Section 2.2.b works for Py 7)(f) mutatis
mutandis as for P(f'). Define

Be,my(f)={z |2z €Pun)(f), 2(8) —=(T) = #(5,T)}. (2.112)

{

We call Bs,7)(f) the base polyhedron in the orthant (S, T) of the pseudoma-
troid Py (f). '

From Theorem 2.18 we have

Corollary 2.25: A vector ¢ € RF is an extreme point of Bs,r) (f) in (2.112)
if and only if for a maximal chain

C:=A CAC---CA,=F (2.113)
of 2€ we have

f(s n Ai:TnAi) —f(s n -Ai—lyTnAi—l)
Ay — A;_ if A; —A; 1 C 5,
- {”"( S L= (2.114)
—z(A;— A1) HA-ACT.
foreach:=1,2,---,n.

We also have
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Lemma 2.26: For each orthant (S, 7T) of R¥ we have

Bs,my {#) SPu(F). (2.115)

(Proof) Suppose @ € Bs,ry(f). Then, for any {(X,Y) € 3% we have from
(2.106)

2(X) - =(Y) - f(X,Y)

=z(X)—2(Y) = F(X,Y) +2(S) - «(T) — §(5,T)

<8 -Y)—e(T-X)-fS-Y,T-X)
+2{(SNX)—2(TNY)-f(SNX,TNY)

<0. (2.116)

Hence z € P (f). QED.

We see from Lemma 2.28 that B(s ry(f) for each orthant (S5,T) is a face
. of P.(f). Since

P.(f) = ﬂ{P(S'T)(f) | (S,7): an orthant of RF}, . (2.117)
for any w: £ — R we have from Lemma 2.26

max{ Z w{e)z(e) ] r € P(S,T)(f)}

ecF
: > max{ Z w(e)z(e) | ¢ €P.{f)}
eEE
> max{ > wle)ele) | ¢ €B,n{f)} (2.118)
eeFE

For an orthant (S, 7') such that w(e) > 0 (e € 5) and w(e) <0 (e € T), (2.118)
holds with equality. Therefore, the problem of maximizing the linear function
Yoecn wle)z(e) over the psendomatroid P (f) is solved by maximizing the same
linear function over P(s 7y(f) ot Brs 1y (f). Hence the greedy algorithm as in
Corollary 2.25 works for the pseudomatroid P.{f) and the union of all the
extreme points of Byg py(f) for all the orthants (S,T) is exactly the set of
all the extreme points of Pu(f). Also, we see from Lemma 2.26 that for each
(X,Y) €3®

F(X,Y) = max{z(X) - 2(Y) | ¢ € P.(f)}, (2.119)

so that f is uniquely determined by P,(f).

Theorem 2.27 [Chandrasekaran+Kabadi88|, [Nakamura88]: For any function
f: 3% — R define

Pu(f)={e [z € R, V(X,Y) € 3% w(X) —2(Y) < f(X,Y)}.  (2.120)
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The greedy algorithm of the type described in Corollary 2.25 works for Pu(f)
if and only if f is the rank function of a pseudomatroid.

(Proof) It suffices to show the “only if” part. Suppose that the greedy algorithm
as in Corollary 2.25 works for P.(f). Then, for any (X;,Y;) € 8% (i = 1,2)
choose a maximal chain C of (2.113) containing (X3 N X3) U(¥1 N¥3) and
((X1UX3)—(YaUY2) ) U((Y1UY2) —(X1UX3)) in it and define the vector € RZ
by (2.114), where (5,T) is an orthant such that (XU X2) - (Y1UY;) C S and
(Y1UY2) — (X1 UX3) CT. Since from the assumption we have ¢ € Pu(f), by
the definition of  we have

z(Xi) —=(¥}) £ f(Xi,¥))  (6=1,2), (2.121)

2((X1UXy) —(1UY2) —2((1UYs) — (X1 U X2))
= f{(X1UXp) - UTe),(huYs) — (X1U X3)),  (2.122)
3’:(:Y1 nXQ)—-a:(YlﬁYg) Zf(X]_ﬂXQ,Y1ﬂY2). {2.123)
From (2.121)—(2.123),
F(X1, 1) + f(X2, Y2)

> 2(X1) = 2(¥1) + 2(X3) — 2(12)
=2((X1 UXy) - (1UT2)) —2((T1UY2) — (XL U X2))

g +$(X1 M .Xz) - :B(Yl n Yz)
= f((X1 U X2) = (YAUY2), (Y1 UYy) — (X1 UX,))
+f(XinX,,Y1NY,). (2.124)
It follows that f is the rank function of a pseudomatroid. Q.ED.

Theorem 2.28 [Cha.ndmseka.mn+Kéba.di88]: The system of inequalities
#(X) —2(Y) < f(X,Y) ((X,Y)€3%) (2.125)

1s totally dual integral.

(Proof) The present theorem follows from Lemma 2.26 and Theorem 2.18.
Q.ED.

The concept of psendomatroid explained above can easily be generalized
as follows. Let F be a subset of 3% such that for each {X,,¥;) € F (i =1,2) the
two pairs (X1 UXs) =~ (Y3 UY), (Y1UYe) — (X1 U X)) and (X1 NX,, Y1 NY,)
belong to F. Also let f: F — R be a function such that for each (X;,Y;) € F
(s = 1,2) f satisfies (2.106). The class of psendomatroids in this generalized

49



II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

sense includes as special cases submodular and supermodular polyhedra, base
polyhedra and generalized polymatroids.

The author [Fuji84e] considered a distributive lattice & C 3% such that for
each (X;,Y;) € F (i =1,2) we have (X1 U X, Y1 NY,), (X1N Xy, iUY) € F
and a submodular function f: £ — R such that for each (X;,¥;) € F ( = 1,2)

]?(.Xl, Yl) -+ f(Xz,Yz) > f(X]_ UXy, ¥ N Yg) -+ f(Xl NX, YU Yg) (2126)
The total dual integrality of the system of inequalities
o(X)-2(Y) < f(X,Y) (X, Y)eFR) (2.127)

was shown in [Fuji84e] under a mild additional condition given as follows:

Hfor (X;,Y;)€F (i=1,2)

X122 Xy, i CYa, X1NYs # 0 (2.128)
and
Xo#Dor¥h #10 (2.129)
Then we have )
(X1 =72, 7), (X2, Y2 —X1) €F, (2.130)

FXLY) + f(X2,Y2) 2 (X1 = Yo, Vi) + £(Xo, Yo — Xq). (2.131)
The class of polyhedra defined by
P(f)={e|ee€R? ¥(X,Y) € Fe(X) —(Y) < f(X,¥))} (2.132)

includes as a special case the intersection of two base polyhedra (see [Fuji84e])
and is different from that of pseudomatroids (also see [Qi89]).

2.5. Submodular Systems of Network Type [Tomi+Fuji81]

Let N = (G = (V, A),c) be a capacitated network with an underlying
graph G = (V, A) and & nonnegative upper capacity function e: 4 — Ry,
where the lower capacity function 1s regarded as the zero function. The cut
function s.: 2% — R associated with the network A is given by

s(U)= > cle) (UeV), (2.133)
cCA+TD

where A1U is the set of arcs leaving U (see Section 1.3). Without loss of
generality we assume that G 1s & simple graph and that each arc ¢« € A is
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identified with the ordered pair {8"a,d a) of its end-vertices. (2.133) can be
rewrnitien as

k (U} = z Z c(u,v) — Z (c(u,v) +clv,w)) (UEV), (2.134)

€U veU-{x} {x,v}e(9)

) 15 the set of all
,v) ¢ A. For any
( ) the set of all

where for each arc (u,v) € 4 we wrlte c((u,v)) as c(w,v) (g
the two-element subsets of U, and we define e(u,v) =0 ior (u
finite set X and any integer ¢ with 0 < ¢ < |X| we denote by
the i-element subsets of X.

For any non-zero set function f: 2¥ — R there exist functions J108 (.) —
R (0 <1 <|V]|) such that

1%
HX) =3 > ) xcv). (2.135)

=0 (%)

By the Mobius inversin formula 10 (0 < ¢ < |V]) ate uniquely determined
from f as
) = ¥ (~1F (). (2.136)
YCX
Let k& be an integer such that 0 < k < |V, B stgand fO=0(k+1<i<
|V]). The function f is called a set function of order k {see [Tomi80b]). We
see from (2.134) that any cut function is of order 2 if ¢ # 0-(also see (2.140)
and (2.141) below).
A submodular systern (2¥, f) is said to be of network type if f is equal o
the cut function x.: 2¥ — R associated with a nretwork having s nonnegative
capacity function e.

Theorem 2.29 [Tomi+Fuji81l]: Suppose that (2¥, #) is a submodular system
on V. (2Y, #) is of network type if and only if the following (i)—{iii} hold:

(i) The order of f is less than or equal to 2.

(11) For the functions f9 (0 <1 < |V} in (2.135),

=90, fM3xo, (2.137)
o =~ Y ). (2.138)
14 Ue(:’)
(i1i) For each X C V,
S - Y A0 | (2.139)
e X ve(3)
UnX 4
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(Proof) The “only if” part: I (27, f) is of network type and f = . for a
network with a nonnegative capacity function ¢, then from (2.134) we have

O =0, D))= E e, ), (2.140)
vEU-{x}
79 (fa,0}) = = (c(, 0) + (v, 0)). (2.141)
Since the capacity function ¢is nonnegative, (1)—(iii) easily follow from (2.140)

and (2.141).

The “if” part: Suppose {i)—(iii) hold Con31der the b1pa.rt1te ﬂ'mph & =
(W+ W ; A) with the left and right vertex sets W+ and W~ and with the arc
set A defined by

Wt =V, W~ = (z), (2.142)
A={(e,)|ueEUE (V)} (2.143)

Let & = (G, &) be a network with the underlying graph G and a nonnegative
capacity function & such that for each a € 4 &(a) is sufficiently lazge, where W+
is the entrance vertex set and W~ the exit vertex set of A. Then, it follows
from the assumption that there exists a flow ¢: 4 — R in A such that

. dp(u) = fU({}) (xeWT(=V)), (2.144)
-000) = 1) wew (= (] ) (2.143)

due to the supply-demand theorem for bipartite networks ([Gale5T7], [Ford-l—
Fulkerson62]). Choose one such flow ¢: A — R... Define

A={(u,v) |v,vEV, v#v}, (2.146)

fw,v) = ¢((w, {,v}))  ((v,9) € 4). (2.147)

Let N be the network with the underlying graph G = (V, A) and the nonnega-
tive capacity function ¢ defined by (2.146) and (2.147). From (2.144)—(2.147)
we have (2.140) and (2.141). Since the oxder of f is less than or equal to 2, f
coincides with the cut function k. associated with the network A . Q.E.D.

We see from this theorem that for a submodular system (2¥,f) on V
with the rank function of order at most 2 the problem of discerning whether
the submodular system (2, f) is of network type or not can be solved by a
max-flow computation for the network A defined in the above proof, since (i)
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~in Theorem 2.29 can directly be checked and (iii) together with (2.138) is a

necessary and sufficient condition for the existence of a feasible flow in the
bipartite network A.
Moreover, when (2¥,f) is of network type, consider the minimum-cost

network-realization problem defined as follows: Find a network N = (G =
(V, A), c) with . = f such thadt the cost

> va)e(a) (2.148)

afA

is as small as possible, where y(e) is the realization cost per unit capacity for
each azc @ € A. As is seen from the above proof, this problem 1s reduced to a
Hitchcock transportation problem for the bipartite network A defined in the
above proof (see [Tomi+Fuji8l}).
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Chapter ITI. Neoflows

In this chapter we consider generalizations of classical flow problems of
Ford and Fulkerson to flow problems with boundary constraints described by
submodular functions. The new flow problems to be treated are the submod-
ular flow problem, the independent flow problem and the polymatroidal flow
problem, and they are, in a sense, equivalent. Because of this we call the class
of these flow problems and other possible equivalent ones the neoflow problem
and each of them a neoflow problem. We give a theory and algorithms for the
neoflow problem.

3. The Intersection Problem

In this section we consider the problem of finding & maximum common
subbase of two submodular systems and some related problems.

3.1. The Interseciion Theorem

Let (D4, fi) (f = 1,2) be two submodular systems on E and consider the
following problem.

Py Maximize z(F) (3.1a)
subject to ¢ € P{f1) NP{{3). (3.1b)

Equivalently, we express this problem as follows. Let E' be a copy of F and
we tegard (D,, fz) as a submodular system on E'. Also let G = (F, E'; A) be
the bipartite graph with the left and right vertex sets & and E' and with the
arc set 4 = {{e,e') | e € B}, where &' € E' is a copy of e € E, i.e,, A gives
a natural bijection between F and its copy E' (see Fig 3.1). Furthermore, we
comsider a capacity function ¢: A — R U {+oco} such that ¢(a) = +o0 (a € 4).
Then Problem Pj in (3.1) is equivalent to the following problem

Pr': Maximize 9y (E) (3.2a)
subject to {8p)® € P(f1), (3.2b)
— (80)" € P(f2), (3.2¢)

where ¢o: A — Ris a flow, 8¢ is the boundary of @ in and (8¢)% and (8p)F’
are, respectively, the restrictions of 3¢ to E and E'. A flow ¢: A — R satisfying
(3.2b) and (3.2¢) is called a feasible Aow in N = (G = (E,E'; A),¢,51,85),
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Figure 3.1.

where 8; = (D;, /i) (f = 1,2). As we will see later, Problem P,' is a special

case of a neoflow problem.
:

(a) Preliminaries

We need some preliminaries to furnish an algonthm for solving the inter-
section problem described by (3.1) or (3.2).

Consider a submodular system (D, f) on E. In the following we give several
lemmas which are obtained by a direct adaptation of the results shown in
[Fuji78a] for polymatroids.

Lemma 3.1: Suppose z € P(f), u € sat{z) and v € dep{z,x) — {u}. For any
@ such that 0 < @ < é(e, u,v) define y = @ + a(xy — X»). Then, y € P(#) and

sat(y) = sat(2). (8.3)

(Proof) From the definition of the exchange capacity we have y € P(f). Also,
since for any X € D such that X D sat{z) we have y(X) = z(X) and sat(z)
is the unique maximal tight set X such that z{X) = #(X), we have sat(y) =
sat(z). QE.D.
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Lemma 3.2: Under the same assumption as in Lemma 3.1,

&y, w) = é(z, w) (w € B —sat{z)). (3.4)

{(Proof) Put Xp = sat{z)(=sat(y)). Since 2(Xp) = f{Xo) and y{Xo) = F(Xo},
we have forany X €D

HX) = y(X) = f(X) = y(X) + f(Xo) — y(Xo)
> f(XUXo)—y(X UXp)+ FXNXo) —y(XNXp)
> f(XUXg) — y(X UXs)

= (X UXo) — (X U Xo), (3.5)
and similarly,

HX) —e(X) 2 /(XU Xo) - 2(X UXo). (3.6)
Hence the lemma follows from (1.37). QE.D.

Lemma 3.3: For any ¢ € P(f) let w1, ug and vy be three distinct elements of
e such that
u; €sat(z) (1=1,2), (3.7
v € dep("c:ﬂ@): U2 é dep(a::ul)' (3‘8)
For any @ such that 0 < o < &z, us,v2) define

[4

y==z+ O!(Xu, = X s ) (3.9)

Then we have uy € sat(y) and

dep(y: 'u'l) = dep(maul)‘ (3'10)

(Proof) From Lemma 3.1 we have uq € sat(y). Also we have uy ¢ dep(z,u1),
since otherwise we would have dep(z,u2) C dep(z,#1) by the minimality of
dep(z,us) and hence vs € dep(z,u,). Therefore, putting Xy = dep(w, 1), we
have y(Xy) = z(Xp) = f(Xp) and y(X) = 2(X) for any X € D with X C X,.
(3.10) follows from the definition of dependence function. Q.E.D.

Lemma 3.4: For any z € P(f) let u1, ug, v1 and vy be four distinct elements
of F satisfying (3.7), (3.8) and

v1 € dep{z,uq). (3.11)

Then for the vector y defired by (3.9) for any o with 0 < a < &z, ug,v2), we
have

&y, v1,01) = &=, 21, 0m). (3.12)
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(Proof) For any z € P(f) and Xy € D such that 2(Xp) = f(Xp) we have
HX)—2(X)> fH(XNnXy) —2(XNXy) (X ED). (3.13)
For Xy = dep{x, u1) we have from Lemma 3.3
¥(Xe) = 2(Xo) = F(Xo) (3.14)

and since ug, vz & dep(z, u1), we have

y(X)=2(X) (XCXo X€ED). (3.15)

Since (3.13) holds for z = =, ¥, (3.12) follows from (3.14) and (3.15). Q.ED.

Lemma 3.5: Forany « € P(f) let u;,v; ( = 1,2, -, ¢) be 2q distinct elements
of E such that

2; € sat(z), v; € dep(z,u;}) {(i=1,2,--+,q), {3.16)

v ¢ deple, ;) (1<i<i<a) (3.17)

For any «; {1 = 1,2,---,q) satisfying 0 < o; < &(z,u;,%) (( = 1,2,--+,9)
define a vector y € R¥ by

“ y=e+ Y oilXe; = Xo.)- (3.18)
i=1
Then,
el eP(f)? (3~19)
sat{y) = sat(z), (3.20)
y,w) =&z, w) (wEFE —sat{z)). (3.21)

(Proof) Comnsidering the elementary transformations in the order of the pairs
(w1,v1), (uz,v3), -+, (ug,v,), the present lemma can be shown by repeatedly
applying Lemmas 3.1-3.4. Q.E.D.

It should be noted that we have (3.19)—(3.21) if (3.16) and (3.17) hold for
an appropriate numbering of u;’s and »;’s.

Lemma 3.5 will play a very fundamental réle in developing algorithms for
solving the intersection problem and other problems.

(b) An algorithm and the intersection theorem
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We now consider Problem P,' described by (3.2). Given a feasible flow
@ in networtk N = (G = (E, E'; A),c,81,82), define the auxiliary network
Ny, = (G, = (V,4,),¢c,) associated with ¢ as follows. G, = (V, 4,) is a
directed graph, called the auziliary graph associated with ¢, with vertex set V'
and arc set A, given by

V=EUE' U{sT,s}, (3.22)

A, =SFUAUA*UB " UAZ US,, (3.23)
where

S;' = {(s%,v) | v € ST —satT (8T ¢)}, (3.24)
AY ={(v,9) | v€satt(8T¢), u Edept(atp,v) — {v}},  (3.25)
A* =4, (3.26)
B* ={(e,e) | e € E}, (3.27)
A7 ={(u,v) | u €Esat™(37¢), v EdepT (87 @, u) — {u}},  (3.28)
S, ={(v,57) v €S™ ~sat™ (87 p}}. (3.29)

Here, 8Tp = (8¢)F, 8~ ¢ = —(8¢)¥', and satt and dep™ (sat™ and dep™)
are, respectively, the saturation function and the dependence function defined
with respect to submodular system (D1, f1) on E ((Ds, f2) on E'). Note that
B* is the set of the reomentatins of arcs of A. We also define the capacity
function ¢,: A, — RU {+cc} by

"

et(ate,v) (e =(s%,v) € 5F),

(S pn) (o= (n0) € A7),

¢y {a) = { oo (e € A*UBY), (3.30)
&(7eu,v)  (e=(v,v) € 47),

\ &7 (07 ¢, ) (e={v,s7) €5;),

where é© and ¢ (¢~ and &) are, respectively, the saturation capacity and
the exchange capacity defined with respect to submodular system (Dy, f1) on
E ({(Da, f2) on E'). Figuze 3.2 shows the auxiliary network WV, .

Let us consider an algorithm described as follows. We call a directed path
from 8T to 5~ of the minimum number of arcs a shortest path from ¥ to s7.
We assume an oracle for exchange capacities for (D;, f;) (1 =1,2).

Algorithm for the intersection problem

Input: a feasible flow ¢ in M = (G = (E,F'; A),¢,51,82).
Qutput: a maximum flow ¢ in N.
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Figure 3.2.

Step 1: Construct the auxiliary network N, = (G, = (V, 4,), ¢ ).

Step 2: If there exists no directed path from s& to s~ in A, , then the algorithm
terminates and the current ¢ is a maximum flow in V.
Otherwise, find a shortest path P from s¥ to s~ in A, and put

o — min{c, (a} | a is an azc in P}, (3.31)
(a) — { pla) +a (a = {e, e:) € Aand e fs in.P?, (3.32)
pla) — (a=(e,&') € A and (¢',e) is in P).
Go to Step 1.
(End)}

Theorem 3.6: The flows ¢ obtained in Step 2 of the algorithm are feasible
flows in M. Moreover, each time we carry out (3.31) and (3.32), the flow value
of ¢ increases by @ > 0 given by (3.31).

(Proof) In Step 2 we find a shortest path P from st to s~ in the auxiliary
network N, . Let (uf,v7), -+, (v, ;) be the arcs in AT lying on P in this
order and (uy,vy), --+, (ug,v;) be the azcs in A lying on P in this order.
By the way of choosing path P, for each i, j such that 1 < i < j < p(g) we
have

vl ¢ dept (0t o, 0f) (v Edep (870,05 )) (3.33)
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Therefore, the first half of the present theorem follows from Lemma 3.5. The
second half is easy.

Q.E.D.
Theorem 3.7: If there exists no directed path from ¥ to s~ in the auxiliary
network M, in Step 2 of the algorithm, the current flow ¢ is a maximum flow

in V.

(Proof) Let U” be the set of the vertices in ¥V which are reachable from s+
along directed paths in N, (see Fig. 3.3).
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Figure 3.3.

Then for each v € E —U* and 4w € E' NU™* we have

: - dept(8¥,v) CE-U”, (3.34)
dep™ (87 9,2} CE'NU". (3.35)

- Therefore,
8 (B —-U") = h(E-U), (3.36)
8 o(E'NU*) = f(E'nU™). (3.37)

Moreover, from the definition of U* and the auxiliary network N, we see

EntU={e| e B nU*} (CE). (3.38)
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From (3.36)—(3.38),

8 o(B) = 8t p(E ~U")+ 8 o(B' NnU™)
=f1(E—U*)+fg(E‘nU*). (3.39)

On the other hand, for any feasible flow ¢ in A and for any U C B U E' such
that E — U € Dy and B'NU € D; we have
TG (E) =8Tg(E ~U)+ 8 ¢(F' nb)
< AE-U)+£(E QD). (8.40)

It follows from (3.39) and (3.40) that the current flow ¢ is & maximum flow in
N. ' Q.E.D.

Since there exists a maximum flow in A (this fact will also algorithmically
. be proven later), Theorems 3.6 and 3.7 together with the proof of Theorem 3.7
show the following theorem. Note that when f; and fo are integer-valued, the
algorithm given above terminates after a finite number of steps, starting with
an integral feasible flow in A, and then gives an integral maximum flow.

Theorem 3.8: For Problemn P;' described by {3.2) we have

max{8" ¢(F) | ¢: a feasible flow in A}
= I'ﬂlIl{fl(X) -+ fg(E! —X') I X e, BF-Xe Dz}, (341)

where X' = {2' | ¢ € X} C E".

Moreover, if f, and f; are integer-valued, there exists an integral maximum

 flowin V.
Rewriting Theorem 3.8 for Problem P, we also have
Theorem 3.9 (The Intersection Theorem): For Problem Py described by (3.1),

max{z(E) | z € P(f1) NP(f2)}
=min{f1(X) + f2(E - X) | X € D1, £~ X €Dy} (3.42)

Moreover, if f; and f2 are integer valued, the maximum on the left-hand side
of (3.42) is attained by an integral vector € P(f1) NP(f2).

Theorem 3.9 is a generalization of the intersection theorem for polyma-
troids due to Edmonds {Edm70]. The algorithm given in this section is a direct
adaptation of the one given in [Fuji78a)}.
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(¢) A refinement of the algorithm

When f; and f are not integer-valued, the algorithm shown in Section
$.1.b may not terminate after finitely many steps. We shall show an algorithm
due to Schonsleben [Schonsleben80] and Lawler and Martel [Lawler +Martels2]
which modifies Step 2 of the algorithm and terminates after repeating Step 2
O(|V]3) times.

Let m: V(= EUE') — {1,2,---,2n} be one-to-one mapping which denotes
a numbering of the vertices in V, where n = |E|. We also define #(sT) =0
and 7(s”) = 2n + 1. We represent any directed path P from 5T to 87 in N,
by the sequence (s, v1,vs, -, vy, 87 ) of vertices in P and denote by 7 (P) the
sequence ({vy), m(va),+,m(v,)) of the numbering indices of the vertices. For
any directed paths Py and P, from sT to s~ in N, we say Py is lezicographically
smaller than Py if m{Py) is lexicographically smaller than n(P;). We call the
lexicographically smallest one in the set of all the shortest paths from at to0 s~
in M, the lezicographically shoriest path from s to s~ in N,

Now, we modify the part of finding a shortest path P in Step 2 of the
algorithm as follows.

(%) If there exists a directed path from s fo s~ in N, find the lexicographi-
cally shortest path P from st 40 87 in N,

Theorem 3.10 ([Schonsleben80], [Lawler+Martel82] for polymatroids): If we
rpodjfy Step 2 of the algorithm given in Section 3.1.b for Problem P’ as above,
the algorithm finds a maximum flow in A/ after repeating Step 2 O(|E?) times.

(Proof) Denote by Wi C V U.{st,s7} be the set of the vertices which are
reachable by a directed path from ¢T having k arcs but not less than k arcs.
Suppose Wy = {s¥} and s~ € W,. Let P be the lexicographically shortest
path in N, . Also suppose that the arcs of A;}' lying on P appear in order as

(uf,of), (of ,0f), -, (uf o) (3.43)

from st to 5. Put £ = 8¢ and define
y=a +a(Xep —Xut)s (3.4¢4)
where w is defined by (3.31) for the current ¢. Consider vertices w, z € £ such

that
w ¢ dep™ (z, 2), w € dep™ (, 7). (3.45)

Then we must have
u‘f € dep™ (&, 2), 'uf' ¢ dep™ (2, 2), (3.46)
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w € dep™ (2, 7). (3.47)

(See Fig. 3.4.) Here we may have 7 = w or z =uf.

Now, suppose
uil- €W, ’Uf € Wit {(3.48)

for some k (1 < k < 2n). Then we have z € Wy, for some positive integer &y
with k]_ s k <+ 1.

(1) ¥ vertex w is not reachable from s+ in A,, then adding arc (w,z) to N,
does not change the set of shortest paths from st to s~ in A,
(2) Suppose w € Wy, for some ky {1 < kg < 2n). (Note that ks > k.)
(2-1) ¥ ky > k or by < k+1, then adding arc (w,2z) to A, does not change
the set of shortest paths from s to s~ in N, .
(2-2) If ko =k, ky = k+1 and there exists no shortest paths from s* to s~
which include vertex z, then adding arc (w,z) to A, does not change
the set of shortest paths from s to s~ in V.
(2-3) If ky = k, &y = k + 1 and there exists a shortest path from st to s~
in A, which includes vertex z, then we have

m(v)) < #{z) (3.49)

since P is the lexicographically shortest path.
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Because of Lemma 3.5 we can repeatedly apply the above argument to
ates (w7, v} ( =2,---,1) in (3.43).

¥
We can also apply the argument for AT to A- mutatis mutandis.

P
For each vertex w e VU {s'*'} define

Py (w)
=min{r(v) | » €V, (w,v) lies on a shortest path from s to s~ in A, }.

(3.50)

Also denote by ¢* the feasible flow obtained from ¢ by transformation (3.32),
and let P* be the lexicographically shortest path in A,«. Since at least one
arc lying on P is missing in NM,~, it follows from the above argument that

(i) (the length of P*) > (the length of P)+1 or
(ii) (the length of P*) = (1he length of P) and
Py < Py~ with p, (¥) < py«(v) for some v € VU {sT}.

Case (ii) occurs consecutively O(]V]?) times and hence Step 2 is repeated

O(|V|?) (=0(E|®)) times. Q.ED.

The above proof technique is due to R. E. Bixby (cf. [Cunningham84]).
It should be noted that Theozrem 3.10 together with Theorem 3.7 shows the
existence of & maximum flow in A for any totally ordered additive group R and
that the modified algorithm finds a maximum flow in A by changing feasible
flows O(|V[?) times.

The above algorithm corresponds to the Edmonds-Karp algorithm for clas-
sical maximum flows [Edm + Karp72]. A complexity improvement over the
above algorithm is shown in [Tardos + Tovey -+ Trick86] by generalizing the
idea of layered networks due to E. A. Dinits [Dinits70].

3.2. Discrete Separation Theorem

A. Frank[Frank82b] showed the following.

Theorem 8.11 (Discrete Separation Theorem): Let (Dy, f) be a submodular
system on E and (Ds,g) be a supermodular system on F. Then,

g<f=>WweRF: g<z<}. (3.51)
Moreover, if f and g are integer-valued, there exists an integral £ € R¥ such
that g <z < f. Here, g < f means VX € D; NDy: g(X) € f(X)and g < =
(z < f) means YX € Dy: g{X) < z(X) (VX € Dy: 2(X) < f(X)).
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We shall prove this theorem by the use of the intersection theorerm (The-
orem 3.9).

(Proof of Theorem 3.11) Suppose g < f. Then from the intersection theorem,

max{z(E) | = € P(f) NP(g¥)}

=min{f(X) +s¥*(E - X) | X € D; nD,}

= min{#(X) + g(E) - g(X) | X € Dy Dy}

=o(B). - (3.52)
Therefore, there exists a vector @ in P(}) NB(g) (= P(f)NB(g#)). This vector
z satisfies ¢ < 2 < f. Moreover, if # and g are integer-valued, then from

(3.52) and the intersection theorem there exists integral z € P(f)NB(g), whick
satisfies g <2 < f. QED.

We can also show the intersection theorem by using the discrete separation
- theorem (Theorem 8.11) as follows.

Let (Dy, fi) (i = 1,2) be submodular systems on E. Define
Also defire fp: Dy — R by :

. {fg(X) (X € D; — {E}),

(X)) = . (X = B). (3.54)

t-

Note that f: Dy — R is a submodular function since % < F2(E); in fact,
(D2, f2) is the (fo(F) — k)-truncation of (Ds, fo). Then we have ¥ =0=

.. f1(0) and for cach X € D, NDy — {9}

7 (X) = fa(B) - /(B - X)
=k~ /(B - X)
< A1(X). (3.55)
It thus follows fromﬂthe discrete separation theoremﬂtha,t there exaists & vector
2 EARE such that f2“# <z < 1. Since P(f1) NP(f2%) # 0, we have P(f,) N
B(f2) (=P(f1) NB(,#)) # 8. Consequently,
max{z(E) | ¢ € P(#1) NP(f2)}
> max{z(E) | € P(}1) N P(f2)}

=k
=min{/{{(X)+f£(E-X)|XeD, E-X¢€ Dy}
> max{z(E) | ¢ € P(#,) N P(f2)}, (3.56)
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where the last inequality follows from the fact (the weak duality} that 2(F) <

(X)) + f2(E—X) forany = € (fL)NP(f2) andany X €D, with E—X € Dy. -

‘This proves (3.42).

Moreover, the integrality part of the intersection theorem follows from the
integrality part of the discrete separation theorem and the above argument.

We have thus shown the equivalence of the intersection theorem and ihe
discrete separation theorem.

Using the discrete separation theorem, we show (2.27) and (2.28) in Section
2.1.c of Chapter 2. For iwo submodular systems (Di, fi) (6 =1,2) on E let §
be the submodular function on Dy N D, defined by

FX)=A(X)+£2(X) (X E€DNDy). (8.57)

We wiite f as f; + f2. We can easily see that the relation, P(fy + f2) D
P{f1) +P(f2), holds.
Conversely, for any = € P(f; + fo) we have

VX €D1iNDa: 2(X) < LX)+ f2(X), (3.58)
which 1s rewritien as
VX EDiNDy: w(X) - fo(X) < A(X). (3.59)

It follows from (3.59) and the discrete separation theorem that there exists a
vector y € R® such that

VX € Doie(X) ~ fo(X) < y(X), (3.60)
VX € Dp:gy(X) < 4(X). (3.61)

Defining z = z ~ y, we have from (3.60) z € P(f,) and from (3.61) ¥ € P(f1).
We thus have ¢ = y+2z € P(f;)+P(f;). Therefore, P(fi+f2) CP(f1)+P(£2).
This completes the proof of the fact that P(f; + f2) =P(#1) +P(f2).

( Since (f1 + f2)(E) = f1(E) + f2(E), we also have B(fy + f2) = B(f1) +
B(#2).

3.3. The Common Base Problem

Let (D, fi) (1 = 1,2) be two submodular systems on E. The common base
problem for submodular systems (D}, f;) (¢ = 1,2) is to discern whether there
1s a common base z € B(f,)NB(#2) and, if any, to find one such common base.
Clearly, that f1(E) = f2(E) is necessary for the existence of a common base.

67



III. NEOFLOWS

"Theorem 3.12: Let (D, f;) (i = 1,2) be submodular systems on E with
f1(E) = f2(E). Then there exists a common base & € B(f,) N B(f2) if and
only if /5% < fy, ie.,

YX € D1 NDs: f27(X) < f(X). (3.62)

Moreover, if f; {{ = 1,2) are integer-valued and a common base exists, then
there exists an integral common base.

(Proof) If there exists a common base # € B(f1) N B(f2), then since B(#) N
B(f2) = P(#1) N P(f2#), we have fo# < @ < f1. Conversely, if fo¥ < fi,
then there exists a vector # € BZ such that fo# < 2 £ fi, due to the discrete
separation theorem (Theorem 3.11). Hence z € P(f1) N P(f2%) = B(f) N
B(f:*) =B(#1) N B(f2).

Mozreover, the integrality part also follows from the integrality part of the
discrete separation theorem. Q.E.D.

Note that, in Theorem 3.12, f2# < f; if and only if 17 < fs, since
f1(E) = f2(E). Also note that “fo# < f1 ” is equivalent to:

VX €D NDy: fu(X) + f2(B ~ X) > f2(B) (= H(E)). (3.63)

From the intersection theorem, (3.63) means that there exists a vector = €
P(f:) NP(f2) such that z(E) > f2(E), and such a vector = is a common base
since f1(E) = f2(E). In this way Theorem 3.12 can also be shown by the
intersection theorem. :

The common base problem can be solved by finding 2 maximum common
subbase ¢ € P(f1) N P(f2) through the algorithm shown in Section 3.1. We
shall also give an algorithm for the common base problem which deals only
with bases in B(f1) and B(f2).

Given bases by € B(f1) and b; € B(f2), we denote 8 = (b, b;) and define
the auxiliary network Ay = (Gg = (V, Aﬁ),TE',Tﬁ“,cfg) as follows. Gy is the
underlying graph with the vertex set V' = F and the arc set Ag defined by

Ap = Aj U 45, (3.64)
Af ={(v,v) | v,v €V, v Edepy(b1,v) — {v}}, (3.65)
A% ={(v,u) | v, v € V, u € depa(bs,v) — {v}}, (3.66)

where dep; and deps are the dependence functions associated with (Dy, ;) and
(D2, f2), tespectively. cg: Ag — R is the capacity function defined by

& (b1, v,u) (a =(u,v) EA}),

. (3.67)
2 (b2, u, v) (a=(u,v) € A‘fé)

cg(a) ={
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Here, &, and &; are the exchange capacities associated with (Dq, 1) and (Ds, f3),
respectively. Also, Tg‘ and Ty are subsets of V defined by -

Td = {v|v €V, bi(v) > bs(v)}, (3.68)
Ty = {v|v €V, bi(v) < b2(v)}. (3.69)

T;’ 15 the set of entrances and Tﬁ" the set of exits In J\fﬂ.
Now, an algorithm for finding a common base of B(f1} and B(f2) is given
as follows.

An algorithm for finding a common base

Input: Submodular systems (D;, f;) (: = 1,2) on F with f/1{E) = f2(F) and
initial bases b; of (D;, f;) i =1,2).

Qutput: A common base & (= by) if any exists.

Step 1: While b; # bs, do the following (a)—(c):

(a) Construct the auxiliary network Nz = (Gg = (V, Aﬁ),TE’,Tﬂ",c}g) as50Ci-

ated with 8 = (b1,b;). If there is no directed path from Tf}" to TE, then stop
(there is no common base in B(f;) and B(f3)).

{b) Let P be a directed path from Tﬂ"‘ to Tﬂ' in G having the smallest number
of arcs and put

; o — min{min{cg(a) | a is an arc on P},

b1 (87 P) — 52(87 P), b5(87 P) - b1(37 P)}.

(¢) For each atc & € Ag,
if e = (u,v) € A},, then put

bl(u) - bl (u') — bl(v) = bl('v) + a,
ifae={(2,v)€E Ag, then put
bg(‘u) — bz(%) + <&y bg(‘ﬂ) — bg(’t}) — .
Step 2: The current by is a cornrmon base of B(f1) and B(f2) and the algorithm
terminates.
(End)
Because of the way of choosing a directed path P in (b) of Step 1, the
vectors by and by remain bases in B{#1) and B(f;), respectively, due to Lemma

3.5.
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If the algorithm terminates at (a) of Step 1, then let U be the set of
vertices in Gy which are reachable by directed paths from T)._;". It follows from
the definition of the auxiliary network Ay that

b1 (U) = f1(B) - L(E - U), (3.70)
b (U) = f2(U). (3.71)

Since & (U) > b2(U), we have from (3.70) and ‘(3.71)
F(B)(= f2(E)) > f(BE = U) + f2(U). (3.72)

From {3.72) (and Theorem 3.9) we see that there exists no common base in
B(f1) and B(f2). |

When f; and f; are integer-valued and initial bases &) and by are integral,
bases by and by obtained during the execution of the above algorithm are in-
. tegral and hence the algomithm terminates after repeating (a)—(c) of Step 1 at
‘most by (T;}") - bg(Tf,?") times.

For general rank functions fi and f; we adopt the lexicographic ordering
described in Section 3.1.c ([Schonsleben80], [Lawler+ Martel32]). When finding
a shortest path from Tﬁ+ to Ty by the breadth-first search, for each v € V
search arc (u,v) in Aj (or A3) earlier than arc (u,v') in A} (or Aﬁ) if m{v) <
w{v'), for a fixed numbering m: V — {1,2,---,|V|} of V. By this modification
the algorithm terminates after repeating Cycle (a)—(c) of Step 1 O{|E|*®) times.

£
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4, Neoflows

In this section we consider the submodular flow problem, the indepen-
dent flow problem and the polymatroidal flow problem, which we call neoflow
problems. We discuss the equivalence among these neoflow problems and give
algorithms for solving them.

4,1. Neoflows

We first give definitions of the submodular low problem, the independent
. flow problem and the polymatroidal flow problem.

(a) Submodular flows

Let G = (V, A) be a graph with a vertex set V and an arc set A. Also
let & A — R U {+co} be an upper capacity function and c: A — {—oo} be 2
lower capacity function. A function v: A — R is a cost function. Let F C 2V
be a crossing family with §, V € 7 and f: F — R be a crossing-submodular
finction on the crossing family F with £(8) = f(V) = 0. (See Section 1.3 for
the definition of crossing-submodular function on & crossing family.) Denote
this network by Ng = (G = (V, 4),¢,8,7, (F, ).

The submodular flow problem considered by Edmonds and Giles [Edm +
Giles77] is described as follows.

Ps: Minimize E y(a)e(a) (4.1a)
acA

subject to cle) < v(a) <&(a) (a € 4), (4.1b)

8¢ € B(f). (4.1¢)

Here, 3¢ 1s the boundary of ¢ with respect to G (see (1.23)) and B(f) is
the base polyhedron associated with f (see Theorem 1.4), where we assume
B(f) # 0.

A feasible ¢: A — R satisfying (4.1b) and {4.1¢) is called a submodular
flow in Mg and an optimal solution of the submodular flow problem Ps is
called an optimal submodular flow in Ns. (The term, submodular flow, was
introduced by Zimmermann [Zimmermann82].)

(b) Independent flows

Let G = (V,4;S1,57) be a graph with a vertex set V, an arc set A,
a set ST of entrances and a set S~ of exsts such that §*, §~ € V and
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5tNS™ =49, Also let @ A — R U {+co} be an upper capacity func-
tion, ¢ A — R U {—co} be a lower capacity function, and v: 4 — R be
a cost function. Moreover, let (DT, f1) be a submodular system or ST and
(D7, f7) be a submodular system on S~. Denote this network by N; = (G =
(V,A;S7,57),6% (DY, £1),(D™, 7).

The independent flow problem [Fuji78a] is given as follows. For a given
™ E R,

Pr: Minimize Z v{a)p(a) (4.2a)
eEA o :

subject to cfa) < ¢(a) <2(a) (a € 4), (4.2b)
Bp(v) =0 (weV ~(STus™)), (4.2¢)

(99)*" €P(T), (4.24)

—(80)° " €P(f7), (4.2¢)

8p(ST) =v". (4.2f)

Here, (8¢)5™ (o1 (80)¥7) is the restriction of 8p: V — R to S+ (or =) and
P(#%) and P(f~) are, respectively, the submodular polyhedra associated with
(D*t,f%) and (D, f7). (The original independnt flow problem cousidered
by the author [Fuji78a] is described in terms of polymatroids and is slightly
generalized here to submodular sysiems.)

It should also be noted that if the system of (4.2b)—(4.2{) is feasible, we
have min{f¥{S*), £7(S7)} > +* and that letting (DT, f*) and (D=, F7) be,
respectively, the (fT(ST1) —v*)-truncation of (D, ) and the (F~(5~) —v*)-
truncation of (D=, f7), we can replace (4.2d)—(4.2f) by

(80)°" € B(f*), (4.2¢)

~(8¢)°" €B(f7). (4.2h)

Here, note that 8¢(S¥) = —8p(S™) due to (4.2¢).

A feasible flow p: A — R satisfying (4.2b)—(4.2f) is called an independent
flow of value ¥" in M7 and an optimal solution of the independent flow problem
Pr 15 called an optimal independent flow of value * in N7.

(c) Polymatroidal flows

Let G = (V, A) be a graph with a vertex set V and an arc set 4. For
each vertex v € V we consider distributive lattices D;F C 2°7* and DS C287v
and submodular functions fF:DF — R and f7:D; — R. Here, we assume
€ DS, 8 € D; but not necessanily §7v € D, 67v € D . Alsoletg: A — RU
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4.2. THE EQUIVALENCE OF THE NEOFLOW PROBLEMS

{—o0} be a lower capacity function and 7: A — R be a cost function. Denote
this network by Mp = (G =(V, 4),¢,v, (D], £ v € V), (D7, £7)w € V).

The polymatroidal flow problem [Hassin82], [Lawler + Martel82] is given
as follows.

Pp: Minimize Z v(a)p(a) (4.3a)
acAd

subject to ¢(a) < o(a) (a € 4), (4.3b)

Bp(v) =0 (v EV), (4.3¢)

oTTEP() (wev), (4.3d)

o TEP(fy) (vev), (4.3¢)

where 8¢ is the boundary of ¢ with respect to G, ¢® " (or ¥ %) is the
restriction of ¢: A — R to 6§tv (o1 67 v), and

P(/f)={z |2 €R", VX € D}:2(X) < £ (X)}, (4.4)

P(f;)={e |z € R, VX €D :2(X) < f7 (X)}, (4.5)

(The problem is originally defined in terms of polymatroids and slightly gener-
alized here.)

A feasible flow ¢: A — R satisfying (4.3b)—(4.8¢) is called a polyma-
t:tr'oidai flow in Np and an optimal solution of Problem Pp is called an optimal
polymatroidal flow in Np.

4.2. The Equivalence of the Neofiow problems

We show the equivalence of the submodular low problem, the independent
flow problem and.the polymatroidal flow problem. Here, the equivalence is
with Tespect to the capability of modeling flow problems. Different models
may require different oracles for algorithms but we will not go into this matter
here.

(a) From submodular flows to independent flows

Consider the submodular low problem Ps defined by (4.1). From Theorem

1.4 and the definition of the submodular flow problem we can assume that f

appearing in (4.1) is & submodular function on a distributive lattice D C 2V

such that ¢, V € D and f(8) = f(V) = 0. Let s~ be a new vertex not in
G = (V, A) and define

St=v, S ={s). (4.6)
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Then the submodular flow problem Ps is rewritten as

Minimize Z v(a)ela) (4.7a)
acA

subject to ¢(a) < ¢(a) £ ¢la) (a € 4), (4.7b)
(80)°" €B(), (4.7c)
— (6¢)° € {0}. (4.7d)

This is an independent flow problem with the underlying graph G' = (V U
{57}, 4;87,57). (See (4.2b), {4.2¢), (4.2g) and (4.2k), where constraint (4.2¢)
is void.)

It is interesting to see that the submodular flow problem looks like & very
special case of the independent flow problem (see Fig. 4.1).

Figure 4.1.

(b) From independent flows to polymatreidal flows

Consider the independent flow problem Pr described by (4.2). Without
loss of generality we assume that there is no arc entering ST or leaving S~.

gy



4.2. THE EQUIVALENCE OF THE NEOFLOW PROBLEMS

st

) 8~ be new vertices not in G =A(V,A;S+,S
(V

and
, A) with vertex set V and arc set A given by
Vu{st, s},

AUAT U A~ UAS,
At ={(s¥,0) |vE ST},
AT ={{v,s7) [vEST]

V=
A=

~). Construct a graph

(4.8)

(4.9)
(4.10)
(4.11)
(4.12)

(4.13)

A ={(s7,sT)}.
Also define a lower capacity function & A — RU{~co} and a cost function
¥:A— R by
e(a) (a € 4),
&a) = f+(S+) (a=(3_’3+))’
—co (a € ATUAT),
v(a) (a € 4),

0

o) = {

(a € AT U A~ U AP).

(4.14)

Moreover, for each vertex v € V define polyhedron P C R¥ “and P; C R¥™"

by
(P(f1)
¢ Pt ={ (~co,+c0)
| {z |z € R3"", Vo € 6T v:2(e) < E(a)}
(P()
P; = ¢ (—o0,+c0)

1

{z]|c€RE ", Va €6 v:z(a) <C(a)}

(v=1s7),

(v e {s7}UST)(4.15)
(veV—-57),
(v=s7),

(v € {sT}UST),(4.16)
(v €V ~S%),

where P(#7) and P(f~) should, respectively, be regarded as polyhedra in RA"
and R4 under the natural correspondence between ST and AT and between
S~ and A™.

Now, the independent flow problem P is rewntten as

Minimize Z Y{a)o(a) (4.17a)
eE A

subject to &(a) < w(e) (e € 4), (4.17b)
dp(v) =0 (weV), (4.17¢)
T eRr (ve V), (4.17d)
S TeP; (vEV). (4.17¢)
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We can easily see that for each v € V there exist distributive lattices DF C 2°7°
and D7 € 2° ¥ and submodular functions f;7: D — R and f;7:D; — R such
that 0 € DF ND;, £5(8) = £, (9) and

Pf=P(ff), P7=P(f]) (4.18)

Therefore, the independent flow problem is reduced to a polymatroidal flow
problem (see Fig. 4.2).

Figure 4.2.

(¢) From polymatreidal flows to submodular flows

Consider the polymatroidal flow problem Pp defined by (4.3}. From the
underlying graph G = (V, A) we construct a graph G' = (W, A4) with the same
arc set, where the vertex set W is given by

W={w}]a€AtU{w, |a€ A} (4.19)

and we define 8T e = w) and 8 ¢ = w, for each @ € A in G' (see Fig. 4.3).
Each arc of & forms a connected component of G'. Define an upper capacity
function ¢: 4 — R and a lower capacity function ¢: 4 — R by

Z(a)=4c0 (a€ A4, d(e)=cla) (a€A4). (4.20)
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Also define
Wi ={uwl|eecstv} (4.21)
W, ={w; |a €8 v} (4.22)
where 61 and 6~ are with respect to . Under the natural correspondences
between Wt and %o and between W and 6~ v for each v € V we regard
P(fF) and P(f;) as polyhedra in R¥Y and R7>, respectively.

Figure 4.3.

Define for each v € V
B,={y | y RV, 4™ e B(s]),
—y" €P(), yWH +y(W;) =0} (4.23)
and let B C RY be the direct sum of B, (v € V):

B=Ep B,. (4.24)

wEV
Then, the polymatroidal flow problem is rewritten as

Minimize Z v(e)p(a) (4.25a)
acA

subject to £'(a) € ¢(a) < T(a) (e € A4), (4.25b)
dp € B. {4.25¢)
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Note that y € B, if and only if

VX € DFiy(X) < £H(X), (4.26)
VX €D;: —y(X) < £7(X), (4.27)
y (W) + (W) =0, (4.28)

where we regard DF C 2°7% and D, C 2°7*. The system of (4.26)—(4.28) is
equivalent to that of (4.26), (4.28) and

VX €D y(Wi) +y(Wy — X) < £7(X). (4.29)
For each v € V let 7, be the crossing family defined by
Fo=DFUuD;u{Wwlruw;}, (4.30)

. where Dy = {W; —X | X € D}, and let f,: F, — R be defined by

£ (X € D),
LHX)=Sfr (W, ~X)  (XeD)), (4.31)
0 (X =W} ruw;).

Then, f, i1s a crossing-submodular function on the crossing family 7, and we
have B, = B(f,), & base polyhedron. Therefore, it follows from (4.24) and
(4.25) that the polymatroidal flow problem Pp is a submodular flow problem.
It is interesting to see again that the polymatroidal flow problem looks like a
very special case of the submodular flow problem.

4.3, Feasibility for Submodular flows

In the previous section we have shown the equivalence of the submodular
flow problem, the independent flow problem and the polymatroidal fiow prob-
lem. Since the submodular flow problem is simple to describe, let us consider
as a neoflow problem the submodular flow problem

Pg: Minimize z v{a)p(a) (4.1a)
atA

subject to ¢(a) < ¢(a) <& a) (a € 4), (4.1b)

8¢ € B(f). (4.1¢)

Due to Theorem 1.4 we assume for simplicity that f Is a submodular function
on a distributive lattice D C 2¥ with @, V € D and f(9) = F(Vy=o.
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Recall (1.62), where we have shown

80 ={8p | p: A— R, Ya € 4A: ¢(a) < ofa) <Z(a)}
=B(EEJE), ) (432)

Hete, £o7: 2V — R U {+co} is the cut function associated with the network
N = (G = (V,A),c,©) and 8% is a base polyhedron. Hence, there exists a
feasible flow ¢ for the submodular flow problem if and only if

5% NB(f)(= B(xz) NB(f)) #9, (4.33)

1.¢., there exists a common base in B(x.z) and B(}).
From Theorem 3.12 we have

Theorem 4.1 [Frank84]: There exists a feasible flow for the submodular flow
problem Ps satisfying (4.1b) and (4.1¢) if and only if

VX €D: (sg2)*(X) < £(X) (4.34)

oI
VX ED: gA X)) —c(ATX) +#(X) >0, (4.35)

where for each X CV AT X ={a |a € 4, 6'a € X, ¢ € V- X} and
A X={a|le€4, 6c€X, 8TaceV-X}

* Moreover, if ¢, ¢ and f are integer-valued and Ps is feasaible, there exists
an integral feasible flow. '

(Proof) Immediate from Theorem 3.12. Q.E.D.

A feasible flow for the submodular flow problem can be obtained by the
use of the algorithm shown in Section 3.3.

Frank [Frank84] showed feasibility theorems for the cases where f is an
intersecting-submedular function on an intersecting family and where f is a
crossing-submodular function on a crossing family. We can give theorems for
these cases by combining Theorems 4.1 and 1.5. _

Since the description of the algorithm for the common base problem given
in Section 3.3 depends on the base polyhedron B(f) but not on the submodularx
function f or the system of linear inequalities expressing B(f), the algorithm
also works even if f is a crossing-submodular function on a crossing family,
provided that an initial base in B(f) and an oracle for exchange capacities are
available. For such an f, however, finding a base in B(f) together with deter-
mining the nonemptiness of B(f) is itself & nontrivial problem. See [Franks4],
[Fuji87] and [Frank + Tardos88] for algorithms for finding a base in B(f) when
[ 15 a crossing-submodular function on a crossing family.
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4.4, Optimality for Submodular flows

Consider the submodular flow problem Ps described by (4.1}, where (D, f)
is a submodular system on V with f(V) = 0.
We show the following optimality theorem.

Theorem 4.2: A submodular flow ¢: A — R for Problem Ps is optimal if
and only if there exists a function p: V — R such that, defining v,: A — R
by

vp(e) = v(a) +p(8Ta) = p(87a) (e € A4), (4.36)

we have for cach a € 4

Ypla) > 0 == ¢(a)
"fp(a,) <0 = go(a,)

Il

(4.37)
(4.38)

c(a),
(a)

. and such that the boundary 8¢: V — R is a maximum-weight base of B(f)
with respect to the weight function p.

(Proof) The “if” part: By an elementary calculation we have

> " va)ele) = D vla)e(a) = Y p(v)de(v). (4.39)

aCA eEA veV

The “1f” part immediately follows from (4.39). We postpone the proof of the
“only 1f” part. QED.

To prove the “only 1f” part of Theorem 4.2 we need some preliminaries.

Any function p: V — R 15 called a potential A potential p satisfying the
conditions of Theorem 4.2 1s called an optimal potential

Given a submodular flow ¢, we define the auziliary network N, = (G, =
(V,Ay), ¢ ,7y ), where G, is the graph with vertex set V and arc set 4, given
by

A, = A3 UBLUC,, (4.40)
A, ={a|a €4, ela) <Za)}, (4.41)
B, ={z|a€A4, ¢fa) <pla}} (@ areorientation of ), (4.42)
Gy = {(3,9) | 0,7 € V, v € dep(dp,v) — {o}}, (4.43

¢y: A, — R is the capacity function given by

t(a) ~pla) (e € A7)
¢y (a) = § ©(@) — (@) (a € B}, @(€ A): a reorientation of a)  (4.44)
&(p,v,u) (a=(v,v) €C,),
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and v,: A, — R 1s the length function given by

He)  (eeay)
Y (a) = { —v(@) (a € B;, a2{€ A): a reorientation of «) (4.45)
0 (@ = (u,v) €C,).

We call a directed cycle of negative length a negafive cycle.

Lemma 4.3: Let ¢ be an optimal submodular flow for Problem Ps. Then
there exists no negative cycle, relative to the length function +, , in the auxiliary
network N, .

(Proof) Suppose, on the contrary, that there exists a negative cycle in N, . Let
Q@ be a negative cycle having the smallest number of arcs in A, and let the
arcs in C, lying on @ be given by {(u;,v:) (f € I).

We show that by an appropriate numbering of arcs (u;,v;) (! € I) the
assumption of Lemma 3.5 is satisfied. Suppose, on the contrary, that the
assumption of Lemma 3.5 cannot be satisfied by any numbering of arcs (z;, »;)
(: € I), ie., there are arcs (u;,v;,) (k= 1,2,---,p) such that iy € [ (k =
1,2,---,p) and (u;,,vi,,) € Cp (k =1,2,-++,p) with 4,41 = 4;. Then for
each k = 1,2,---,p let Q; be the directed cycle formed by arc (ui,,vi,,,)
and the path in @ from v;,,, to u;, (see Fig. 4.4). Since v((ui,,v:,)) =
Ty ((uik: 'Ul'k.u)) =0 (k =12, ;P): we see that

Y @) == @ <0 (4.46)
k=1

for some integer ¢ such that 1 < ¢ < p, where v, (Qx) and 7, (@) are the
lengths of Qi and Q relative to the length function v, . It follows from {4.46)
that there is at least one @ (k = 1,2, --,p) having the negative length and
such a directed cycle @ has a smaller number of arcs than @. This contradicts
the definition of @, so that by an appropriate numbenng of arcs (u;,v;) (¢ € I)
the assumption of Lemma 3.5 is satisfied.

Define

o = min{c, () | ¢ lies on Q} (4.47)

and modify the flow ¢ as

plaj+a  (e€4; N4, (Q)
pla)=<ple)—a (Z€B;NAQ), & areotientation of a)  (4.48)
e(a) (otherwise)
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Wiges 'V,'-'n,«z

UGJ!H /// \

U£k+1

Figure 4.4.

for each a € A, where 4, (@) denotes the set of arcs lying on Q. Then ¢' is a
submodular flow due to Lemma 3.5 and

> va)e'(a) =3 vla)e(a) + a7, (Q) < Y ¥(a)e(a) (4.49)

G A aE 4 at A

This coniradicts the assumption that ¢ 1s an optimal submodular flow. Con-
sequently, there is no negative cycle in NV, . QED.

The prooftechnique concerning (4.46) was otiginated by the anthor [Fuji77a,
77b] for matroids and may be interesting in its own right (also see [Zimmer-
manng2].

(Proof of the “only if” part of Theorem 4.2) Let ¢ be an optimal submod-
ular flow for Problem Ps. Then, from Lemma 4.3 there exists no negative cycle
in the auxiliary network VN, relative to the length function -y, . This implies
that there exists a poténtial p: V — R such that

Yo,p (@) = v, (a) +p(8Ta) —p{67a) > 0 _(4.50)

for each @ € A7 (Such a potential p can be found by a shortest path compu-
tation from a fixed origin s outside N, , where the origin s is connected with
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each vertex of V by a new arc of -emy finite length, say, zero.) We can easily
see that (4.50) for a € AY U B implies (4.37) and (4.38) and that (4.50) for
a € C, 1mplies

p(w) > p(n) (v € dep(dp,0) - {3}). (4.51)
From (4.51) and Theorem 2.13 &p(€ B(f)) is a maximum-weight base of B(f)
with zespect to the weight function p. Q.E.D.

It should be emphasized here that Theorem 4.2 is independent of how the
base polyhedron B(f) is represented by a system of linear inequalities.

The proof of Lemma 4.3 suggests an algorithm for solving the submodular
flow problem Pg as follows:

Starting from an arbitrary submodular flow ¢,
(1) ind a negative cycle ) having the smallest number of arcs in the
auxiliary network N,
(i) modify the present flow ¢ along the negative cycle @ as in (4.47) and
(4.48), where if @ = 400, the problem is unbounded, and
(iii) repeat this process until there is no negative cycle in WV, .

This is the primal algorithm given in [Fuji78a] and [Zimmermann82]. When
Z, ¢, f and an initial ¢ are integer-valued, this algorithm terminates after a
finite number of steps and finds an optimal submodular fiow if any exists. We
shall discuss more efficient algorithms in the next section.

A necessary and sufficient condition for the existence of an optimal sub-
modular flow is given as follows.

Theorem 4.4: For the submodular flow problem Ps define a ne‘gwork N =
(G = (V, A),%), whete G is a graph with vertex set V' and arc set A given by

A=A4"UB*UC, {4.52)
={a]a € 4, 2(a) = +oo}, (4.53)
B*={@|a€ A, ¢la)=—co} (& areorientation of @), (4.54)
C={{uv)]|vv,eV,VXED: (WEX = u€ X)} (4.55)

and 4: A — R is the length function defined by

1) (¢ € 47)
4(a) =< ~y(@ (a € B*, a(€ A): a reorientation of a) (4.56)
0 (a € C).
Suppose that there exists a submodular flow for Problem Ps. Then, there

exists an optimal submodular flow for Problem Ps if and only if there is no
negative cycle in A relative to the length function ¥.
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Proof) The “if” part: Suppose that there is no negative cycle in A relative to
p 5 i
4. Then there 15 a potential p: V — R such that foreach ¢ € A

4p(8) =4(a) +p(8%a) —p(678) 2 0, (4.57)

where 8% and 8~ are with respect to G. (4.57) implies

(@) +p(87a) = p(87a) 20 (e € 4), Fa) = +o0), (4.58)
v(a) +p(87a) —p(67a) L0 (a € 4), cfa) = —c0), (4.59)
p(u) 2 p(v)  ((u,v) €C). (4.60)
Since (4.1¢) is expressed as
VX €D: 9p(X) < F(X), (4.61)
ap(V) = f(V)(=0), (4.62)

" where (4.62) is void, and since
3p(X) = (AT X) —p(A7X), (4.63)

the linear-programming dual of Problem Ps with (4.1¢) being replaced by (4.61)
is described as

Ps™: Maximize Z {(a) ~ Z £ (e)e(a) — Z (X)) F(X) (4.64a)

acA at A XeD
subject to Va € A: £{a) — £{a) — Z{?}(X) | X €D, s € ATX)

+Z{n(X) | X €D, a € AT X} =~(a), (4.64b)

]

£(e) =0 (a€ 4, gla) = —c0), (4.64c)
£(a)=0 (a€ 4, o) = +co), (4.64d)
&, & n>0, (4.64e)

where ¢, £: A—R,7: D — R and we regard {4.64a) as the objective function
with the terms £(a)g(a) (a € 4, ¢(a) = —o0) and £(a)2(a) (a € 4, Ea) = +o0)
being suppressed.

Because of (4.60) there is a maximal chain

C:@:SQCS1C“‘CS”,=L? (4.65)

of D such that p is constant in each quotient S; —S3_y (A =1,2, -+, n). Using
this chain C and the potential p, define

7S} =pry1—m (k=12 ,n-1), (4.66)
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where pp is the value of p taken in Spy1 — Sp and note that 5(S:) > 0. Also
define 5(X) = 0 for other X € D. Moreover, define

£ (a) = v(a) +p(8Ta) ~p(87a) {a € A4, &(a) =+00), (4.67)
£(a) =v(a) +p(8%a) —p(87a) (a € A, ¢la)=—o0}, (4.68)

and for each arc ¢ € A with (e} < +co and ¢{a} > —co define £ and £ such

that &, £ > 0 and {4.64b) holds. We can easily see that thus defined ¢, £, 7
satisfy (4.64b)—(4.64e), where note that for each arc a € A with &) = +co
and ¢{a) = —co we have v(a) + p(8% a) — p(8™a) = 0 due to (4.58) and (4.59).

Since the dual of Problem Ps has a feasible solution and the feasibility of

the primal problem Ps is assumed, there exists an optimal solution of Problem
Ps.

The “only if” part: Suppose that there is a negative cycle in N relative
to the length function %, and let @ be such a negative cycle in N. Then foz
- any positive «, if we define ¢': A — R by (4.48), ¢' is feasible for Problem Ps
because of the definition of A and we have (4.48). Since a (> 0) is arbitrary
and 7, (Q) < 0, Problem Pg is unbounded. This completes the proof. Q.E.D.

We also have
Theorem 4.5 [Edm+Giles77}]: The system of inequalities
' ¢le) £ pla) £%a) (a € 4), (4.69)

3p(X)(=p(ATX) —p(A7 X)) L f(X) (XED) (4.70)
for the submodular flow problem Ps is totally dual integral.

(Proof) Consider a submodular flow problem Ps such that the coefficients
v(a) (A € A) of the objective function are integers and that there exists an
optimal submodular fiow ¢. From the proof of the “only if” part of Theorem
4.2 there exists an integral potential p: V — Z such that for each ¢ € A

vp(a) = 7(a) +p(87¢) — p(87a) > 0= p(a) = c(a), (4.71)

Yo (a) = v(a) +p(8%a) = p(97a) < 0= ¢(a) = (o) (4.72)
and for each w € V and v € dep(8¢,u) — {u}

p(w) < plv). (4.73)
Let py > ps > -+ > p; be the distinct values of p(u) (x € V) and define
Wi={u|w€V, ple) 2p} (=121 (4.74)
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From (4.73) we have
8@(W;)=f(HF,) (2.:1;2:'”:5)' (4'75)

For the dual problem Ps* in (4.64) of Ps define

g_( a) = max{0,v,(a}} (o € 4), (4.76)
£(a) = ma,x{O ~vpla)} (o€ A}, (4.97)
W Wi) = pi — pina (i=1,2,--,1-1), (4.78)
X)) = 0 for other X € D. (4.79)

We can easily see that these ¢, ¢ and p satisfy (4.64b}—(4.84e). Moreover,
from (4.71}, (4.72) and (4.74),

S t(a)ela) = Y Ele)ela) ~ 37 2 (X)F(X)

at A aE A XeD
-1
=3 wla)e(a) =Y (i — pigy1) F (W)
ac A i=1
= Z "fp a)e(a) — Z(_'P: = Pi1)00(W5)
at A
¢ = Z vpla)o(a) - Zp,aqﬂ’ — Wi-1)
ac A
= Z pla)p(a) — Z p(v)0(v)
acd 1eV
= e)ela), (4.80)
aEA

where Wy = § and note that 8p(Wi) = 8p(V} = 0. Therefore, £, ¢ and 75
defined by (4.76)—(4.79) form an integral opiimal solution of the dual problem
Pgs*. This completes the proof. Q.E.D.

It follows from Theorems 4.5 and 1.5 that if we replace f in (4.70) by a
crossing-submodular function on a crossing family, the system of (4.69) and

(4.70} is totally dual integral.

Corollary 4.6 [Edm+Giles77): For a crossing-submodular function f on a
crossing family F C 27, the system of inequalities

ola) < (o) <7e) (o€ 4), (4.81)
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80(X) < F(X) (X €F) (4.82)

is totally dual integral.

The proof of Theorem 4.5 shows the way of constructing an optimal dual
solution £, ¢ and 7 from an optimal potential p when f is a crossing-submodular
function on the distributive lattice D. When f is a submodular function on a
crossing family 7 C 2V with 8, V € F and f(®) = f(V) = 0, suppose that
B(f) = B(f2) for a submodular system (D, f2) (see Theorem 1.5). Also suppose
that for each W; in (4.75) we have the expression of fo(W;) in terms of f as
follows {see Theorem 1.5).

W)= 3" f(Xiys) (=1,2,,1-1), (4.83)

JET REK;

where V — (3, cx, Xijs) (7 € Ji) form a partition of V — W; for each i =
1,2,---,0—1 and j(,-fk (k € K;;) are disjoint sets (as subsets of V) in F for
eachi=1,2,--+,0—1 and j € J;. Here, note that fo(V) = 0. Then define for
each X € F

WXy = {pi—pigr | X = Xijz, i €{1,--,p—1}, J € Ji, k € K5}, (4.84)

where the summation over the empty set 1s equal to zero. Note that if all the
Xi; are distinct, we have 7{Xijx) = pi — piy1 and 9(X) = 0 for other X € F.
¢, € defined by (4.76) and (4.77) and this  form an optimal dual solution.

"~ Weshow the way of finding an expression in (4.83) foreachi =1,2,---,1—
1. Put ¢ = 3¢ and define

Flz)={X|XeF, o(X)=F(X)}. (4.85)

We assume an oracle which, for each ordered pair (u,v) of distinct vertices
w, v € V, gives a u-v cut X € F () or answers that there is no u-v cut
X € F(z), where a u-v cutis a set X C V such that w € X and v ¢ X. Let
G = (V, A(z)) be the graph defined by

Alz) = {{u,v) | w €V, v € dep(z,u) — {u}}, (4.86)

where note that (u,v) € A{z) if and only if v # v and there 1s no w-v cut
X € F(z). Choose any W; (i =1,2,-+-,1 —1). Let G; be the graph obtained
from G by deleting all the vertices in W; together with the arcs incident to
Wi, and let Uj; (7 € J;) be the vertex sets of the connected components of G;.
Note that

AU =9 (€ J.‘) (4.87)
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in G, so that
Fo(V=Uy)=e(V-Uy) (7€) (4.88)

Therefore, for each » € V — Uj; and v € U;; there exists a u-v cut X € F (=).
HXNU; # 9, choose ' € X NUj; such that for some w € Uy; — X we have
{v',w) € A{z). Such a o' exists since Uj; — X % 0 and Uj; is the vertex set of
a connected component of G;. There exists a z-v' cut X' € F (=) and either X
and X' cross or X' C X, due to the way of choosing »'. Since F (z) is a crossing
family, we have XN X' € Fz)and e € X NX' CX. Put X « X NX'. I
XNU;; 5 0, then repeat this process until we have XNU; = §. After repeating
this process at most |U;;| time we have X € F («) such that w € X CV = U;.
Denote this X by X,.

In this way, for each v € V — U;; we can find X, such that v € X, C
V —U;;. Consider the hypergraph A =(V —=U;,{X, | v € V ~Uj;; }) and let
Xijx (k € Ki;) be the vertex sets of the connected components of H. Since
F(2) 1s a crossing family of subsets of V', we have X;;; € F (=) (k € Kj;).
* Consequently,

£ (W, =30 37 e(Xis) — ([5] = De(V)

JeJ kEK;

= Z Z f(X,'jk) (4.89)

jefikeK;;

slnce (V) = 0.

When f is an intersecting-submodular function on an intersecting family
F €2V with 8, V € F and F(0) = f(V) = 0, for each w € W; we can find
X, € F(z) such that w € X, C W;. (Note that for any v, v' € V — W, there
exist a w-v cut X € F(z) and a w-v' cut X' € F(z) and that w € XNX' € F(x)
since F(z) is an intersecting family.) Let X;; (j € J;) be the vertex sets of
the connected components of the hypergraph H = (Wi, { X, | v € W;}). Then
Xi; € F (2) and we have

= > f(Xi), (4.90)

JeS

where f1 1s the submodular function appearing in (i) of Theorem 1.5.

4.5. Algorithms for Neoflows

We consider maximum flow and minimum-cost flow problems and show
algonthms for these problems.
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(a) Maximum independent flows

The maximum flow problem for neofiows seems to be casily formulated by
the independent flow problem. The mazimum independent fow problem is:

Parr: Maximize 8¢(S™) (4.912)
subject to gle) < v(e) <¢(a} (e € 4), | (4.911)
8p(v) =0 (weV —(STUST)), (4.91c)

(90)*" € P(H), (4.91d)

- (69)° €P(#7), (4.91¢)

where we consider the same network described in Section 4.1.b. We denote
(&p)s+ and —(8p)°" by 8T ¢ and 87 ¢, respectively, in the following.

We suppose there exists a feasible flow. A feasible flow, if any exists, can
 be found by adapting the algorithm in Sectin 3.3 as discussed in Section 4.3
for submodular flows. Given a feasible flow ¢, we define an auxiliary network
Ny = (G, = (VU{sT,s7},4,),¢p,9%,87) with source ¢ and sink s~ as
follows. G, is the underlying graph with vertex set V U {s*,s} and arc set
A, defined by

— gt o - oA *
A, =S8FUS; UAT UAS UAL UBY, {4.92)
¢ S;’ = {(s+,v) | v € St — sa,t+(3+go)}, (4.93)
Sy ={(v,s7) | v€S™ —sat™ (87 9)}, (4.94)

A+ = {(u,v) | v €EsatT (8T ), w € dept (8t o, v) — {v}}, (4.95)
AT ={(v,u) v Esat™ (87 p), u€dep (8 ¢,v) — {v}}, (4.96)
Ar ={a|a €A, pla) <Z(a)}, (4.97)

: )}
Bl ={@|a€ 4, oa)>da)}, (4.98)

where T denotes a reorientatin of a, sat™ (sat™) is the saturation function with
respect to (DF, £} ((D7,77)) and dept (dep™) is the dependence function
with respect to (DT, 7)) (P, #7)). Also, ¢p: A, — R is defined by

CEHoe)  (a=(s%,0) €5F)

e(67¢,0)  (a=(v5") € 55)

_JE(@Te,v0) (e=(u,0) € A])

% (a) = 4 & (67 ¢,v,u) {a=(v,u) € A;) (4.99)
¢e) —e(a) (s €4)

L w(a) — ¢(@) (e € By, a(€ A): a reotientation of a},
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where & (or 27) denotes the saturation capacity associated with (DT, f7) (or
(D™, 7)) and &t (o1 &) the exchange capacity associated with (DT, f7) (o1
(D, 7))

We suppose that a feasible flow (an independent flow) ¢ is given. An
algorithm for finding a maximum independeni flow is furnished as follows (cf.
[Fuji78a], [Lawler + Martel82], [Schonsleben80]). We assume oracles for satu-
ratlon capacities and exchange capacities.

An algorithm for finding a maximum independent flow
Input: an independent flow ¢ in network A = (G = (V, 4;51,57),¢,5,
(D, f1),(D~,§7)); a fixed numbering 7: V — {1,2,---,|V|}.
Output: a maximum independent flow ¢ in V.
Step 1: While there exists a directed path from s* to s~ in the auxiliary
network A, = (G, =(VU{sT,s7},4,),¢p,5,57), do the following.
(%) Find a lexicographically shortest path P from sT to s~ in A, and put
o — min{c, (a) | @: an arc lying on P}, (4.100)
o - [P TS CEK 040D
¢le)—e (zT€B;NA(P),
a(€ A): a reorientatin of 7).

(4.101)

(End)

In this algorithm a lexicographically shortest path from st to s~ in N,
i§ a directed path from st 1o s~ in N, which has the minimum number
of arcs among directed paths from s™ to s~ in A, and whose vertex se-
quence {sT,v1, -+, vp,97), say, gives the lexicographically minimum sequence
(w(v1), -, m(v,)) among directed paths from s* to 57 in M, having the min-
imum number of atcs. Also, A, (P) is the set of arcs, in A, , lying on P.

The validity of the above algorithm can be shown almost in the same
manner as in the proof of the validity of the algorithm for the intersection
theorem in Sections 3.1.b and 3.1.c. The algorithm described above finds a
maximum independent fiow after repeating () at most |V|? times.

The maximum independent flow problem naturally includes the intersec-
tion problem, where the underlying graph is the bipartite graph representing
the bijection between ST and S~

Theorem 4.7 (The maximum independent flow-minimum cut theorem) (cf.
[McDiarmid75], [Fuji78a]}: Suppose that the maximum independent flow prob-
lem Pyrr has a feasible flow. Then we have

max{8p{ST) | ¢ is an independent flow (satisfying (4.70)-(4.73))}
=min{f*(§T = U)+eATU) —(A~U)+ f7(S"NU) | UCV},
(4.102)
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where At and A~ are with respect to G and we regard fT{X) = +co (f (¥) =
+oo)if X gD (Y €D).

Moreover, if €, ¢, fT and f~ are integer-valued and Problem Py is
feasible, then there exits an integral maximum independent flow for Problem

Pur.

(Proof) Let ¢* be a maximum independent flow for Problem Pyrr, and consider
the auxiliary network M,. associated with ¢*. Let U™ be the set of vertices
in ¥V which are reachable by directed paths from st in the auxiliary network
Nys. Then we have

S+ —U* Csatt(8Tp"), (4.103)

STNU™ Csat™ (87 ¢") (4.104)

since there is no directed path from s to s~ in .N-W. Hence, by the definition
of U™,

dept(8Yp*,0) C ST -U* (ves8ST -U"), (4.105)
dep~ (0~ 0*,w) CS™ NU* (ve€S™ NUY), (4.106)
o*(a) =¢a) (2 € ATU™), (4.107)
p*(a) =cla) (a€ATUY) (4.108)

From (4.105) and (4.106),
gte* (st —U*)=fH(st -U"), (4.109)
& e(S" NUY = (5 nU*) (4.110)
due to Lemma 1.1. From (4.107) and (4.108),
HM(ATUYY =g(ATU"), " (A~U*) =c(A™TU*). (4.111)
It follows from (4.109)~—(4.111) that
Bp(ST) = 8" (ST = U") + ¢*(ATU") ~ " (ATU") +87¢"(S7™ NUY)
=TT —UN+EATU) =AU + 77 (ST NUY).  (4.112)

On the cther hand, for any independent flow ¢ and any subset U of V we have

3p(U) = 8T o(ST =)+ o(ATU) — (A U+ 8 (S~ NU)
S HST - +8ATD) =AUV + 17(S™ NU).  (4.113)

(4.102) follows from (4.112) and (4.113).
Moreover, if &, ¢, fT and f~ are integer-valued and Problem Pjyy is feasi-
ble, then there exists an integral feasible flow due to Theorem 4.1. Starting with
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an integral feasible flow, the algorithm finds an integral maximum independent
flow in finitely many steps. Q.E.D.

We call any U C V a cuf and the value f7 (ST —U)+S{ATU) —g(A~U)+
F7 (8™ NUY the capacity of the cut U. Theorem 4.7 is a generalization of the
classical max-flow min-cut theorem for ordinary capacitated networks {Ford +
Fulkerson62].

Theorem 4.7 was shown non-algorthmically by McDiarmid [McDiarmid75]
and algorithmically by the anthor [Fuji78a].

Now, consider a supermodulat system (DT, g7) on ST instead of submod-
ular system (D1, #7) and also consider the following system of inequalities.

c(a) L ple) <Tla) (a € 4), (4.114)
Bp(v) =0 (v€V~(STNS™Y, (4.115)
(80)°" € P(g"), (4.116)
~(8¢)*" €P(S7), (4.117)

where P(g") is the supermodular polyhedron associated with (D1, g7). Then
we have the following theorem.

Theorem 4.8: There exists a feasible flow ¢ satisfying (4.114)~—(4.117) if and
oply if we have for each U C V such that ST NU € D and S NU €D~

g (ST NU) = 17(S™NU) <EATU) - A7) (4.118)
and for each U 2 ST U S~
0 < EATU) — (A7), (4.119)

Moreover, if there exists a feasible flow and €, ¢, g7 and f~ are integer-valued,
then there exists an integral feasible flow.

(Proof) Define D C 2V and g: © — R by

D={U|UCV,8TnUeDT, STnUeD},  (4120)

gt ETNU)=f (8 NnU) (UeD, (STUST)-U#)
o) = e
0 (UeD, StusS- CU).
(4.121)
If there is a feasible flow, we must have
gt(8T)—f7(s7)<o. (4.122)
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Under condition {4.122), the function g: D — R defined by (4.121) is a su-
permodular function on the distributive lattice D with 8, V' € D and g(8) =
g(V) = 0. We have z € B(g) if and only if

St eP(gh), =257 €P(), &V TS =, (4.123)

2(V) =0. (4.124)

It follows from (1.62) and Theorem 3.12 that there exists a feasible flow satis-
fying {4.114)~-(4.117) if and only if

9U) < EAYU)—g(A™U) (UeD), (4.125)

where note that (4.122) is included in (4.125). We see that (4.125) is equivalens
to (4.118) and (4.119).

The integrality part of the present theorem follows from the counterpart
" of Theorem 3.12. Q.ED.

Theorem 4.8, where ¢ =0, ¢ > 0, f~ is a polymairoid rank function and
g7 is the dual supermodular function of a polymatroid rank function, is shown
in [Fuji78d]. ‘

The discrete separation theorem also follows from Theorem 4.8. The read-
ers may deduce Theorem 4.8 from the feasibility theorem for submodular flows
(Theorem 4.1).

{b) Maximum submodular flows

For the submodular flow problem with the network Mg = (G = (V, 4),¢,
2,7,(D, ), disregarding the cost function v, let us consider a “max-flow”
problem Pyrs given as follows {Cunningham + Frank85]. Let ¢¢ be a fixed
reference arc in A.

Pyrs: Maximize ¢(ap) (4.126a)
subject to ¢(a) < p(e) <c(a) (e € A), (4.126b)
8¢ € B(f). (4.126¢)

We assume that there is a feasible flow in A5 and define the auxiliary network
Ny, =(Gp = (V,Ap), ¢, ) associated with ¢ as follows. Gy is the graph with
vertex set V and arc set A, defined by (4.40)~—(4.43) except that

B, ={gla€ A- {ap}, cla) < w(a)} (@ a reorientation of a)  (4.127)

93



L. NEOFLOWS
and ¢,: A, — R is defined by (4.44).

An algorithm for finding a maximum submodular flow

Input: a feasible flow ¢ in Mg with reference arc ap and a vertex numbering
7. V—{1,2,---,|V|} which defines the lexicographic ordening among directed
paths from 8 ag to 8teg in N,,.

Qutpui: a maximum submodular flow ¢ in Mg with zeference arc ag.

Step 1: While ¢{ag) < ¢(ap) and there exists a directed path from & ag to

87 ag in the auxiliary network A, do the following.

(%) Pind the lexicographically shortest path P from &~ ag to 87 ag in N, and
let Q be the directed cycle formed by P and reference arc ag. Put

a «— min{e, (a) | & les on @},
ela) +a (o€ 45 N4,(Q))
(,0(&) = - ® - 3 1
wle) —a (€ B; N4, (Q), @ areorientation of ¢ € 4),

where if @ = +00, then stop {the flow value ¢{ag) can be made arbitrazily
large).
(End)

Here, 4,(Q) is the set of the arcs in A, lying on @ and the lexicographi-
cally shortest path P is the directed path from 87 aq to 8%ag in N, which has
the minimum number of arcs among directed paths from 8~ ag to 8tag in JV;,
and whose vertex sequence (87 ag,v1,+*,%p, 87 ag), say, gives the lexicograph-
ically minimum sequence (w(v1), -, m(v,)) among directed paths from & ag
to &tag in N, having the minimum number of arcs.

The algorithm terminates after repeating (¥} O(|V|?) times. The analysis
is by the same technique as shown in Section 3.1.c.

Theorem 4.9: For the maximum submodular flow problem Pars described by
(4.126),

max{¢(aq) | ¥ is a feasible flow in Ns}
= min{2(eq), min{Z(A~X) - (AT X — {ap})
+7(X)| X €D, ap € ATX}}. (4.128)
Moreover, if ¢, © and f are integer-valued and there exists a .ma.x.imum sub-
modular flow, then there exists an integral maximum snbmodular flow in Ns.

(Proof) The maximum flow value is egual to the maximum value of ¢(ao) under
the constraint that the network As has a feasible flow, where g(ag) is regarded
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as a variable. Therefore, relation (4.128) is deduced from Theorem 4.1. The
integrality property also follows from Theorem 4.1. Q.E.D.

Theorem 4.9 can also be shown algorithmically. When the algorithm ter-
minates with a maximam flow ¢* such that ¢*(eg) < ¢(ag), let U be the set of
vertices which are reachable by directed paths from 8 ¢y in the then obtained
Ny~ Tt follows from the definition of N,« that

¢"(e) =%a) (a € ATD), (4.129)
" (e) =¢cla) (a € AU~ {ap}), (4.130)
dep(8p™,v) CV -U (veEV-=U), (4.131)

where AT and A~ are with respect to G. From (4.131) we have
™ (V =U) = f(V-U). (4.132)
" and from (4.129) and (4.130)
86*(V = U) = o(as) +c(A~U — {eo}) — HAT V). (4.135)
Combining (4.132) with (4.133), we get

¢ (a0} =SATU) - (AU = {ao}) + fF(V = U). (4.134)

[4

On the other hand, we can easily see that for any feasible flow ¢ in Mg and
any X € D with ag € A1TX,

plao) S EA™X) — AT X — {ao}) + F(X). (4.135)

From (4.134) and (4.135) we have (4.128), where the case when ¢* (ag) = &(ao)
1s taken into account.

Moreover, the integrality part of Theotem 4.9 follows from the fact that
if Problem Pyrg is feasible and ¢, € and f are integer-valued, there exists an
integral feasible flow and, starting from such an integral feasible flow, we get an
integral maximum submodular flow by the algorithm if a maximum submodular
flow exists.

When ¢*(ag) < 2(ag), the above defined U is called a minimum cut in Mg
with teference arc ag.

We can also consider the munimum submodular flow problem which is to
minimize ¢{ag) subject to (4.126b) and (4.126c). Note that this problem is
a maximum submodular flow problem when we consider the dual order < *
among R. Hence an algorithm for the minimum submodular flow problem is
given mutatis mutandis.
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(c¢) Minimum-cost submodular flows

As a minimum-cost flow problem for neoflows, consider the submodular
flow problem Ps, described by (4.1), in network Ns = (G = (V, A),¢¢,7,
(D, £)).

Pg: Minimize Z 1{a)p(a) (4.1a)
acA

subject 1o ¢(2) < w(a) < &a) (o € 4), (4.1b)

8¢ € B(/), (4.1c)

where (D, f) is a submodular system on V, the vertex set of the underlying
graph G = (V, A). We suppose that Problem Ps has a feasible flow.

We shall show an algorithm which tries to find a feasible flow p: 4 — R
and a potential p: V ~ R satisfying the optimality condition of Theozem 4.2.

Suppose that we are given a feasible flow ¢ in Ns. Choose a poten-
tial p: V — R such that 8¢ € B(f) is a maximum-weight base of B(f) with
respect to the weight function p, ie., p(u) > p(v) for each w, v € V' with
u € dep(8¢,v) — {»}. For example, p = 0 (the zeio function) satisfies this
requirement. We define the auxiliary netwotk Ny , = (Gp = (V,A),¢:%e,0)
as follows. G, is the graph with vertex set V and arc set A, defined by
(4.40)—(4.43) and ¢,: A, — R is defined by (4.44). We define 7,,,: 4, — R
by

Yo p(a) =7, (a) +p{8Ta) —p(87a) (s €4,), (4.136)

where -, is given by (4.45).

Now, an algorithm based on Cunningham and Frank’s [Cunmngham +
Frank85] is given as follows. Also, compare 1t with an out-of-kilter method
given in [Fuji87].

An algorithm for finding an optimal submodular flow

Input: a feasible flow ¢ in A5 and a potential p: V' — R such that p(u) > p(v)
(v €V, u € dep(dp,2) — {v})-
Output: an optimal submodular flow ¢ and an optimal potential p.

Step 1: While v, ,(a) < 0 for some a € Ay, choose an azc a9 € A, such that
Yp.p(a%) < 0 and do (1-1) ot (1-2) according as ¢® € A or a® ¢ A:
(1-1) If ¢ € 4, then, while v, () (= 7(a®) +p(81a®) ~p(87a%) # 0, do
the following:
() Starting with ¢, find a maximum submodular flow @Y in the modified
network N0 = (G = (V, 4),°,2,(DY, %)) with the reference arc
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a®, where the lower and upper capacity functions ¢®, c®: 4 — R are
defined by :
A, A <0
la) = {‘p(a) (@ €4, pp(a) <0) (4.137)
Q(a) (a € A4, "r'p(a) > 0);
€ A4, >0
2a) = {f(a) (o 7(e) > 0) (4.138)
cla) (e €4, v(e) 0},

where v, (a) = v(a) +p(87 a) —p(8~ @) with 87 and &~ being defined
with respect to G, and, letting py > p3 > --- > p; be the distinct
values of p(v) (v € V') and defining

Si={v|veV, plv) 2p} (=128, (4.139)

(DO, £°) is the submodular system given by the direct sum

DD, 5)-5:/Sin (4.141)

=1

of the set minors (D, f) - S;/Si~1 (1=1,2,---,1%).

If the maximum flow value 1s equal to +co, then stop (Problem Ps is
unbounded). Otherwise put ¢ «— ¢°.

If ©%(a®) < 2(a®), then let U be a minimum cut of A'® with reference
arc a°, define

Hi={a|a€A7U, v,(e) <0}, (4.142)
Hy={a|a €At y,(a) >0}, : (4.143)
(AT, A~ in (4.142) and (4.143) are with respect to G.)
Hy={(u,v) |v €U, v €V —-U, v € dep(dp,v) — {v}}, (4.144)
* = min{min{|y,(a)| | e € H1 UH,},
min{p(u} — p(v) | (v,v) € H3}},  (4.145)
and put

p(u) = p(u) ~p* (v €U). (4.146)

(1-2) £ a® ¢ A, let @® € A be the 1eotientation of a® and, starting with ¢,
find a minimum submodular flow ¢® in the modified network A0 as
defined in Step (1-1). Carry out Step (1-1) mutatis mutandis.

(End)

For a feasible flow ¢ and a potential p, if an arc a € A satisfies (1) v,(a) > 0
and ¢(a) < p{e) o1 (i) 7,(e) < 0 and ¢(a) < T(a), then arc a is said to be out
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of kilter and otherwise in kilter with respect to ¢ and p. Denote the set of all
the out-of-kilter azcs by A%({p, p) and that of all the in-kilter arcs by A (p,p).
During the execution of the algorithm,
(1) in-kilter arcs remair in kilter,
(2) the value of |v,(a)| of each out-of-kilter arc ¢ is monotone non-increasing,
3) |v,{a®)| decreases every time the potential p is modified by (4.146) in Step

(1-1) or (L-2}, and
(4) ¢ is a submodular flow in Mg and & is a maximum-weight base of B(f)

with respect to weight function p.

Therefore, when the cost function v is integer-valued, the algortthm terminates
after at most 3, . 4 |7(a)] maximum- and minimum-flew computations in Step
(1-1) and Step (1-2} if we start with the initial potential p = 0. If the algorithm
terminates with ¢ and p such that v, ,(a) > 0forall o« € 4,, then the obtained
@ is an optimal submodular flow and p 1s an optimal potential due to Theorem
4.2.

Moreover, if the maximum flow value for the modified network A0 in Step
(1-1) is equal to -+co, then thre exists a directed cycle @, containing ag, in
the auxiliary network N) = (G = (V,4,),¢ ) associated with the current
¢ such that c,(a) = +oo for any arc e in Q By the definition of N°, Q is
also a directed cycle in the auxiliary network NV, = (G, ¢, ,7, ) for the original
submodular flow problem Ps and the length of Q relative to the length function
Y, 1s negative. Consequemiy, Problem Pg is unbounded, i.e., the value of the
objective function of Ps is made arbitrarily small. Also, the same argument is
valid mutatis mutandis for Step (1-2).

When the cost function -y is integer-valued and an oracle for exchange
capacities is assumed, the above algorithm requires time polynomial in [V and
max{|y(e)| | @ € A}, ie., it is a psendopolynomial algorithm. If we apply the
cost scaling technique for the ordinary min-cost flows of Raock [Rock80], w
obtain a polynomial algorithm for the submodular flow problem, provided that
an oracle for exchange capacities is available (see [Cunningham + Frank85]).

Moreover, if we apply the cost-rounding and tree-projection technique of
the author [Fuji86] (which is an improved version of Tazdos’s algorithm [Tar-
dos85]) for the ordinary minimum-cost flows, we can get a strongly polyno-
mial algorithm for the submodular flow problem (see [Fuji + Rock + Zimmer-
mann89]), where an oracle for exchange capacities is also assumed. The first
strongly polynomial algorithm for the submodular flow problern was given by
Frank and Tardos [Frank + Tardos85] by the use of the simultaneous approxi-
mation algorithm of A. K. Lenstra, H. W. Lenstra, Jz., and L. Lovdsz [Lenstra
+ Lenstra + Lovész82].

Given an optimal submodular flow ¢ and an optimal potential p, we can
find an optimal dual solution of Ps by the precedure given in Section 4.4
when the base polyhedron is expressed in terms of a submodular function on a
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distributive lattice, or an intersecting- or crossing-submodular fun(,tlon on an
intersecting or crossing family.

4.6. Maitroid Optimization

We show some specializations of the results obtained in the previous sec-
tions to matroids, which is a retrospective view of matroid optimization.

(a) Maximum independent matchings

Let G = (VT,V~; A) be a bipartite graph with the left and right end-
vertex sets V1 and V= and the arc set A. Alsolet M+t = (V+,7%) and M~
(V=,77), respectively, be matroids on V¥ and V= with families 7+ cvt a,nd
I~ C V7™ of independent sets. Denote N = (G = (V*,V;4), M+, M").

An independent matching M C A in NV is a matching in G such that

FTMeIt, s MeI™, (4.150)

where 87 M (8~ M) is the set of end-vertices in V+ (V=) of arcs in M. (We
assume that for each arc ¢ € A we have %a € V' and 8 a € V~.) The
mazimum independent matching problem is to find a maximum independent
matching (i.e., an independent matching of maximum cardinality) in M.

, The maximum independent rnatching problem can naturally be reduced
to a maximum independent flow px:oblem as follows. Consider a network
N = (G =(V+ V-:4),c5 (2", p1), (27", p7)), where V+ (V™) 1s the set
of entrances (exits), (2¥", pt) ((2Vu,p_)) is the submodular system on V't
(V=) with p* (o7} being the rank function of matroid M+ (M™), and

cle) =0 (e € 4), (4.151)
cle) =400 (o €A4). (4.152)
We see that any integral independent flow ¢ in A is {0,1}-valued and that
{e ] e € A, ¢(a) =1}1s an independent ma.tchmg in A. From Theorem 4.7

an integral maximum independent flow in A/ gives a maximum independent
matching in A and we have the following min-max theorem.

Theorem 4.10 (The maximum independent matching-minimum covering rank
theorem) [Edm70], [Radod2], [Welsh70]: For network & = (G = (V*+,V~; 4),
MT, M) we have

max{|M| | M is an independent matching in N}
C=min{pT(UT)+ o (UT) | (UT,U7) is & cover of G}.  (4.153)
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(Proof) The present theorem immediately follows from Theorem 4.7, where a
cut U of finite capacity of A corresponds to a cover (UT,U~) of G such that
Ut = V¥ —U and U~ =V~ NU; this gives a one-to-one correspondence
between the set of cuts of finite capacities of A and that of covers of G and the
capacity of a cut U of finite capacity of N is equal to pT{UT) 4+ p~(U™), the
rank of the cover (UT,U™). _ QE.D.

The transformation of matroids by bipartite graphs

Let G = (V*,V~;A) be a bipartite graph and M+ = (V*,Z77F) be a
matroid with a family T+ of independent sets. Define

I~ ={8"M | M: a matchingin G, 8T M € T}, (4.154)

where &M = {87c | a € M}. We can easily see that 7~ is a famly of
independent sets of a matroid. From Theorem 4.10 the rank function o~ of the
« matroid M~ =(V~,77) is given by

p" (U ) =min{pH(XT)+ Y| | (XT, Y U(V™ —U7)) is a cover of G}
- (4.155)
for each U~ C V. We call M~ the matroid induced from M™T by the bipartite
graph G.

The matroid intersection problem

When V= is a copy of V' and a bipartite graph G = (V*+,V~; A) 1ep-
resents the natural bijection between V'™ and V~, the maximum independent
matching problem for the network N = (G = (V+,V—; 4), M+, M~} becomes
the problem of finding a maximum common independent set of the two ma-
troid Mt and M™, where VT is identified with V™. This problem is called
the matrotd intersection problem. From Theorem 4.10 we have

Theorem 4.11 (The matroid intersection theorem) {Edm70j: For two ma-
troids Mt = (E,77) and M~ = (E,Z7) with ZT and 7~ being families of
independent sets,

max{|I|| T€ZTT NI~}
=min{pT(X)+p (E - X} | X CE}, (4.156)

where pT (p~) is the rank function of M+ (M™).

Theorem 4.11 also follows from Theorem 3.9.
The matroid intersection problem is a special case of the maximum inde-
pendent matching problem in a natural way. Conversely, we can show that
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the maximum independent matching problem is reduced to a matroid inter-
section problem. Consider the maximum independent matching problem for a
network M = (G = (V*,V~; A),M*t,M~). From G define a bipartite graph
G = (W+,W~; 4), where

Wt={wl|a€4}, W ={w |e€4}, (4.157)

A={(wF,w;)|e€ A4} (4.158)
(see Fig. 4.5).

Figure 4.5.

Moreover, define

Pr={It|I* CWH VoeVt: {o|a €80, wi €T} <1,

{6Ye|a€ A, wielt} eI}, (4.159)
T-={I | CcW Y eVT: [{ale€év, wy €I} L,
(87a|e€A wy €EITYETT], (4.160)

where 8t, 8, 6% and 6~ are with respect to . We can easily show that
Mt = (W+,2%) and M = (W~,7~) are matroids with families I+ and -
of independent sets. The matroid N (M) is regarded as the one induced
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from M+ {M™) by a bipartite graph, or as a composition of MT (M™) and
the direct sum of rank-one uniform matroids on §tw (v € V1) (67w (v €
V~)). The maximum independent matching problem for network N = (G =
(V+,V—; A), M+ ,M~) is thus reduced to a maximum independent matching
problem for the new network N = (G = (W+,W“;A),M+,1\71_), which is a

matroid intersection problem.

The matroid union

Let M; =(E;,Z;) (s =1,2) be two matroids. Define
Ilvg = {Il U Ig I fl = _7:1, Ig € 1-2} (4161)

Then Myys = (B U E2,741y2) is a matroid, which is the one induced from the
direct sum My @M, of the two by the bipartite graph G = (VT,V~; A), where
VT =E,©F,, V- = FyUZE, and the arc set A consists of the natural bijections

* between By C VT and By C V™ and between Bz C V7T and B2 C V™ (see
Fig. 4.6). Therefore, from (4.155) we have
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Figure 4.6

Theorem 4.12: The rank function p1y2 of Myya 1s given by

prva(X) =min{p1 (Y NEY) +po(Y NE) +|X —Y]|Y C X} (4.162)
for each X C By U Fs.

The matroid Mz is called the union (or sum) of M; (i =1, 2).
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Note that if By = Ej, we have piy2 = (p1 -+ p2)!, which is the rank
function of the reduction of the sum (2%, py +p2) of submodular systems (2%, o))
(i =1,2) by vector L =(1(e) = 1: e € E) (see (2.6)).

A base of the union My of My and M is given in the form of the union
B U B, of some bases B; of matroids M; (i = 1,2). When Ey = B, for
bases B; (z = 1,2) of matroids M; By UB; is a base of Myyz if and only if
B, U(E; — By) is a maximum comimon independent set of My and the dual
Mo* of M,. In this sense the problem of finding a base of the union of two
matroids is equivalent to the matroid intersection problem and hence to the
maximum independent matching problem.

When we are given matroids M; = (B;,Z;) (i = 1,2, ,k) (k > 2), we
can define the union of M; ({ = 1,2, --,k) in the same way as in the case of
k = 2. That is, an independent set of the union of M; (i = 1,2,-++, k) is the
union of independent sets ; € Z; ¢ =1,2,---, k).

Theorem 4.13: There exist disjoint bases of M; = (E,7;) (¢ = 1,2, -- k),
one from each M;, if and only if

pr(B) 4+ pp(B) = min{pi(X) + -+ m(X)+|E~X|| X C E}. (4.163)
(Proof) The present theorem follows from the fact that the rank of the union
of M; ( =1,2, -, k) is equal to the right-hand side of (4.163). Q.ED.

The matroid partitioning
t\

For matroids M; = (E,T;) with rank functions p; (i = 1,2,--+,k), the
matroid partitioning problem is to find & disjoint subsets I; of £ such that
LULU- Ui =Fand L €Z; (i =1,2, -, k). We can easily see that such k
subsets f; (: = 1,2, --,k) exist if and only if the union of M; (¢ =1,2,- -, k)
is the free matroid on E, i.e., from Theorem 4.12

|E} = min{p(X)+ -+ (X} +|E-X|| X CE}. (4.164)
In other words,

Theorem 4.14 [Edm70]: There exists a base B; of M, for each ¢ =1,2,--+,k
such that the union of B; (: =1,2,--,k) is F if and only if

p(X)+ - +p(X) 2| X (X CE) (4.165)
When matroids M; = (E,Z;} (6 =1,2,---,k) are the same matroid M =

(E,T) with the rank function p, F is partitioned into independent sets [; € T
(t=1,2,---,k) if and only if

ko(X) > |X] (X C EB). (4.166)
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From (4.166) we have

Corollary 4.15 [Edm65] (see [Tutte6l], [Nash-Williams61] for graphs): The
minimum number k for which F is partitioned into k disjoint independent sets
of M = (E,T) is equal to

[max{|X|/p(X) | # # X C B}, (4.167)

where we assume M does not have any selfloop, le., we assume p({e}) > 0

(e € E).

Note that (4.166) is equivalent to that a uniform vector (1/k)1 is an in-
dependent vector of the matroidal polymatroid P = (F, p) corresponding to
M.

I the matroidal polymatroid P = (Z, p) has a uniform base {{/k)1 for
. positive integers %, [ such that !|E] = kp(E), then there exist k bases B;
(1 =1,2, --,k) of M such that each ¢ € E is uniformly covered by B; (i =
1,2,---,k) times,ie.,

|{’:l£€{1:2="'7k}» eEB;}I:i, (4.168)

due to the fact that B(p) +--- +B(p) (% times) = B(kp) with Z as the under-
lying totally ordered additive group (see Section 2.1.c). Such a family of bases
B; (1 = 1,2, -, k) is called a complete family of bases of M and a matroid
having a complete family of bases is called srreducible [Tomi75], [Tomi76]. The
concepts of irreducible matroid was introduced by N. Tomizawa for the analy-
sis of principal partition of a matroid {see Sections 6.2.b.1 and 8.2). The same
concept was also independently introduced by H. Narayanan [Narayanan74]
and was called a molecule (also see [Narayanan + Vartaksl].

An algorithm for the maximum independent matching problem by using
auxiliary graphs is given by Tomizawa and Iri [Tomi + Iri74]. An algorithm for
the matroid Intersection problem is given by Edmonds [Tdm79]. For other re-
lated algorithms see [Edm + Fulkerson65] for matroid partitionings and [Bruno
+ Weinberg71] for matroid unions.

(b) Optimal independent assignments

Consider a bipartite graph G = (V+,V~; A), matroids M* = (V+,I7T)
and M~ = (V-,77) and a weight function w: A — R. Denote such a net-
work by N = (G = (VT,V~;4),MT , M~,w). For a positive integer %,
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a k-independent matching M in N is an independent matching of cardinal-
ity kin V® = (G = (V¥,V7;A),MT,M™). An optimal k-independent as-
signment in N is a k-independent matching A having the minimum weight
w(M) = 3, .pw(e) among all the k-independent matchings in A. The inde-
pendent assignment problem is to find an optimal k-independent assignment in
N. The independent assignment problem is a special case of a neoflow problem,
especially of the independent flow problem in a natural way.

Theindependent assignment problem is equivalent to the weighted matroid
intersection problem, which is to find a minimum-weight common independent
set, of two matrotds, having cardinality k for a given positive integer k.

For an independent matching M define the auxiliary network Ay =
Gy = (V*,Apn),wps) as follows. Gar is the graph with vertex set V* =
VTUV-U{st, 5"} and arcset Ay = S UAS; UAy UMU A5 US;;, where

SHE={(st, ) |veVt —cd7(B*M)}U{(v,s") | vE€ ST M}, (4.169)
Al ={(v,v) | v €T (87 M) -0t M, w € CT (8" M|v) - {v}},(4.170)
Ay =A~M, (4.171)

M= {€| e € M} (a: areorientation of a), (4.172)
Ay ={(z,v) |v €I (8 M)~8"M, v € C™ (6" Mv) — {v}},(4.173)
Suy={(6",0)jveV ~d (™ M}IU{{v,s7)|vESFT M} (4.174)

Here, clt and cl™ are, respectively, the closure functions of M+t and M,
GT{6t M|v) for v € clT (8T M) — 8T M is the fundamental circuit associated
with 8™ M € I* and v which is the unique circuit of MT contained in 8T M U
{v}, and C~ (8" M|v) is similazly defined for M. Also, wyr: Apr — R is the
length function defined by

w(a) (o € Ay)
wpr(a) = { ~w(@ (e €M, TE M is a reorientation of a) (4.175)
0 (a € S5 UAF U A USy).

A primal-dual algorithm for the independent assignment problem
[Ixi+Tomi76]

Step L: Put M — 9.
Step 2: While |[M| < &, do the following.

(2-1) Find a shortest path P, relative to the length function wyy, from s™
to s~ in the auxiliary network Ay having the minimum number of
arcs.

If there exists no directed path from s* to s~ in My, then stop (there
is no k-independent matching).
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(2-2) Put M — M A A(P) (A: the symmetric difference), where

A(P)={a| e €A, a lies on P}
U{a | a € M, a reorientation of a lies on P}.
(4.176)

(End)

If we define in Step (2-1) a potential p: V* — R in such a way that for
each v € V1 p(v) is equal to the length of a shortest path from s to v in Ny,
then using the potential p we can replace wys in the next execution of Step
(2-1) by wag,p defined by

war p(a) = war(a) + p(87a) ~ p(87 a). (4.177)

Here, we disregard those vertices which are not reachable from st in My, since
" vertices which are not reachable from st will not become reachable from s+
in Ay for new 3. We can show that thus defined war,p 15 nonnegative for
those arcs reachable from s¥, so that we can reduce the complexity of finding
a shortest path in My (see [Iri + Tomi76]). This is an adaptation of the
technique for the classical min-cost flows developed by Tomizawa [Tomi71] and
also independently by Edmonds and Karp [Edm + Karp72].

It should be noted that arcs entering s™ or leaving s~ in A play no 1éle
in the primal-dual algorithm. These arcs are for the primal algorithm given as
follows.

A primal algorithm for the independent assignment problem [Fuji77a)

Step 1: Find a k-independent matching M in A.
Step 2: While there exists a negative cycle, relative to the length function
wyr, in the auxiliary network My, do the following.
(2-1) Find a negative cycle @ in My having the minimum number of arcs.
(2-2) Put M —~ M A A(Q), where A(Q) is defined by (2.176) with P re-
placed by Q.
(End)

For other related algorithms, sce [Edm79], [Lawler75|, [Fuji77b], [1ri78],
[Frank81a)l.

The problem of finding a minimum weight directed spanning tree in a
graph 1s an example of the independent assignment problem or the weighted
matroid intersection problem. Cousider a graph G = (V, 4) and a weight
function w: A — R. Let M be the l-elongation of the graphic matroid M(G)
represented by G (see Section 2.1.d) and M be the direct sum of the rank-one
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' uniform matroids M~ (v) on 67w (v € V), Le,, My = @,ery M~ (v). We see
that B C A with |B| =]V|is a common independent set of My and M if and
only if B forms a directed spanning tree of G. Hence the problem of finding
a minimum weight directed spanning tree is a weighted matioid intersection
problem. If we want to find & minimum weight spanning tree with a fixed root
vo € V, then replace M~ (vo) by the trivial matroid (rank-zero matroid) on
6" wg. For other applications, see [Iri83], [Iri + Fuji81] and [Recski].

Finally, it should be noted that the problem of finding a common indepe-
dent set of maximum cardinality for #hree matzoids is NP-hard. For, consider a
graph G = (V, 4}, and let M; and M be the matroids defined as above, where
M~ (v) (v € V) are all rank-one uniform matroids. Also, let M3 be the direct
sum of rank-one uniform matroids M*(v) on §7¢ (v € V). We can easily see
that the maximum cardinrality of common independent sets of M; (tr=1,2,3)
1s equal t0 |V} if and only if there exists a directed Hamilfonian cyclemn G, and
that a common independent set of M; (i = 1,2, 3) of cardinality |V| forms a
directed Hamiltonian cycle in G.
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Chapter IV. Submodular Analysis

Submodular (or supermodular) functions on distributive lattices share sim-
ilar structures with convex (or concave) functions on convex sets. In this chap-
ter we develop a theory of submodular and supermodular functions from the
point of view of the duality in convex analysis.

5. Submodular Functions and Convexity

We define the convex (concave) conjugate function of a submodular (su-
permodular) function and show a Fenchel-type duality theorem for submodular
and supermodular functions. We alsc define the subgradients and subdiffer-
entials of a submodular function and examine the relationship among these
concepts and the polyhedra such as the submodular and supermodular poly-
hedra and the base polyhedron associated with the submodular function. The
reason for the analogy between a submodular function and a convex function
1s nicely explained by the Lovdsz extension of a submodular function.

5.1. Conjugate functions and a Fenchel-iype min-max theorem for
submodular and supermodular functions
(a)} Conjugate functions

Let f: D — R be a submodular function and g: D — R be a supermodular
function on a distributive lattice D C 2%. Here, we do not necessarily assume
that 8, F € D and f(8) = g(#) = 0.

Define the function f*: R¥ — R by

[ (2) = max{a(X)~ f(X) | X €D} (:EERE) (5.1)

and also, in a dual form, the function g": R¥ — R by

(35

g (e} =min{{X) - g(X) | X €D} (& RE). (5.

)

By the definition f* 15 a convex function and ¢* Is a concave function. We
call f* the convex conjuyate function of the submodular function f and g* a
concave conjugate funciion of the supermodular function g.
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Tt may be noted that the terms «(X) appearing in (5.1} and (5.2) can
be regarded as the inner product of @ and xx, the characteristic vector of
X. Notice the analogy between the definition (5.1) and that of a convex con-

jugate function of an ordinary convex function (see [Rockafellar70}, [Stoer +
Witzgall70]).

Theorem 5.1: For a submodular function f:P — R and a supermodular
function g: P — R we have for any X €D

FIX) = max{e(X) - " (2) | « € BF}, (5.3)
g(X) = min{=(X) - g"{z) | « € RF}. (5.4)

Morteover, for any X € 28 =D &{X) — f*{z) (o1 £(X)~g"(z)) as a function
of € RZ can be made arbitrazily large {or small).

(Proof) Without loss of generality we assume that §, E € D and f(0) = g(8) =
0. From (5.1},

FX) 2 2{X) ~ f(e) (5.5)

forany X € D and ¢ € R¥. We show that for any X € D there exists a
vector # € RF such that {5.5) holds with eqnality, from which (5.3) follows.
From Lemma 2.2, for any X € D there exists a subbase & € P(f) such that
&(X) = f{X). Since & € P(f), we have from (5.1)

71(8) = 8(X) - F(X)(=0). (59)

This implies (5.3).
Relation {5.4) is the same as (5.3) by considering the dual oxder on E.
Mozxeover, it follows from Lemma 2.2 that for any X € 2% — D we can
make 2{X) arbitrazily laxge (or small) subject to 2 € B{f) (or z € B(y)). Since
F(2) =0 for « € B(f) and g*{z) = 0 for « € B{g), this completes the procl.
QED.

We see from Theorem 5.1 that the correspondence between a submodular
(or supermodular) function f (or g) and its convex (ot concave) conjugate
function f* {ox ) is one to one.

The convex conjugate function f* is closely related to the vector rank
function 74 of the submodular system (D, f) when 8, E € D and f(#) = 0.
Recall that for each z € B

re(e) =min{f(X)+2(F-X)| X €D} (5.7
(see {2.6) ox (2.17)).
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Lemma 5.2: For & submodular system (D, f} on F and a vector 2 € R¥ we
have

F(2) = 2(B) = r4(2). (59)
(Proof) Immediate from (5.1) and (5.7). Q.E.D.

Note that since 7¢ is submodular on the vector lattice R¥ (see {Welsh76]
when D = 2%), the convex function f* is supermodular on RF, ie., for any
e, y € RE
- @)+ 1) £ e vy + (e Ay), (5.9)
where (2 V y)(e) = max(z(e), yle)), (¢ Ay)(e) = min(z(e), y(e)) (e € B). (See
[Topkis84] for submodular functions on general lattices.) Here, it may also be
noted that vector lattice RF is a distributive lattice.

{b) A Fenchel-type min-max theerem

We show a Fenchel-type min-max theorem for submodular and supermod-
ular functions, which relates the difference between a submodular function f
and a supermodular function g to that between the concave conjugate func-
tion g* and the convex conjugate function f*. (For Fenchel’s duality theorem

for ordinary convex and concave functions, see [Rockafellar70] and [Stoer +
Witzgall70].)

i
Theorem 5.3 (A Fenchel-type min-max theorem}: For a submodular function

7iD1 — R and a supermodular function g:D» — R on dlstrlbutwe lattices
Dy, Dy C2F with D N D, # B we have

min{ f(X}~g(X) | X € D, NDy}
= max{g"(z) — /*(2) | z € R®}. (5.10)

Moreover, if f and g are integer-valued, the maximum in the right-hand side
of (5.10) can be attained by an integral vector .

(Proof) Without loss of generality we assume that §, B € Dy N D, and f(8) =
g(8) = 0. Hence (Dy, f) 1s a submodular system and {Dy, g) is a supermodular
system, both on E. The min-max relation (5.10) is equivalent to

rﬁin{f(X) +g7(E-X)| X €DiND,}
=max{g"(2) +g(E) - " (z) |z € RE}, (5.11)

where recall that g# is the dual submodular function of g. From Lemma 5.2,
(5.2) and {5.7),

1*(2) = 2(B) - r4 (), (5.19)
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g (z) + g(F) = min{z(X) +g#(E -X)| X €Dy}
= rgx(2). (5.13)

Substituting (5.12) and (5.13) into (5.11) yields

min{f(X) +g"(E—-X) | X € D ND,}
=max{rs(e) +rz(z) —2(B) |z € RE), {5.14)

which 1s equivalent to (5.10).
_ Forany ¢ € RP let y and z be bases of the reductions of (D4, ) and
(Da, g#) by =, respectively, i.e.,

yEP(f), y<a, y(E)=ria) (5.15)
2€P(g%), z<a, #2(B)=rz(2) (5.16)
Also define
w=yAz (= (min{yle), z(e}}:e € F)). (5.17)
FThen,
w € P(f) nP(g%). (5.18)

Because of (5.15)—(5.18),

f

re(e) + 12 (2) —2(E)

= y(F) + 2(E) — «{E)

< w(E) + w(F) — w(E)

=rf(w)+'r9#('w) —w{F) (= w(E)). (5.19)

It follows from (5.18) and (5.19) that {5.14) (o1 (5.11)) is also equivalent to

min{f(X)+g¥(E-X) | X € Dy N Dy}
= max{z(E) | « € P(f) nP(g")}. (5.20)

The min-max relation (5.20) is exactly the intersection theorem (Theorem 3.9),
so thet (5.10) holds.

The integrality part of the present theorem follows from the counterpart
of the intersection theorem. Q.E.D.

Note that if # € R¥ is a maximizer of the right-hand side of {5.10), then
w glven by (5.15}—(5.17) is a maximizer of the right-hand side of (5.20). If
f and g are integer-valued functions and z is an integral vector, then such a
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vector w can also be integral. Conversely, any maximizer 2 of the right-hand
side of (5.20) is a maximizer of the right-hand side of (5.10).

The above proof shows the equivalence between the Fenchel-type min-
max theorem and the intersection theorem. Combining this with the results
in Sections 3.1 and 3.2, we see that the three theorems, 1he Intersection the-
orem (Theorem 3.9), the discrete separation theorem (Theorem 3.11) and the
Fenchel-type min-max theorem {Theorem 5.3), are equivalent.

The Fenchel-type min-max theorem motivates further investigation of sub-
" modular and supermodular functions from the point of view of the duality
theory in convex analysis [Rockafellar70], [Stoer + Witzgall70].

5.2. Subgradients of Submodular Functions
(a) Subgradients and subdifferentials

Consider a submodular function f: D — R on a distributive lattice D C 2%.
For a vector ¢ € RF and a set X € D, if

z(Y) — 2(X) < f(Y) - £(X) (5.21)

holds for each ¥ € D, then we call  a subgradient of f at X. We denote by
8f(X) the set of all the subgradients of f at X and call 8f{ X) the subdifferential
of f at X. Previously we employed symbol & as the boundary operator for
flows in networks. Here we use the same symbol for subdifferentials, following
the convention in convex analysis, because there seems 10 be no possibility of
confusion.

Figure 5.1 shows a two-dimensional example of subdifferentials of f: D —
R with D = 2{L2},

In general, RF is divided into |D| nonempty unbounded polyhedra 8f(X)
(X € D) and for distinet X, ¥ € D the subdifferentials 8f(X) and 87(Y) may
have common faces but not common interior points.

It may be noted that a subgradient of any set function can be defined by
(5.21). Some of the arguments in the following are valid for any set function.

Lemma 5.4: For a submodular function f: D — R and a set X € D, we have
2 € 3f(X) if and only if € RF satisfies

2(Y) - e(X) < f(Y) - £(X) (5.22)
for each Y € [§, X|p U [X, E]p, where

[Q’X]'D:{YIYE(D: YQX}) (523)
[X,Elp={Y|Y €D, XCY CE). (5.24)
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X(2)
A

\ dL({1,2})
IF (@) \ )

JEEN

of ({2})

OF({1})

Figure 5.1.

{Proof) It is sufficient to show the “if” part alone. Suppose that (5.22) holds
for each Y € [, X]p U[X, E]p. Then for any Z € D,
‘n

(XU Z)—2(X) < H(XUZ) - F(X), (5.25)
(XN Z)—2(X) < FHXNZ) - FX). (5.26)

From (5.23), (5.28) and the submodularity of f,
2(Z)—2(X)=2(XUZ)—z(X)+2(X NZ)—2(X)
SHXUZY+ (XN Z)—25(X)
< F(2) - F(X).
Q.E.D.
Lemma 5.5: For a submodular function /: D — R and a set X € D we have
(X)) =8f%(X) x 8fx(B), (5.27)

where 87 (X) C R, 8fx(0) C RP~¥ x denotes the direct product, and f¥
and fx are, respectively, the submodular functions on {8, X]p and [ X, E]p/ X =
{Y —X 1Y €{X, E]p} defined by

FEY) = f(Y) (Y eb X]p), (5.28)
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x(Y)=§(XUY)- f(X) (Y €[X, Elp/X). (5.29)
(Proof) From Lemma 5.4, we have z € 8f(X) if and only if
2(Y) —2(X) < F(Y) - #(X)
=) -1 5(X) (Y €[, X]n), (5.30)

z(Z)—z(B)==2(ZUX) - z(X)
<HZuX) - H(X)

=1x(2) - x(0) (ZE[X,Ep/X). (31
(5:30) means =¥ (= (2(e): ¢ € X)) € H75(X) and (5.31) means P ¥ (=
(z(e): e € B — X)) € 8fx(6). We thus have (5.27). Q.ED.

. Lemma 5.8 (cf. [Rockafellar70, Theorem 23.5]): For a {submodular) function
f:D = R,avectorz € R¥ and aset X € D, the following three are equivalent:

(i) = €of(X), (5.32)
(i) min{f(Y)+2(E-Y)|Y €D} =f(X)+2(E - X), (5.33)
(i) FX)+ (=) = =(X). (5.34)

(Proof) We can easily see that each of the above three is equivalent to min{ f(Y")
~z(Y)| Y €D} = f(X) - z(X). Q.E.D.

Lemma 5.6 holds for any set function.

Lemma 5.7: For a submodular function f: D — R with §, £E € D and f(8) =
0,

a) 87 (8) =P(f), (5.35)

(
(b) 8f(B) =P(s¥#), (5.36)
(c) f(X)NB{(f)#0 (XED). (5.37)

(Proof) (a) and (b) immediately follow from the definition of subdifferential.
We prove (¢). For any X € D there is a base z of the submodular system (D, §)
such that z(X) = f(X) (see Lemma 2.2}. Since = € B(f) and z(X) = f(X), it
easily follows from (5.21) that z € 8f(X). Hence, 87 (X)NB(f) #9. QED.

The following theorem is a submodular analogue of [Rockafellaz70, Theo-
rem 23.8} in convex analysis.
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Theorem 5.8: Let f1:Dy — R and f3: Dy — R be submodular functions,
where Dy and D, are distributive latiices with §, £ € Dy N Dy. Then, for each
X € Dy NDy we have

8(f1 + F2)(X) = 8/1(X) + 8f2(X). (5.38)
Also, for each A > 0 and X € D4,
X)) = NeA(X). (5.39) ”
Moreover, for A =0 and X € Dy,

80 i} X) ={z |2 € R®, V¥ € D1: o(Y) ~2(X) < 0}
=078/ (X), (5.40)

where 07 3f1(X) is the characteristic cone (o1 recession cone) of §71(X) (see
[RockafellarT0, Section 8]).

(Proof) From Lemma 5.5, for each ¢ = 1,2 and X € D; 8f;(X) is the direct
product of 8 (X) and 8f;x (B). It follows from (2.27) (and its dual counter-
part for supermodular functions) and from Lemma 5.7 that for each X € Dy NDs
we have

{ B(f1 + fa)(X) = 8(f1 + f2)* (X) x 8(fy + f2)x (8)
= 8(f1% + 12" )X) x 8(fax + f2x)(®)
= (871 X (X) + 8£25 (X)) x (8f1x(B) + 8f2x (D))
= (8HF(X) x 8f1x () + (8/2 (X) % 8f2x(B))
= 85 (X) + 8f2(X). (5.41)

Relations (5.39) and (5.40) are immediate from the definition of subdifferential.
QED.

Note that we have used the intersection theorem through (2.27) to prove
Theorem 5.8.
For a convex conjugate function f* of a submodular function /: D — R
and a vector ¢ € R?, define the set 82 /*(2) of subsets of E as follows:
X €& {z) (5.42)
if and ouly if X C F and
y(X) —e(X) < () — £7{w) (5.43)
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for each y € RF. We call 8y f*(z) the binary subdifferential of f* at 2. Note
that from (5.43) and Theorem 5.1 each X € 8, *(z) belongs to D.

Theorem 5.9 (cf. [Rockafellar70, Theorem 23.5]): Consider a submodular
function f: D — R. For any vector z € R® and any set X € D the following
two are equivalent.

(i} = € 8f(X), (5.44)
(i) X € 821" (z). (5.45)
Moreover, the binary subdifferential 82" (z) is a sublattice of D.

(Proof) From Theorem 5.1, Lemma 5.6 and the definition (5.43) of binary
subdifferential of f*, we see that both (i) and (ii) are equivalent to

FX) + (=) = =(X). (5.46)
_ Moreover, (5.45) or equivalently (5.46) implies
2(X) = F(X) =mex{e(Y) - f(Y)| Y €D}. (5.46)

Therefore, 82 f*(2) 1s the set of the maximizers of the supermodular function
z — f on D and hence is a sublattice of D. QE.D.

For two submodular functions f;: Dy — R (5 = 1,2) define the convolution
fa* o f2*: RF — R of the convex conjugate functions f;* (i = 1,2) by

(fl* o _fz’“)(.’L‘) = min{fl‘“ (221) + fg'k (.’L‘g) l 1+ xe = CL’} (5.47)
for each =z € R, QED.

Theorem 5.10 (cf. [Rockafellar70, Theorem 16.4]): For two submodular func-
tions f;:D; — R (1 =1,2) with ® € D; N D2 we have

Fhe o =(fu+ f2)". (5.48)

(Proof) For any z € R¥,

(f1* o f2")(z) = max{z(X) = fi(X) = f2(X) | X € DL ND,}
< min{max{z1(X) = fi(X}+22(Y) - £(Y) | X €Dy, Y € Dy}
| Ty o = 3:}
= min{fl* (.u”:]_) + fg* (&32) l L1+ 2o = 22}
= (f1" 0 f2")(=). (5.49)
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On the other hand, let = be any vector in RP. There exists X € Dy N D,
such that = € &(f1 + f2)(X). Furthermore, from Theorem 5.8 there exist
1 € 8f1(X) and z2 € 8f2(X) such that @y + 22 = . C;onsequenﬂy, from

Lemma 5.6

(f1 + f2)"(z) = 2(X) — f1(X) = fo(X)
= z1(X) = f1{X) +22(X) - f2(X)
= f1™(21) + f2" (22)
> (fi" o f2")(=). (5.50)

This completes the proof. Q.E.D.

(b} Structures of subdifferentials

Suppose that D C 2% is a simple distributive lattice, i.e., D = 2% for a
poset P = (F, <). Consider a submodular function f: D — R.

We first give a characterization of the extreme points of the subdifferential
8f(A) for AED.

Theorem 5.11: For each A € D, © € R¥ is an extreme point of 87(4) if and
only if there exists a maximal chain

l.

C:0=5CS C---CS,=F (5.51)
of D, including A in 11, such that

2(Si — Si_y) = £(S) = H(Sio1) G=1,2,--,n). (5.52)

(Proof) We assume, without loss of generality, that f{@} = 0. From Lemma 5.7
we have 8£(8) = P(f). Note that P(f) and B(f) have the same set of extreme
points. Therefore, the present theorem for A = # follows from Theorem 2.18
and, similarly, the present theorem for 4 = F {follows from 2.18, since 87 {E) =
(f“'f) due to Lemma 5.7 and P(f#) and B(f#) (= B(f)) have the same set of
extreme points. Furthermore, for any A € D we have 8f{A) = 84 (A)x8f4 ()
due to Lemma 5.5. Hence the extrme points of 8f( A} ate giver by the direct
product of extreme points of 84 (4) and those of &f4(8). Since A is the unigue
maximal element of the domain [8, A]p of f* and ® is the unique minimal
element of the domain [A, E]lp/A of fa, the present theorem for 4 € D with
d C A C E follows from that for 4 = B and A =0 for f with domain D.
QED.
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The characteristic cone (or the recession cone) of a subdifferential 8£{A)
(A € D) is given by

Ci(A)={z |z € RF, VX € D: o(X) —«(4) <0}
={z |2z €R® VX €8, Alp U[A, E]p: 2(X) —2(4) < 0}.(5.53)

Note that Cs(A4) depends only on D and A. We next give a characterization
of extreme rays of C¢{4).

Let G(P) = (E,B*(P)) be the directed graph with the vertex set £ and
the arc set B*(P ) which represents the Hasse diagram of the poset P = (R, <),
ie., (e,e¢) € B*(P)ifand only if ¢' < e and there exists no element e” such that
¢! < &' < e. Denote by Et and E~, respectively, the set of all the maximal
elements of P and the set of all the minimal elements of P. Note that E¥ NE~
may be nonempty. For each A € D denote by A7(4) the set of all the ares
entering A in G(P). Define vectors £,+ (p* € ET), ,- (p~ € E7) and {,
(a € B*(P)) in RZ by :

1 (e=pt

Epele) = { 01 Eee 21{p+}) (»* € BF), (5.54)

w@={y Cop oy & EE (5.5)
1 (e=¢)

(o(e)=¢ =1 (e=e") {e = (e,e") € B*(P)). (5.56)

0 (eeE~-{ "}
Also define for each AED

ER(4) = {£+ | 2T € BT —A}U{n,- |p” € BT N A}
U{¢e | a € B* (D)= A~ (4)). (5.57)

Now, we are ready to show a theorem characterizing extreme rays of Cy{4)

(4 €D).

Theorem 5.12: For each A € D, the set of all the extreme rays of the charac-
teristic cone Cy(A) of the subdifferential 87 (4) is given by ER(4) in (5.57).

(Proof) We can easily see from (5.53) that
ER(A4) C C;(4). (5.58)

Since no vector in ER(A) can be expressed as a nonnegative linear combination
of the other vectors in ER(4), it suffices 1o prove that every vector in Cy(A)
can be expressed as a nonnegative linear combination of vectors in ER(A4).
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IV. SUBMODULAR ANALYSIS
Let v be an arbitrary vector in Cf(A). From (5.53),
W{A-X)>0 (ADXED), {5.59)

o(X —A) <0 (ACXED) (5.50)

Suppose that each arc of B*(D) — A~ {A) has the infinite upper capacity and
the zero lower capacity and that each arc of A7(A4) has the zero upper and
lower capacities. Then it easily follows from (5.59), (5.60) and the feasibility
theorem for network flows [Hoffman60] {[Ford 4 Fulkerson62]) that there exist
a nonnegative flow ¢: B*(P) — Ry in G(P) with ¢{e) = 0 (¢ € A~ (4)), a
nonpositive vector ¢ € RE with z(e) = 0 (¢ ¢ B¥ — 4) and a nonnegative
vector y € RY with y{e) =0 (e ¢ B~ N A} such that

v=08s+a+y, {5.61)

where 8¢ is the boundary of ¢ in G(P). {5.61) gives ar expression of v as a
nennegative linear combination of vectors in ER(A). Q.E.D.

It should be noted that if v in Cy(A) satisfies v(A) = 0, then y = 0 in
(5.61) and that if v satisfies v(F — A) =0, then # =0 in (5.61). Theorem 2.21
(the extreme ray theorem for base polyhedra) also follows from this theorem.

‘n
5.3. The Lovidsz Extensions of Submodular Funections

Consider a submodular function f: D — R on a simple distributive lattice
D =27 with P = (E,<). We assume f(#) =0.
Define the function f: BF — R U {+co} by

fle) = max{(c,z) | = € P(f)} (5.62)

Il
for each ¢ € R*, where

(¢,2) = Z cle)z(e). (5.63)

ec B

Here, § is called the support function of P(f) and is a positively homogeneous
functlon [Rockafellar70], [Stoer + Witzgall70]. We see from Corollary 2.11 that

f{¢) < 400 if and only if ¢ B — R is a nonnegative monotone nonincreasing
function from P = (F, <) to (R, <). Therefore, for any ¢ € R” such that
F(c) < 400 there uniquely exist-a chain

Ay C A C-- C A (5.64)
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of nonempty 4; € D (: = 1,2,-+,k) and positive numbers }; € R (i =
1,2,--+,k) such that

k
czz,\.‘XA'. (565)

=1

where k > 0, x4, € R® is the characteristic vector of 4; CE (1 =1,2,--- k)
and if k = 0 (i.e., c = 0), the empty sum is defined to be zero vector G in RZ.
Moreover, we have

E
Floy =2 Mif(4A) (5.66)
=1

since the value of f(c) defined by (5.62) can be obtained by the greedy algorithm
(see Section 2.2.b) and a maximizer z of (5.62) satisfies

2(A; = A1) = F(A) = F(Aic) (F=1,2, k) (5.67)

with Ay = 0. If the right-hand side of (5.66) is the empty sum, it is defined to
be zero.

Formula {5.66) was introduced by L. Lovdsz [Lovasz83] for D = 2%. The
construction of f through (5.64)—(5.66) can be applied to any function f on
D with {0} = 0 and f is an extension of f. We call such an extension f the
Lovdsz extension of f.

Theorem 5.18 [Lovdsz83]: A function f:D — R is submodular if and only if
the Lovész extension f of f is convex.

(Proof) If 7 is a submodular function, then its extension f is given by (5.62)
and hence is a convex function. Conversely, suppose that the extension f of f
is a convex function. By definition, for any X, Y € D

Flxx +xv) = Fflxxur +xxnv)
FIXUY)+ f(XNY). (5.68)

Il

Since f is a positively homogeneous convex function, we also have
Flxx +xv) € flxx) + flxy) = (X0 + £(Y). (5.69)
From (5.67) and (5.68) f is a submodular function on D. Q.E.D.
Theorem 5.13 shows the close relationship between the submodularity and
the convexity. The results in Sections 5.1 and 5.2 can be viewed from the theory

of convex functions through this theorem. However, the integrality result in
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IV. SUBMODULAR ANALYSIS
Theorem 5.3 does not follow directly from the ordinary convex analysis; 1t is
tiuely a combinatorial deep result.

Define

P(D) = the convex hull of vectors x4 (A € D). (5.70)

Lemma 5.14 [Lov4sz383]: For a submodular function f:D — R we have

min{f(X) [ X € D} = min{f(c) | ¢ € P(D)}. (5.71)

(Proof) Tmmediate from Theorem 5.13 and (5.66), the positive homogeneity of

"

I QED.
Lemma 5.15: For any ¢ € P{D) there uniquely exists a nonempty chain

By CB,C--CH, (5.72)
of D such that ¢ 15 expressed as a convex combination

P
e= ) miX (5.75)
=1 ‘

{l
with u; >0 (i =1,2,---,p}and 3 7_, pi = L.

(Proof) Any ¢ € P(D) is a nonnegative monotone nonincreasing function from
P = (E, <) to (R,<). Therefore, there uniquely exists a chain (5.64) of
nonempty 4; € D (1 = 1,2,---,k) and X; > 0 (s = 1,2,--,k) such that
(5.65) holds. Since ¢ € P(D), we have

>ougt (5.74)

If Zle Ai =1, then (5.65) is the desired unigue expression. Otherwise put
dAp=1-— Zle A; and Ag = 0. This yields a desired unique expression

k
e=3 Aixa; (5.75)
=0

with \; >0 (4=1,2,---,k) and 3F_ A = 1. QE.D.
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Now, let f:D — R be a submodular function and define f: RF - RU

{40} by )
7o) = {f(c) (c€ P(D))

oo (c€ RF — P(D)), (5.76)

where f is the Lovasz extension of f. Call f the truncated Lovdsz extension of

f.
Theorem 5.18: For each A € D we have
8f(A)=8f(x4), (5.77)

where 8f(x.a) denotes the subdifferential of the convex function fat x4 in an
ordinary sense of convex analysis [Rockafellar70].

(Proof) By definition, we have ¢ € 8F(x ) if and only if
Ve € R”:(c —x4,2) < f(o) = Flxa). (5.78)
Since f{x4) = f(A), (5.78) is rewritten as

F(4) — 2(4) € min{f(c) — (¢,z) | ¢ € RF}
= min{f(c) — (¢,2) | ¢ € P(D)}
=min{ f{X) - 2(X) | X € D}, (5.79}

4

where the last equality follows from Lemma 5.14 with f replaced by f — z.
(5.79) is equivalent to = € 8f(A). Q.ED.

Theorem 5.17: Let ¢ be an arbitrary vector in P(D) and suppose that ¢ 1s
expressed as (5.73) with (5.72). Then, we have

8f(e)= (o8B [i=1,2,-,7} (5.30)

(Proof) We have z € 8f(c) if and only if
VoeEP(D): (b—c ) < F(b) — flo). (5.81)

From (5.72) and (5.73), (5.81) 1s rewritten as

Z#i(f(Bi) — 2(B;)) < min{f(b) — (b,?) | b€ P(D)}
B = min{/(X) - 2(X) | X €D} (5.82)
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V. SUBMODULAR ANALYSIS

due to Lemma 5.14. Furthermore, since ) ¢+, p; = 1 and p; > 0 (1 =
1,2,-+-,p), (3.82) is equivalent fo

F(Bi)—z(B)=mn{f(X)—=2(X)| X €D}
(t=1,2,---,p) (5.83)

- QT

T em{af(Bz) I £=1127'“)p}’ ) (5'84)
QED.

For any maximal chain C:0 =5, C Sy C - C Sy = FE of D, denote ‘by
P{C) the n-simplex with vertices x5, (: =1,2,---,n).

Lemma 5.18: The colleciion of P(C)’s for all the maximal chains € of D
forms a simpliclal subdivision of P(D). Moreover, for two maximal chains
C:9=S8CSC--CS =F(i=1,2) the n-simplices P(C*) (4 = 1,2)
have a common facet if and only if for some & with 1 <% <n — 1 we have

1_ o2 . . X

(Proof) The first half of this lemma follows from the uniqueness property of
Lemma 5.15. Moreover, any facet of the n-simplex P(C*) corresponds to a
subchain of ¢ with length n — 1. From this follows the second half of the
lemma. Q.E.D.

Lemma 5.19: For any maximal chain C: § =S, C S5 C - C Sy =F of D
and any interior point ¢ of P(C), f has a unique subgradient = at ¢ given by

'U(St _’53'—1) Zf(S,) _.f(Si—l) ('2'—-_-1,2,"',?’2,). (586)

(Proof) From Theorem 5.17 the vector z given by (5.86) is a unique subgradient
of f at c. Q.E.D.

Note that the subgradient z of f~ given by (5.86) is an extreme point of
the base polyhedron B(f).

We can see that for a submodular function f:D — R, the convex conjugate
function f* and the truncated Lovdsz extension f of f are the convex conjugate
functions of each other in an ordinary sense of convex analysis (see [Rockafel-
lar70}). Consequently, the Fenchel-type min-max theorem for submeodular and
supermodular functions (Theorem 5.3), except for the integrality property, fol-
lows from Fenchel’s duality theorem for ardinary convex and concave functions.
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6.1. CONSTRAINED SUBMODULAR PROGRAMS
6. Submodular Programs

In this section we consider optimization problems with objective functions
and constraints described by submodular functions, which we call submodular
programs.

8.1. Submodular Programs — Unconstrained Optimization

Let #:D — R be a submodular function on a simple distributive lattice
D C 2% with 8, E € D and f(#) = 0. We consider the problem of minimizing
the submodunlar function f: D — R without any constraints. It should, howsver,
be noted that the underlying distnibutive lattice D 1tself may be regarded as a
constrained feasible region.

(a) Minimizing submodular functions

From the definition of subdifferential of a submodular function we have
the following trivial but fundamental lemma.

Lemma 6.1: A set A € D is a minimizer of f: D — R if and only if
; 0 € 8f(4), (6.1)
where 0 is the zero vector in R .

From Lemmas 5.4 and 6.1 we get the following theorem which means that
some “local” or “partial” minimality implies “global” minimality.

Theorem 6.2: Aset A€ D is e minimizerof /: D — Rifand onlyif A €D
minimizes f restricted to the sublattice [8, Alp U[A4, Elp.

Grdtschel, Lovasz and Schrijver [Grétschel + Lovédsz -+ Schrijver88] have
devised a strongly polynomial algorithm for minimizing a submodular function
f:D — R which requires time polynomial in |E|. Their algorithm heavily de-
pends on the so-called ellipsoid method [KChachian79, 80] for linear programs
and is not a combinatorial ome. A combinatorial but pseudopolynomial al-
gorithm is proposed by Cunningham [Cunningham85|, where the submodular
function f is integer-valued and the required running time is polynomial in |E}
and mex |#(X)] but not log{max]f(X)]).

For special classes of submodular functions the problem of minimizing a
submodular function can be reduced to polynomial-time solvable ones such
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IV. SUBMODULAR ANALYSIS

as the minimum cut problem [Picard76} and the maximum-weight stable-set
problem in @ bipartite graph [Billionnet + Minoux83].

We show a “practical” algorithm for minimizing submodular functions
based on the following lemma (see (2.18)).

Lemma 6.3;

min{f(X) | X € D} = max{y(E) |y €P(f), v < 6}.

Faana
3
O

e

Consider a special quadratic programming problem over the base polyhe-
dron B(f) described as '

Minimize |Jz]j® (= Z 2(e)?) (6.3a)
et E
subject to 2 € B(J) (6.3b)

(see [Fuji80b]).

In the present subsection we assume that the underlying totally ordered
additive group R is the set of reals or rationals. (In Chapter V we will consider
in detail a class of nonlinear optimization problems over the base polyhedron,
including Problem (6.3).)

Let 2* be the optimal solution of Problem (6.3) and define

f.

Yy =z" AG (= {min{z"(e),0}:c € £)), {6.4)
A_={e]le€E, z*(e) <0}, (6.5)
Ag={elec€ R, 2*(e} <0}. (8.6)

Lemma 8.4: ¢" in (6.4) is a maximizer of the right-hand side of {6.2). Also, 4.
1s the unigue minimal maximizer of f and Ag is the unique maximal maximizer
of f.

(Proof) Because of the optimality of * we have

Veg A_:dep(z*,e) CA_, (6.7)
V e€ Ag: dep{z”,e) C Ag. (6.8)

From (6.4)—(6.8), A, Ay €D and
FAL) = f(Bo) =" (E) (=2"(4-) = 2" (40)). (6.9)
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Since for any X € D and any y € P(f) with y < 0 we have f{X) > v(E), it
follows from (6.9) that y* is a maximizer of the right-hand side of (6.2) and
A_ and Ag are minimizers of f. Morteover, for any X € D such that X C A_,
F(X) 2 2"(X) > "(A-) = J(A-) (6.10)
and for any X € D such that 4 C X,
F(X) > 2 (X) > 2" (4s) = F(4q). (6.11)

From (6.9)—(6.11) A is the unique minimal minimizer of f and 4o is the
unique maximal minimizer of f. Q.E.D.

Let c1 < c2 < +++ < ¢, be the distinct values of 2*(e) (e € E) and define

Bi={e|e€R, "(e)< e} (1=1,2,--,p), (6.12)
Bg = {. (613)

By a similar argument as (6.7)—(6.9} we see that

$=ByCB1C-CB, =& (6.14)
is a chain of D and that
| B =2"(B) (=01, ,p). (6.15)

Consequently, we have

. = F(Bi) = f(Bi-1)
' |Bi = Bi_1]

(i=1,2-,p) (6.16)

Problem (6.3) is to find the minimum-norm point in B(f). For simplicity,
let us suppose B{f) is bounded, 1.e., D = 2%, A solution algorithm for the
minimum norm-point problem is proposed by P. Wolfe [Wolfe76]. We can
adopt Wolfe’s algorithm for Problem (6.3). We express a simplex S in RE by
the set of its extreme points.

An algorithm for finding the minimum-norm point in B(f)

Step 1: Let 2* be any extreme point of B(f). Put § — {«*}.

Step 2: Using the greedy algorithm, find a minimum-weight base & of B(f)
with respect to the weight function «*. If (z*,&—«") = 0, then stop. Otherwise
put S — S U {&}.
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IV. SUBMODULAR ANATLYSIS

Step 3: Iind the minimum-norm point oy in the affine space generated by
S. If 2 is in the relative intericr of the simplex S, then put z* — zy and
go to Step 2. Otherwise let S' C S be the unique minimal face of simplex
S which has the nonempty intersection with the line segment [z", 29]. Put
" «— the infersection point of the face S’ and the line segment {z*, zy] and
S «— &', Go to the beginning of Step 3.

(End)

Step 3 i3 consecutively repeated at most || times. Each simplex S avail-
able when executing Step 2 uniquely determines 2™ lying in the relative interior
of simplex S and the norm ||e”|| monotonically decreases every time z* 1is.re-
newed. Theorefore, all the simplices S which we encounter during the execution
of the algorithm are different, so that the algorithm terminates after a finite
number of steps.

Example: As an illustrative example, consider the minimum-cut problem for
the two-terminal network A = (G = (V, A),sT,s7,¢) shown in Fig. 6.1, where
V ={st,s7,1,2,8}. The numbers attached to the arcs denote the capacities
c{a) (a € A). The problem is to find a cut U C V with s* € U and s~ ¢
U which minimizes its capacity ZaEA'l'U c{a), where AT is the set of arcs
leaving U, Putting V* = V — {s7,5s7}, we define a submodular function
f:2¥7 — R as follows. For each W C V*,

. F(W) = Z cla) — E ela). (6.17)

a€AH(WU{s+)) aEA+{s+}

The second constant term is for the normalization, f(#) = 0.

Now, the minimum-cu$ problem is reduced to the problem of minimizing
the submodular function f:2Y" — R.

Let us start with the extreme point of B{f) corresponding to the sequence
(1,2,3) of the vertices in V¥, 1.e.,

2 (= (z*(1), 2*(2),z"(3)) = (0, 10, ~20). (6.18)

Next, in Step 2 we find by the greedy algorithm the minimum-weight base &
of B(f) with zespect to weight &, which is the extreme point of B(f) corre-
sponding to the vertex sequence (3,1,2), i.e.,

&= (—30,0,20). (6.19)

The minimum-norm point g in the line through the two points (6.18) and
{6.19) 1s given by

1 9
o = %(0, 10,20) + £=(~20,0,20)

=

1
= 57 {(~270,170, ~160). (8.20)
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Figure 6.1.

Since 0 < %—g-, ;—6, we put 2" «— 2 and find a new extreme point, denoted by &,
of B(f) corresponding to the veriex sequence (1,3,2)} determined by z* (= zg
in {6.20)). £ is given by

5= (0,0, —10). (6.21)

The mirimum-norm point z¢ in the two-dimensinal affine space generated by
the three peints of (6.18), (6.19) and (6.21) is given by
1 1 11

7o = —3(0,10,-20) + =(~30,0,20) + (0,0, ~10). (6.22)

Since —--% <0< -_3,'-, -151-, the minimum-norm intersection point of the present
simplex formed by points of {6.18), (6.1} and (6.21} and the line segment
between points of (6.20) and (6.22) lies in the face formed by points of {6.19)
and (6.21). Herce, we discard point (6.18) from the present simplex S and find
the minimum-norm point, denoted by zy again, in the line through points of
(6.19) and (6.21).

5 1
= {~5,0,—35). (6.23)

Since the present zg is in the relative interior of the simplex formed by points
of (6.19) and (6.21), we put & — 24 and go back to Step 2. Now, we find
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IV. SUBMODULAR ANALYSIS

a minimum-weight base & with respect to the weight given by (6.23), Such a
base & is given by {6.19) (or (6.21)} and the algorithm terminates.

From the minimum-norm base {6.23) we see that Up = {57,1,2,3} is
the unique maximal minimum-cut and U_ = {s7,1, 3} is the unique minimal
minimum-cut of the network, due to Lemma 6.4.

When the algorithm for finding the minimum-norm point in B(f) termi-
nates, we are given the minimum-norm point #* and a set of extreme poinis z;
(s € I} of B(f) such that &* is expressed as a convex combination

= Z Niz; (6.24)

¥

of #; ({ € I). For each ¢ € I let P; = (E, <) be the poset which corresponds
to the distributive lattice

Dizi)={X | X €D, o;(X) = f(X)} (6.25)

with D (z;) = 27, and define a distributive lattice D by

D={)2% (6.26)
icl
Then, )

f,

(An algomthm for finding the poset P; = (E, <;) for each extreme point z; €

B(f) is proposed by Bixby, Cunningham and Topkis [Bixby + Cunningham +

Topkis85]. The poset P = (£, <) on a partition of E which corresponds to the

distributive lattice Dis easily obtained by superimposing the posets ?; (¢ € 1).)
For any maximal chain

g=4deCchiC--CA=E (6.28)
of D, the minimum-norm point = satisfies

_ HA) — f(4;29)

ey = LA =1
|A; — 4 1]

(6.29)

for each e € }1] - Aj-—l (J = 1,2,---,q) (cf. (6.16)). Furthermore, all the
minimizers of f are given by the interval [A_, Ag]p of D, where 4_ and 4; are
defined by (6.5) and (6.6).

(b) Minimizing modular functions
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Let p: D — R be & modular function on a simple distributive lattice D =
27 with P = (&, <) and u{8) = 0.

Lemma 8.5: There exists a unique vector v € B? such that for each X € D

p(X) = E v(e). (6.30)

ec X

(Proof) Choose any maximal chain C:0 =5, C S5, C - C S, = F of D and
define a vector » € R¥ by

vie)) = p(S;) - u(Siy) ((=1,2,--+,n), (6.31)

where {e;} = 8§ —S;_1 (1 =1,2,--,n). For any X € D with |[X]| = p there
exist integers 1 < gy < -+ < j, < n such that

X ={ej. | {ejs} = Sjr — Sju-1, k=1,2,--,p}. (6.32)

Since u 15 a modular function and S;, CS;, C--- C S5;,, we have

r
p(X)+ 3 (Sjsm1)
k=1

: ?
¢ = p(X U Sf_p-——l) + E p((X N Sjk-l) U S.fk-—i—l) +u(X N Sjl-l)
k=2 ‘
?
= P(ka): (6.33)
k=1
where use is made of the fact that X U Sip-1 =S, XN&, 1 =XN5;,_,
(k=2,--+,p) and XN S;,_1 = 8. (6.30) follows from (6.31) and (6.33). The
uniqueness of v is clear from ({6.30). Q.E.D.

We see from this lemma that the problem of minimizing the modular
function p: D — R 1s equivalent to the problem of finding a minimum-weight
(lower) ideal of the poset P = (F, <) with tespect to-the weight function v: £ —
R. The latter problem was solved by J. C. Picard [Picard76] by reducing it
to & minimum-cut problem. Conversely, the reducibility of the minimum-cut
problem to a problem of minimizing a modular function was shown by W. H.
Cunningham [Cunningham85a).

We first show Picard’s approach. Let G(P) = (¥, B*(®)) be the graph
representing the Hasse diagram of P = (F, <), i.e., e; covers ep in P if and
only if (e1,e2) € B*(P). {The following procedure works if we take as G(P)
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any graph G' whose transitive closure coincides with that of G{P) and a {tran-
sitively) closed set of G' is an ideal of P.) Consider new vertices sT and s~
and sets of new arcs

5t ={{st,e) | e € B, v{e) <0}, (6.34)
ST ={(e;s7) | e € E, v(e) > 0}. (6.25)
Also define the capacities ¢(a) of azcs a in B*(P)UST U S~ by
+o0 (e € A(P))
cla) = ¢ —v(e) ((s7,¢) €57) (6.36)
v{e) ((e,87) & §7).

Denote this network by N = (G={(E,A),sT,s,c), where £ = EU {sT,s7}
and A=B*(P)USTUS™ (see Fig. 6.2).

(a) st
(b)

Figure 6.2. (a) A poset P with weights. (b) Netwotk V.

For any cut U C E of the network N (i.e., st € U and s~ ¢ U}, the
capacity of the cut U is given by

x(U) = Z{—v(c) |e€ £ —U, vie) <0}
+> {vle) | e € ENU, vle) > 0}
+> {c(a} |« €B"(P), 8Ya €U, 6 a €E-U} (6.37)
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Note that for any cut U of finite capacity x.(U), the thizd term in (6.37)
vanishes and U — {57} is an ideal of P = (£, <) and, conversely, that for any
ideal I C E of P TU {37} is a cut of finite capacity in V.

Furthermore, for any ideal 7 of P we have

s(TU{st}) = Z{—V(C) le€ BE~1, vie) <0}
+E{y(e) | e € I, v(e) > 0}
=v(l)+) {-v(e) | e € E, v(e) <0}. (6.38)

Therefore, minimizing &.(J U {s1}) for cuts T U {sT} of A is equivalent to
minimizing v([)} for ideals [ of P.

See [Picard -+ Queyranne8?! for practical applications of the problem of
finding a maximum-weight ideal of a poset or & maximum-weight closed set of
a graph.

Next, we consider the problem of minimizing & modular function p: D — R
from the point of view of submodular analysis.

Given a submodular function 7:D — R and a vector ¢ € RF consider
the following problem. It includes the problem of minimizing the submodular
function f.

(%) Find A € D such that ¢ € 8f(4) and then find an expression
{

T =2z + T {6.39)

such that #; is a convex combination of extreme points of 8f(A) and
x2 is a nonnegative linear combination of extreme vectors of Cy(A4), the
characteristic cone of 8f(A4).

Note that the problem of minimizing f i1s equivalent to that of finding a set
A € D such that 0 € 8f(A). We consider the above problem () in the special
case when f is a modular function p: D ~ R with p(0) = 0.

For modular function x, the subdifferential du(A) for each 4 € D has a
unique extreme point v due to Theorem 5.11 and Lemma 6.5, where v is the
vector appearing in Lemma 6.5. Hence Problem (x) is reduced to the problem
of finding A € D such that ¢ — v € C¢(4) and of finding a nonnegative linear
combination, of ER(A) given by {5.57), which expresses ¢ — v.

The proof of Theorem 5.12 suggests an algonthm as follows. The graph
G(P) = (E,B"(P)) represents the Hasse diagram of the poset P = (F, <).

An algorithm for Problem (x)
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tep 1: Find a nonnegative flow ¢: B*(P) ~ R. in G(P) and nonnegative
coeflicients o{p™) (pt € ET) and 8(p~) (p~ € E™) such that

Z a(p )y + Z Blp " inp- +8p =g ~v. (6.40)

ptEE+ prEE~

(Here, &p+ (p* € ET) and ,- (p~ € E7) aze vectors in R” defined by (5.54)
and (5.55}.} For each 7 and p~ such that p =p~ € E¥ N E~ we choose the
values of a{p¥) and B(p™) so that a(p™)B{p~) = 0.

Step 2: Construct a network N= (GUD) &) with an underlying graph G(P) =
(E,B(P)) and a capacity function & B(P) — Ry U {+oo} defined as follows.
The arc set B(P) of G’( ) is given by

B(P)=B"(P)u{le,e) ]| (¢,¢e) € B*(P)} (6.41)
and the capacity function & by

o= {0 CETE)

+-co (e ={e,¢), (e,e) € B*{P)). (6.42)

Then find a maximum flow ¢: B(P) — R. in N from the entrance vertex set
— B~ to the exit vertex set £~ — E7 such that

“ 0<¥(a) S ée) (e €B(P)Y), (6.43)
d(e) =0 (e€E—(EYUET)), (6.44)

a(pt) <alpt) (pt € ET-E7), (6.45)

| ~&(p7) L BGET) (T €ET-EY) (6.48)

(Here, the boundary operator 8 is defined with respect to G(P).)
Step 3: Put

plle,e)) —ol{e e )) P((e,e)) +9((ee)) ((¢,¢) € B*(P)), (6.47)
«(pT) — a(pt) = (™) (" € BT ~E7), (6.48)
Bp™) —B(r™)+3¥(p”) (p~ €E” —-EBT). (6.49)
Then find A € D such that
(1) ele)=0 (a€A(4), (6.50)
(i) elpt)=0 (pT € FtN4), (6.51)
(1)) Bp=)=0 (p- €E- —A4). (6.52)

(End)
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For any 4 € D satisfying (6.50)—(6.52) we have 2 € 8u(4) and = is
expressed as

T=v+ Z a(_p+)£p++ 2 Blp~ )np~ + Z v(2)Ca, (6.58)

pteEt PEE- e£B-(P)

using the obtained @, 8 and ¢.

Step 1 can be carried out by the breadth-first search and requires linear
time. Step 2 is performed by any maximum flow algorithm. Any minimum
cut U C E obtained by the maximum flow algorithm in Step 2 gives a desired
A €D to be found in Step 3 as A = F—U. From (6.50)—(6.52), ¢ — v in (6.53)
is a nonnegative linear combination of ER(A4).

When z = 8, the above algorithm solves the problem of minimizing the
modular function p. In this case 4 € D found in Step 3 1s a minimizer of u
since 0 € du(4).

Let us consider the problem of minimizing a modular function : D — R
from a polyhedral point of view. Denote by P(P) the convex hull of all the
characteristic vectots xx (X € D).

Lemma 6.6: For any A € D, the inequalities of all the facets of the polyhedron
P(D) which include the vertex x 4 are given by

z(e) >0 (e € ET — A), (6.54)
yz(e) —z(e') <0 (e covers e in P and either e, € €A ore, € ¢ A), (6.55)
2(e) <1 (e € B~ NA). (6.56)

(Proof) The lemma follows from the polarity between P(D) with x4 regarded
as the origin and the characteristic cone C,(A) of u(A). Notice the one-to-one
correspondence between the set of facets (6.54)—(6.56) and the set ER(A) of
the extreme rays of C,(A) given by {5.57) with (5.54)—(5.56). Q.E.D.

Corollary 8.7: All the facet inequalities of P(D) are given by

z(e) >0 (e€ E"), (6.57)
z{e) —x(e') €0 (e covers &' in P), (5.38)
ele)<1 (e€ E7). (6.59)

The problera of minimizing the modular function p: D — R 15 reduced to
the problem of minimizing the linear function

(v, z) = Z vie)z(e) (6.60)

ec kB
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over P(D), where v is the vector appearing in Lemma 6.5. Therefore, it follows
from Lemma 6.6 that A € D is a minimizer of u (o1 x 4 i3 2 mimimizer of (v, )
over P(D)) if and only if the vector ~v is expressed as a nonnegative linear
combination of vectors £,+ (pt € BT — A), ¢, (a € B*(P) = A~ (4)) and Ty-
(p~ € E”NA) which are coefficient vectors of {£.54)—(6.56), where inequalities
(6.54) should be considered in the form of —z(e) <0 (e € ET — A4).

8.2. Submodular Programs — Constrained Optimization

We consider the problém of minimimng a submodular function f: D — R
with constrainis on the domain D of f and discuss some other related problems.

{a) Lagrangian funciions and optimality conditions

Suppose that a sublattice Dy of D is given. We say that a vector ¢ € R®
1s normal to Dy at A € Dy if for each X € Dy

o(X) — a(4) < 0. (6.61)

The following theorem characterizes the minimizers of f when the domain of
[ 1s restricted to a sublattice of D.

Theorem 6.8 (cf. [Rockafellar70, Theorem 27.4}): Let f: D — R be a sub-
modular function and Dy be a sublattice of . Then, for A € Dy we have

F4) =min{f(X) | X € Do} (6.62)

if and only if there exists a subgradient a € 8f(4) such that —a is normal 1o
Do at A,

(Proof) The “if” part: From the assumption, we have for any X € Dy
0 < a(X) - o(4) < J(X) ~ F(4), (6.53)

from which (6.62) follows.
The “only if” part: Defire a modular function uo: Dy — R by

po(X)=0 (X €Dyp). (6.64)

Then, by the assumption A is 2 minimizer of fo = f + po: Dy — R. It follows
from Theorem 5.8 and Lemma 6.1 that

(S afo(A) = 3f(.4) + g (A) (6.65)

- 136



6.2. CONSTRAINED SUBMODULAR PROGRAMS
Hencé, there exists a vector a € 8f(A4) such that
—a € Oug(A). (6.66)
From (6.64), (6.66) implies that —a is normal to Dy at A. Q.E.D.

Next, consider a constrained minimization problem for which the “feasible
region” Dy in (6.62) is defined by a set of equations. Suppoese that we are given

submodular functions fi: D — R (1 =0,1,---,m) and that the minimum value
of f; for each i = 1,2,-+-,m is known and equal to @;. The feasible region Dy
1s given by

DUZ{XIXED, f,'(X)=Od,' (i=1,2,---,m)}. (6.67)

Here, we assume Dg 7% 8. From Lemma 1.1, Dy is a sublattice of D.
Let us consider the following constrained minimization problem:

Minimize fo{X) (2.68a)
subject to fi(X)=¢c; (i=1,2,---,m). (6.68D)

Define a function L: RT x D — R by

L{N, X) = fo(X) + 3 Ml X) = i) (6.69)

=1
{

for A € RY and X € D. We call L the Lagrangian function associated with
Problem (6.68). Also, we call A\ € R} an optimal Lagrange multiplier if

min{L{A, X) | X €D} (6.70)
is equal to the optimal value of the objective function of Problem (6.68).

Theorem 6.9 {cf. [Rockafellar70, Theorem 28.3}): For Problem (6.68),
(1) A=(A, -+, A,) is an optimal Lagrange multiplier and
(2) X is an optimal solution of Problem (6.68)
if and only if )
() i€(h, - in) ERT,
(i1} X is a feasible solution of Problem (6.68) and
(i) 0 € 8f(X) +MAn(X) +  + 1,85m(X).
(Proof) First, note that for each ¢ = 1,---,m, 8fi(X) and 8fp(X) has the
same characteristic cone, since the characteristic cone is determined by the
underlying distributive lattice D alone. Therefore,

8fo(X) = 8fe(X)+0T3K(X) (i=1,2,--,m) (6.71)
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Hence, from Theorem 5.8 and Lemma 6.1, (iii) is equivalent to
6 € ax L}, X), (6.72)

where C“?XL(J:\, X) denotes the subdifferential of the submodular function L},
D —=Rat X.
The “if” part: From (i)—(iil) and (6.72) we have

min{L{}, X} | X € D} = L(}, X) = fo(X), (6.73)
while we have for any feasible solution ¥
min{L(},X) | X € D} < L}, Y) = fo(¥). (6.74)

Hence (1) and (2) follow.
The “only if” part: From (1) and (2},

X €Dy, (6.75)

win{L(}, X) | X € D} = fo(R) = L(}, X). (6.76)

Therefore, we have (6.72) or (i1i). (1) and (ii) trivially follow frem (1) and (2).
QED.

The above proof almest parallels that of the corresponding theorem for
ordinary convex functions ([Rockafellar70, Theorem 28.3]). It should, however,
Be noted that the above proof heavily depends on the results in Section 5.2,
especially Theorem 5.8.

Defire a function p: R} — R U {+co} by

plu) =min{fo(X) | X €D, YE{L,- ,m} fi(X)—a: <uil, (6.77)

where # = (uy, -, um) € RT. We define p(u) = +oo for « for which there
exists no X € D such that fi{ X} —o; <w;forall i =1, --,m. We call p the
perturbation function associated with Problem (6.68).

Theorem 6.10: For the perturbaiion function p associated with Problem
(6.68) we have for each X € RT

min{p(n) FXiurF o+ Ap g, | v € R}

=min{L(} X)| X € D}. (6.78)

(Proof) Suppose that X € D is a minimizer of L(\, X) in X € D. Then, from
the definition of p(u),

L(NX) =p(B) + MEL+ - + AT, (6.79)
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where iy = f;(X) —a; (i =1, -+, m). Hence we have

min{p{u) + A1u1 + -+ Anttm | ¢ € R?}
<min{L(},X)| X €D} (6.80)

On the other hand, suppose that & € R is a minimizer of p(u) + Ayuy + -+
Amtm It u € RT. Then, there exists an Xg € D such that

(@) = fo(Xo), (6.81)

filXe)—a; <4, (6=1,---,m). (6.82)
Since A € RY, we have from (6.81) and (6.82)

p(@) + My + -+ A > LA, Xo). (6.83)

" Therefore,

min{p(u) + A1+ -+ Apum | v € RT}
>min{L(X X) | X € D}. (6.84)

The present theorem follows from (6.80) and (6.84). Q.E.D.
t In the proof of Theorem 6.10 we have already shown the foliowing.

Theorem §.11: For each A € RT,
(a) if X € D is a minimizer of L{\, X) in X € D, then & = (&1, -+, 4, ) given
by
iy =f(X) (E=1--,m) (6.85)

is a minimizer of p(z) + Ayws + -+ Apvm in v € RT;
(b) if 4 = (41, -, &m) is & minimizer of p{w)+Ajuy + - +Apuny inu € R,
then there exists an X € D such that

p(&) = fo(X), (6.86)

filX)—a; <4; (G=1,---,m), (6.87)

and X is a minimizer of L()\,X) in X € D. Here, for each t = 1,--+,m,
(6.87) holds with equality if A; > 0, while A; = 0 if (6.87) for : holds with
strict inequality.

Furthermore, we have
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Theorem 6.12 (cf. [Rockafellar70, Theorem 29.1]): A vector A € R7T is an
optimal Lagrange multiplier of Problem (6.68) if and only if

min{p(u) + Aug 4+ + Apom |u € RY} =p(0). {6.88)

(Proof) (6.88) means that the zero vector 0 € R is a minimizer of p(u) +

Awr + 0+ Agu, in v € RT. Hence, the present theorem follows from
Theorems 6.9 and 6.11. Q.ED.

. We see from Theorems 6.11 and 6.12 thatif } € RT is an optimal Lagrange
multiplier, then any A € R} such that X < X is also an optimal one. Note that
(6.87) for ¢ such that &; = 0, helds with eguality since f;{X) — a; > 0 for any
X eD.

An algorithm for finding an optimal solution and an optimal Lagrange
multiplier for Problem (6.68) is given as follows. For simplicity, we consider
the case when m = 1.

An algorithm for solving Problem (8.68) (with m =1}

Step 1: Let ap be an upper bound of fy such that ag > fo(X) forall X € D
(with strict inequality) and let o be a lower bound of fy. Also let @y be an
upper bound of f; with a1 > 1. Put N — (ag = ap) /(a1 — a1).

Step 2: Put X — a minimizer of L{X, X) = fo(X) +A(fa(X) =) in X € D.
Step 3: If £1(X) — @p = 0, then stop (X is an optimal so}qtion and A is an
optimal Lagrange multiplier). Otherwise, put & — (ag — fo{ X))/ (f2(X) — a1)
and go back to Step 2.

(End)

The validity of the above algerithm follows from Theorems 6.8, 6.11 and
6.12. The case when m > 1 can also be treated by the algorithm by setting
fi—=fi+fot+ -+ fn I mm{fl(){) +f2(X) + 4 fa(X) | X € 'D} *
o + s+ -+ @y, then there is no feasible sclution.

The upper bounds of the submodular functions required in Step 1 are
obtained by adapting (2.78). When f; (i = 0,1) are integer-valued, the
above algorithm terminates after repeating the cycle of Steps 2 and 3 at most
2min{ag — ag,a1 — @1}, where a; ( =0, 1) are integral upper bounds.

For each A € R} denote by L£(}) the set of minimizers of the Lagrangian
function

LX) = fo(X) + MA(X) + -+ A fm(X) (6.89)

in X €D. £{\) is a sublattice of D. Because of the finiteness character of the
problem there are a finite number of distinet £(A)'s (A € R7). The structure
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of these £(X)’s is closely related to the principal partition ([Kishi + Kajitani68],
[Iri71], [Tomi78], [Fuji78¢], [Ir179], [Makamura + Iri81], [Ixi84], [Nakamura88],
[Tomi + Fuji82]), which will be discussed in the subsequent subsection.

(b) Related problems
We discuss other problems related to submodular programs.
(b.1) The principal partition [Ixi79], [Nakamura + Iri81], {Tomi + Fujig2]

For simplicity let us consider the Lagrangian function L{X, X) of (6.89) for
the case when m =1 and oy = 0. (P, f;) ({ = 1,2) are submodular systems on
E. We also suppose that fy is monotone nondecreasing. This 1s an essential
assumption in the following argument.

Consider the Lagrangian function

L0, X) = fo(X) + M1 (X) (6.90)
for A > 0and X € D. We also define L(}, X) for A <0 as
LX) = fo(X) + A7 (X), (6.91)

where fi# is the dual supermodular function of fi, i.e., AF(X) = f1(F) -
fi(BE— X) (X € D). For each A € R let £{A) be the set of minimizers of
LM\ X)in X € D. L£{\) 15 a sublattice of D.

Theorem 6.13 ([Tomi -+ Fuji82]): Define
o= L. (6.92)
AER,
L* is a sublattice of . More precisely, for any A and X' with A < A" and for
any X € £{}) and X' € £(}'), we have

XUX'eL(d), XnX ec(d). (6.93)

(Procf} If A = X', (6.93) holds.
Case 1: 0 <A < N
For any X € £{}) and X' € L(}'} we have
LX)+ LV, X
= fo(X) + AA(X) + o (X') + X f1(X")
> HXUXDY+AAXUXY + (XN XY+ VAN XY
+ (X =N(AX) - (XN XTY)
>LXUXY+ LV, XnX") (6.94)
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due to the submodularity of fo and f1 and the monotonicty of f1. It follows
from (6.94) that

LA XUXY =1L X), (6.95)
LM, XnXY =L, X" (6.96)

(and /1 (X') = (X N X")). We thus have (6.93).

Case 2: <0< N
Sirnilarly as (6.94), we have

LX)+ LM, XY

= fo(X) + MAT(X) + fol X') + N A(X)

> fo(XUX)+ A AF(XUX )+ (X NX)+ M AaX N XY
FAAFE N = AFEX) + N (A(XUX) - A(X)

>LAMLXUXY+L(N, XnX'). (6.97)

From this we have (6.93).

Case 3: X< XN <0
Sirmlatly, we have

LM X)+ LV, XD
= fo(X) + AAF(X) + Ho(X)) + X A # (X
( > f(XUX) 4+ AAF(XUX) + fH(XNX)+ NAF(X N XY
+ (N = N(AF(XUX) - )
>LALXUXY+ LN, X nXY). (6.98)

Hence we have (6.93). Q.E.D.

Denote by St (}) the unique maximal element of £()) and by S~(A) the
unique minimal element of £(N) for each A € R.

Theorem 6.14: For any A and X' with X < \' we have

Sty st(\), ST esT(). (6.99)

(Proot) For any X € £L()) and X' € L{)") we have from Theorem 6.13
XUSTQh eL), S (AnX'ecL(n). (6.100)

This implies X € ST(\) (X € £{A)) and S~ (A) C X' (X' € £L(N')). Hence
we have (6.99). Q.E.D.
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We further suppose that f; is monotone increasing. Then, for a sufficiently
large A > 0 we have £(X)} = {8} and for a sufficiently small X < 0, £(}) = {E}.

Theorem 6.15: Suppose that f; is monotone increasing. Then, there exists a
finite sequence of reals
A <A< <A (6.101)

such that the distinct £(}) (A € R) are given by

L(xi) (= 1,5,---,p), (6.102)
{57} E{s7 ()b (=2 p-1), (6.103)
{STODY (={ED, {570} (={8}). (6.104)

Forany i € {1,2,-:-,p~ 1} and any A such that \; < A < X;1; we have
L) = {$T)} = {57 (i)} (6.105)

e (B} <)

— . A< L )
L) = { 0 <) (6.106)

(Proof) Because of the finiteness character there exist finitely many distinct
£(}) (A € R). Choose any A € R. If £(}) contains more than two elements,
there exist some X, X' € £ with X C X' and

Fo(X) + M fu(X) = fo(X') + A A(X). (6.107)
Since f1(X) < fi{ X'} by the assumption, the value of X is uniquely determined
from (6.107). If £{)\) contains only one element, then from the finiteness char-
acter there exists an open interval (X', A") such that A € (A, A"} and
LY =2L() (e (A, (6.108)
It follows that there existé a finite sequence of reals
AL <A< <Ay (6.109)
such that distinct £()) (A € R) are given by
L) (E=12,--,p), (6.110)
L£A) (Ve (X i), i=0,1,-+,p), (6.111)
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where Ag = ~00, App1 = 00, L£{A} are the same in each interval (X;, Airq)
{3 = 0:1: o '1?7): ]’C{‘\:)] > 2 (3 =12, :P) and |’C’(’\)l =1 (’\ € (Ai:A5+1)7 1=
0,1, -,p). Moreover, for eachz =1,2, -+, p, because of the finiteness charac-

ter there exists a (sufficiently small} positive number € such that
L{Xi =€) C L), _ (6.112)

ﬁ(;\,‘ +€) - .C(;\g). (6.113)

Since f; is monotone increasing, we have from (6.112) and (6.113)

ST(N) € L(XN ~¢), (6.114)
S(\) € L0 +€). (6.115)
From (6.114) and (6.115) we have (6.103)—(6.106). Q.E.D.

The \; (1 =1,2,---,p) in (6.101) are called critical values for the pair of
the submodulazr systems (D, fo) and {D, f1). Denote 8¢ = (D, fo) and 5; =
(D, f1). The submodular systems S; ( = 0,1} are decomposed according to
the distributive lattice £ = [J g £(}) as follows. Choose any maximal chain

C:0=AgCAC- CAy=FE (6.116)
of £* and then decompose S; (¢ = 0, 1) into their minors
s"‘AI‘/‘A}'—l (J “__1)2;"':&‘): (6117)

where 8; - A;f/A; 1 is the set minor of 8; obtained by restricting 3; to A; and
contracting A4;_1. Such a set of decompasitions of 8; (¢ = 0,1) is called the
principal partition of the pair of §; (¢ = 0,1). By the poset on the partilion
{4; —A; 1|7 =1,2,--,k} of E which is uniquely determined by L* (see
Section 2.2.a) the cortesponding poset structure 1s defined on the set of minors
(6.117) for each # = 0,1. We can show that the decompositions (6.117) do not
depend on the choice of 2 maximal chain tn £* {[Nakamura + In81}, [Tomi +
Fujig2]).

The concept of principal partition was originated by G. Kishi and Y. Ka-
jitanl [Kishi + Kajitani68} for graphs, where Sy is a graphic matroid and
S1 = (2%,1) with uniform modular function 1(X) = |X| (X C E). It was
generalized to & pair of graphs [Ozawa74]; to a pair of a matux and a uni-
form modular function [Iri71}; to a pair of a matroid and a uniform modular
function [Narayanan74], [Tomi76] (also [Bruno + Weinberg71]); to a pair of a
polymatroid and a positive modular function {Fuji78¢], [Fuji80bl; to a pair of
polymatroids {(Iri79]; to a pair of a submodular system and a medular function
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[Fuji80c]; and to a pair of submodular systems [Nakamura + Iri81], [Tomi80d],
[Tomi + Fuji81]. The concept has effectively been applied to electrical network
analysis [Irl + Tomi75], [Narayanan74], network flows [Fuji80b}, structure and
scene analyses [Sugihara82] etc. {Also see [Ini79], [Tui83], [Tri + Fuji8l], [Tomi -
+Fuji82]).

The concept of principal partition is closely related to convex optimization
problems over base polyhedra, which will be treated in Chapter V.

Finally, it should also be noted that the above argument is also valid with
an appropriate modificatin if fy Is a negative submodular function except that

L) =o0.
(b.2) The minimum-ratio problem

Suppose that f: D — R is a nonnegative submodular function with f(8) =
0 and that g:D — R is a supermodular function with g(8) = 0 and g(X) > 0

(X eD-{8})
Consider the following problem:
 Minimize f(X)/g(X) (6.118a)
subject to X € D — {0}. (6.118b)

This is called a minimum-ratic problem. Special cases of the problem have
been treated in [Brown79] and [Ichimori + Ishii + Nishida83] as a sharing
problem in a network (also see [Megiddo74], [Fuji80b]), in [Cunningham85h] as
a minimum-cost problem of disconnecting a network, and in [Goldberg83] as
a maximum-density subgraph problem. The minimum-ratio problem given by
(6.118) is closely related to the principal partition discussed in the preceding
subsection {b.1).
Define a Lagrangian function for f and —g assoclated with Problem (6.118)
by :
LA, X) = f(X) = Ag(X) (6.119)

forA>0and X €D.

Theorem 6.16: A nonnegative A is the minimum value of the ratio of Problem
(6.118) if and only if

min{L(}, X)| X €D} =0 (0< )<}, (6.120)
min{L(}, X) ] X €D} <0 (A<]). | (6.121)

(Proof) Suppose that X is the minimum value of the tatio of Problem (6.118).
Then we have

LLX)=pX)=g(X)>0 (X eD-{8)), (6.122)
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where {6.122) holds with equality for some X € D — {#}. It follows that
LX) >L(AX)>0 (0<A<), XeDY, (6.123)

LOLX) <L Xy =0 (<)), (6.124)

Since L(A,0) = 0 for any A > 0, from (6.123) and (6.124) we have (6.120) and
(6.121). -

Conversely, suppose (6.120) and (6.121) hold. Since ) is uniquely de-
termined by the Lagranglar function L(}, X), it follows from the previous
argument that \ must be the minimum value of the ratic of Problem (6.118).

QED,

It should be noted that Theorem 6.16 holds for f and g without submod-
nlanty or supermodularity, though the problem would become hard without
submodunlarity or supermoduianity. A minimum-ratio problem for general set
functions has also been discussed by Cunningham [Cunningham83].

From Theorem 6.16, the minimum-ratio problem (6.118) is reduced to the
problem of finding the minimum critical value A; (= A) for L(}, X). The
minimum critical value }; can be obtained by a binary search in Ry based
on Theorem 6.16 (cf. [Goldbergs3], [Imai83] for special cases and also see
[Cunningham85b}). Also a dichotomy works for finding an element of £{}{}
from among £ = U{L{}A) | A > 0} by searching a chain of £* (cf. [Fuji80b],
[Nakamura + 1181}, [Tomi80d], [Tomi + Fujis2}).
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Chapter V.

Nonlinear Optimization with Submodular Constraints

7. Separable Convex Optimization

Let (D, f) be a submodular system on F with a real-valued (or rational-
valued) rank funciton f. The undetlying totally ordered additive group is
assumed 0 be the set R of reals {or the set Q of rationals) unless otherwise
stated.

For each e € F let wo: R — R be a real-valued convex function on R, and
consider the following problem

Py Minimize z w.(z(e)) (7.1a)
ec R
subject to 2 € B(f). (7.1b)

Rroblem P, was first considered by the author [Fuji80b] for the case where
for each ¢ € B w.(z(e)) is a quadratic function given by z(e)?/w(e) with a
positive real weight w(e) and f is a polymatroid rank function. H. Groenevelt
[Groeneveli85] also considered Problem Py whete each w, 15 a convex function
and f 15 a polymatroid rank funcition.

7.1. Optimality Conditions

It is almost straightforward to generalize the result of {Fuji80b] and [Groen-
evelt83)] to Problem P for a general submodular system.
Optimal solutions of Problem P are characterized as follows.

Theorem 7.1 ([Groenevelt85]; also see [Fuji80b]): A base z € B(f) is an
optimal solution of Problem P if and only if for each exchangeable pair (e, ¢')
assoclated with base z (i.e., ¢ € E and &' € dep(w,e) — {e}}, we have

wet(z(e)) 2 we ™ (z(e'), (7.2)

where w,T denotes the right derivative of w, and w, ~ the left derivative of
We’.

(Proof) The “if" part: Dencte by A, the set of all the exchangeable pairs
(e,e') associated with z. Suppose that (7.2) holds for each (e,e') € A,,. From
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Theorem 2.23, for any base z € B(f) there exist some nonnegative coefficients
Ae,e') ((e,e') € A,) such that

z =:1:+Z{A(e,c’)(xe—xer) | (e,e') € AL} (7.3)
Tor each e € & define
we(z(e)) = max{w., " (z(e) | € € dep{z,€)}. (7.4)

We see from (7.2} and (7.4) that
w,” (z{e)) < We(ole)) < wet(ale)) (e € B, (7.5)
We(z(e)) > Ter(2(e')) ((e,€') € A,). (7.6)
From {7.3)—(7.6) and the convexity of w, (¢ € E) we have

S wela(e) = 3 welale) + (o))

ec R ec &

> > {we(z(e)) + O(e) - We(e(e))}

ecE

=S wlele)+ 3 Me,e)@elale)) — Ter(ale)

e£E {e,e’)EAz

'- > 3" welele)) (1.7)

ec F

where 8A: F — R 1s defined by

ae)= 3 Mee)— Y AMee) (7.8)

(e,eNEA- {e’e)E A,

for each e € E. (7.7) shows the optimality of .
The “only if” part: Suppose that for a base @ € B(f) there exists an
exchangeable pair (e, e') associated with « such that

we T (2(e)) € we ™ (w{eh). (7.9)

Then for a sufficiently small @ > 0 we have

we(2(e)) + war(2(e")) > we(z{e) + o) + we(z(a') — ), (7.10)
3’+0’(X8_X£’) EB(f)' (7'11)
Therefore, z 1s not an optimal sclution. Q.IE.D.
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Theorem 7.1 generalizes Theorem 2.13 for the minimum-weight base prob-
lem to that with a convex weight function.
For each ¢ € £ and £ € R define the interval

Je(f) = [we_(f);10e+(£)]- (7-12)

Je(€} is the subdifferential of w, at ¢. Conversely, for each ¢ € E and n € R
define

Ln)={{1¢€ER, n€ L)} (7.13)

Because of the convexity of w,, I.(5), if nonempty, is an interval in R and we
express 1t as

L(n) = [&.™ (), 2.7 (). (7.14)

Note that n € J.(¢) if and only if ¢ € ().

Theorem 7.2: A base z € B(f) is an optimal solution of Problem P if and
_ omnly 1if there exists a chain

C:@ZA(;C.A]_C“‘CA;;:E (7.15)
of D such that
(1) =(4)=f(A) ((=0,1,--,k), (7.16)
(i1) foreach:=1,--- %,
,‘ (V{Ve(e(e)) | e € Ai = Aia} #86, (7.17)

(i) foreach 7,7 =1,---,k such that : < j, we have
we™ (2(e)) < wer¥ (2(e") (7.18)

foranye € A; —A;_yand &' € 4; — 4, 4.

(Proof) The “if” part: This easily follows from Thecrem 7.1.
The “only if” part: Let ¢ € B(f) be an optimal sclution of Problem Pj.
The sublattice
D(z)={X|X €D, z(X)=f(X}} (7.19)

defines a poset P (D(x)) = (H(D(z)), 2p(s)) (see Section 2.2.a). Suppose that
I{D(x)) = {E1, B, -+, Ey}. Foreach i =1,2,---,k define

Ji=({Je(x(e) | e € B} (7.20)

For each distinct e, &' € E; (e,e'} s an exchangeable pair assoclated with «
due to the definition of E;. Hence, because of the optimality of  we have

w,” (z(e)) < weT (2(e) (7.21)
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for each e, ¢ € E; due to Theozem 7.1. Therefore,

JiF0 (=12, k). (7.22)
Foreach:=1,2, -,k define

Ji = [ni,ni ] (7.23)

Also define foreach : = 1,2, , k&
7; = max{g; | J: Ez <D () Ei}. o (7.29)
For any ¢, 7 such that B; <pu) £ we have |
ny <nf (7.25)

. due to Theorem 7.1. From (7.24) and (7.25),
€W, m (=12 k) (7.26)
and we have the following monotontcity:
E; o) B = T; S (7.27)

We assume withount loss of generality that

T ST S S, (7.28)
and define
A =E UE,U--UE (i=1,2--k), (7.29)
Ao = 0. (7.30)
We see from (7.27) that
C:O=ACAC-- CAr=E (7.31)

is a {maximal) chain of P{z). In particular, (i) holds. Also, (ii} is exactly
(7.22). Morcover, from (7.26) and (7.28) we have (iii). QE.D.

Theorem 7.2 generalizes the greedy algorithm given in Section 2.2.b.

7.2. A Decomposition Algorithm
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7.2. A DECOMPOSITION ALGORITHM

In the following we assume that [.(n) # 0 for every 7 € R, to simplify
the following argument. It should also be noted that this assumption garantees
the existence of an optimal solution even if B(f) is unbounded. When B{(f)} is
bounded, there is no loss of generality with this assumption.

We first describe an algorithm for Problem P in (7.1). Here, z* is the
output vector giving an optimal solution.

A decomposition algorithm

Step 1: Choose 5 € R such that

S i) <HB) LY it () (7.32)

ec B eER

(see {7.14)).

Step 2: Find a base « € B(f) such that foreach ¢, ¢' € &

(1) if w.F(z(e)) < 7 and wer~(2(e')) > 7, then we have &' € dep(z,¢),

(2) if w.t(z(e)) < n, wer~(z(e')) =7 and &' € dep(z, &), then for any a > 0
we have we ™ (2(e') — @) < p, L.e., z(e') =i (1),

(3) if w.t(e(e)) =10, wer ™ (2(e')) > 7 and €' € dep{z, ¢), then for any o > 0

we have w, T (z(e) + ) > n, ie., z(e) = £, 7 (n).

Put
, E_= U{dep(m,e) | e € B, w. T (z(e)) < n}, (7.33)
| By =| J{devt(2,¢) | e € B, w."(o(e)) > 1}, (7.34)
Bo=E—(ELUE_), {7.35)
where dep™ is the dual dependence function defined by
dep¥ (z,e) = m{X le€e X €D, 2(X) = f7(X)}. (7.36)

Put 2*(e) = z(e) for each e € Ey.

Step 3: If E_ # 0, then apply the present algorithm recursively to the prob-
lem with E and f, respectively, replaced by E_ and 7%~ and with the base
polyhedron assoclated with the reduction (D, f) - E—. Also, if By # 8, then
apply the present algorithm recursively to the problem with £ and f, respec-
tively, replaced by F and fm, and with the base polyhedron associated with
the contraction (D, f) x B4

(End)

The present algorithm is adapted from the algorithins in [Fuji80b] and
[Groenevelt85]. Here, it is described in a self-dual form.
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V. NONLINEAR OPTINMIZATION

It should be noted that for the dual dependence function dep® we have
e' € dep¥ (e, ¢) if and only if ¢ € dep(z, '), for = € B(f) (= B(F#)).

Now, we show the validity of the decompeosition algorithm described above.
First, note that H_ NEL = 0 in Step 2 since otherwise there exist ¢, &' € F
such that w, ™ (z{e)) < 5, wer ™ (2(€')) > 7 and &' € dep(x, ), which contradicts
(1) of Step 2. -

Suppose we have §_ = E in Step 2. Then, from (7.33)

z(e) <i. (n) (c€E). (7.37)

Therefore,

F(E) = o(B) < 3 i (o), (7.58)

ecE

which contradicts (7.32). Hence F_ # F. Similatly, we have E. # E. Con-
sequently, the total number of executions of Step 2 is at most |E| — 1. When
the algorithm terminates, then obiained vector 2* is an optimal solution of
Problem Py due to Theorem 7.2. Note that in Step 2 2{F.) = f(F_) and
2(E — EBy) = f(F —E}) from (7.33) and (7.34) and that E_ and B — By, if
nonempty proper subsets of &, will be members of the chain € in (7.15).

In Step I 2 desired % may be found by a binary search but Step 1 heavily
depends on the structure of the given functions w, (¢ € E). A base ¢ € B(f)
satisfying (1)—(3) of Step 2 is obtained by O(|Ef?) elementary transformations
if an oracle for exchange capacities for B{f) is available. If an oracle for satu-
ration capacities for P(f) is available, Step 2 can be executed in O(|E|) time,
where calling the oracle is assumed to require unit time.

Remark 7.1: In Step 3 the original problem on F is decomposed into two
problems, one being on F_ and the other on £, and the values of 2*(e)
(e € Ep) are fixed. The decomposition zelation obtained through the algorithm
recursively defines a binary tree in such a way that E_ is the left child and B
the tight child of . The decomposition algorithm described above traverses
the binary tree by the depth-first search where the search of the left child is
prior to that of its sibling, the right child. The above algorithm is also valid if
we modify Step 3 according to any efiicient way of traversing the binary tree
from the root.

Remark 7.2: X w, is strictly convex for each e € F, then conditions {2) and
(3) in Step 2 are always satisfied, so that we have only 4o comsider condition
(1). Moreover, if w, is strictly convex and differentiable for each e € £, then
the above algorithm will further be simplified. This is the case to be treated
in Section 8.

The decomposition algorithm for the separable convex optimization prob-
lem Py lays a basis for the algorithms for the other problems to be considered
in Sections 8—10.
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7.3. DISCRETE OPTIMIZATION
7.3. Discrete Optimization

Suppose that the rank function f of the submodular system (D, f) is
integer-valued. We consider a discrete optimization problem which is Prob-
lem Py with variables being restricted to integers.

For each e € E let 4, be a real-valued function on Z such that the piecewise
linear extension, denoted by w,, of @, on R 1s a convex function, where w.(¢) =
We(€) for &£ € Z and w, testricted on each unit interval [£,8 +1] ({ € Z) s &
linear function. Consider a discreie optimization problem described as

IPy: Minimize Y  w.(z(e)) (7.39a)
ek .
subject to z € Bz(f)}, (7.39b)

where
Bz(f)={z |2 € 2%, VX € D: 2(X) < /(X), =(B) = }{(B)}.  (7.40)

Bz{f) is the base polvhedron associated with (D, f} where the underlying to-
tally ordered additive group is the set Z of integers. For the same f we also
denote by Br(f) the base polyhedron B(f) associated with (D, f) wheze the
underlying totally ordered additive group is the set R of reals.

Also consider the continuous version of 7P :
{

P, : Minimize Z we(z(e)) (7.41a)
el

subject to z € Br(f}). (7.41b)
Recall that w, is the piecewise linear extension of %, for each e € E.

Theorem 7.3 (cf. [Groenevelt85]): Ii there exists an optimal solution for
Problem Py of (7.41), there exists an integral optimal solution for Problem F;.

(Proof) Suppose that z* is an optimal solution of Problem ;. Define vectors
I, « € RE by
ie) = lz"(e)] (e € B), (7.42)

w(e) = [z*(e)] (e € E). (7.43)
Consider the following problem

Py': Minimize Z w.(z{e)) (7.44a)
cER
subject to z € Bg(f)/, (7.44b)
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where By (f)F is the base polyhedzon of the submodular system (D, f) which
is the vector minor of (D, f) obtained by the resiriction by w and the contraction
by I. Note that an optimal solution of 7' is an optimal solution of P;. Since fis
integer-valued and ! and u are integral, Bg{f); is an integral base polyhedron.
Also, the objective function in (7.44a) is linear on Br(f)}. Therefore, by the
greedy algorithm given in Section 2.2.b we can find an integral optimal solution

for Problem P,', which is also optimal for Problem . Q.E.D.

We can also prove Theorem 7.3 by using the decomposition algorithm
given in Section 7.2. From the assumption, for each ¢ € B and 7 € R ¢~ ()
and ¢.F(n) are integers. We can choose an integral base = € B{f) as the base
x required in Step 2 of the decomposition algotithm. Note that w.t(z(e)) < 7
(we™ (z(e)) > ) is equivalent to «(e) < i.7(n) (zle) > 1.1 (7).

An integral optimal solution of Problem P of (7.41) is an optimal solution
ofProblem [P of (7.39), and vice versa. An incremental algorithm is also given
_ in [Federgruen + Groenevelt36].

8. The Lexicographically Optimal Base Problem

We consider a submodular system (D, f) on E with the set R of reals
(or the set Q of rationals) as the underlying totally ordered additive group.
Throughout this section R may be replaced by Q but not by the set Z of
integers.

8.1. Nonlinear Weight Functions

For each e € F let h. be a continuous and monotone increasing function
from R onto R. For any vector « € R¥ we denote by T{z) the sequence of
the components z(e} (¢ € E) of © arranged in order of increasing magnitude,

e., T{2) = (e(er), zlea), -+, 2(ea)) with z{e1) < w(e2) < - < z{e,), where
|E| =n and B = {e1,e2, ", en}.

Counsider the following problem.

P,: Lexicographically maximize T({(kh.(z(e)): e € E)) (3.1a)
subject to = € B(f). (8.1b}

We call an optimal solution of Problem Ps a lezicographically opltimal base
of (D,f) with respect to nonlinear weight functions h, {e € E}. Informally,
Problem P is to find a base @ which 1s as close as possible to a vector which
equalizes the values of h.{z{e)} (¢ € E) on the basis of the lexicographic order-
ing in (8.1a).
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Theorem 8.1 (cf. [Fuji80b]): Let & be a base in B(f). Define a vector 7 € R”
by
7(e) = he(2(e)) (e € E) (8.2)

and let the distinct numbers of 5(e) (e € £) be given by
m <72 < <7y (8.3)

Also, define
A,‘"—'{c]eEE, 7?(‘3)S7h} (£=1:2:"',P)- (84)

Then the following four statements are equivalent:
(i) = is a lexicographically optimal base of (D, f) with respect to &, (e € E).
(11) A; €D and 2‘:(1‘1,) = f(A,‘) (z =1,2,-- ,p).
(iii) dep(z,e) C A; (e€ A4, 1=1,2,-",p).
(iv) « is an optimal solution of Problem P; in (7.1) where for each e € £ the
derivative of w, coincides with k..

(Proof) The equivalence, (ii) <= (i), immediately follows from the defini-
tion of dependence function. Also, the equivalence, (i) (or (iil)) <= (iv),
follows from Theorem 7.2. Therefore, (ii)—(iv) are equivalent. We show the
equivalence, (1) <> (it)—(iv).

(i) => (iii): Suppose (i). If there exist i € {1,2,---,p} and e € 4; such
that € € dep(z, e) — 4, then for a sufficiently small & > 0 the vector given by

| y =z +a(Xe — Xer) (8.5)
is a base in B(f) and T((h.(y(e)): ¢ € E)) is lexicographically greater than
T((he(z(e)): e € E)). This contradicts (i}. So, (iil} holds.

(i), (i) == (i): Suppose (u) {(and (iii)). Let Z be an arbitrary base

such that T((k.(z(e)): ¢ € F)) is 1ezﬂcograph1<.a,lly greater than or equal to
T({h.(z(e)): e € F)}). Define a vector 7 € RZ by

7e) = he(Z(e)) (e € ). (8.6)

Also define Ay = 0. We show by induction on ¢ that
z(e) =F(e) (e € A;) (8.7)
for i = 0,1,---,p, from which the optimality of  follows. For: = 0 (8.7)
it

trivially holds. So, suppose that (8.7) holds for some i =ty < p. Since T(7) is
lexicographically greater than or equal to T(y), we have from (8.3) and (8.4)

ile) > nle) =migr1 (e € Aigpr — 4i). (8.8)
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From (8.8) and the monotonicity of 2, (e € E},
z(e) > z(e) (e € Ajprr — A ). (8.9)
Since ¥ € B(f}, it follows from (8.7) with ¢ = 7g, (8.9) and assumption (ii} that
FlAig+1) 2 T(Aigg1) 2 @(Aiy 1) = f(4Ai,11). (8.10)
From {8.9) and (8.10) we have z(e) = z(e) (e € 4;,11). QED.

We see from Theorem 8.1 that the lexicographically optimal base is unigue
and that the problem can be solved by the decomposition algorithm given in
Section 7.2.

For a vector € R® denote by T*(2) the sequence of the components z(e)
(e € E) of 2 arranged in order of decreasing magnitude. We call a base z € B(f)
which lexicographically minimizes T*((h.(z(e)): e € B)) a co-lexicographically
optimal base of (D, f) with respect 1o b, (e € E).

Theorem 8.2: 215 a lexicogra,phical y optimal base of (D, f) with respect to
he (e € E) if and only if it 35 a co-lexicographically op‘nlma,l base of (D [} with
respect to k. (e € F).

(Proof) Using nle) (e € E) and o; (i = 1,2,---,p) appearing in Theorem 3.1,
define

L 4" = {3 I cE L, 7?(3) > "7}:—-5-*}-1} (3 =1,2,-- ;PJ‘ (8'11)

Also define Ag = § = Ap™. Since 4" = £ — 4,,; {{ = 6,1,--,p) and
e(E) = f(E), we can easily see that for a base z € B(f) = satisfies (i1) of
Theorem 8.1 if and only if z satisfies

(n)A E’Da.ndr( ) f#( )(3.:1:2:"':1))‘

Consequently, the present theorem follows frorn Theorem 8.1 and the duality
shown in Lemma 1.3. Q.ED.

8.2. Linear Weight Functions

Let us consider Problem P in (8.1) for the case when A.(z(e)) i3 a linear
function expressed as z{e)fw(e) with w(e) > 0 for each e € E. Such a lexico-
graphically optimal base is called a lexicographically optimal base with respect
to the weight vector w = (w(e): e € E) (see [Fuji80b]). This is a generalization
of the concept of {lexicographically) optimal flow introeduced by N. Megiddo
[MegiddoT4] concerning multiple-source multiple-sink networks., A polymatroid
induced on the set of sources (or sinks) is considered in {Megiddo74] (see Section

1.2).
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From Theorem 8.1 the lexicographically optimal base problem with re-
spect to the weight vector w is equivalent to the following sepatable quadratic
optimization problem (see [FujisOb}).

P¥: Minimize Z z{e)? fuw(e) (8.12a)
ecF
subject to @ € B(f). (8.12b)

This is & minimum-norm point problem for B(f) (see Section .1.a, where
w{e) =1 {e € F)). Problem P can be solved by the decomposition algorithm
shown 1n Section 7.2.

The following procedure was also given in [FujiS0b] for polymatroids.

A Greedy Aigorithm
Step 1: Put ¢ « 1 and F « £&.

. Step 2: Compute

X =max{) | Au® € P(5)}. (8.13)

Put B; — sat(\*w®) and z*(e) — \*w(e) for each e € E;.

Step 3: If X*wf € B(f) (o1 B; = F), then stop. Otherwise put (D,f) —
(D,f)/EBi and F — F — E;. Put { — i+ 1 and go to Step 2.

(End)

‘  Note that w” appearing in Step 2 is the restriction of w to F CE.

The above greedy algorithm can also be viewed as follows. Start from
a subbase ¢ = Aw € P(f) for a sufficiently small A, where one such A can
be given in terms of the greatest lower bound g defined by (2.82) and (2.83)
when (D, f) is simple, since A\w < o implies Aw € P({); or take any subbase
y € P(f) and choose A such that Aw < y. Increase all the components of z
{= Aw) proportionally to w as far as = belongs to P(#). Then fix the saturated
components of & and increase all the other componenis of & proportionally to
w a3 far as = belongs to P(f). Repeat this process until z becomes a base in
B(/).

The above greedy algorithm can also be adaptied to Problem P, with
nonlinear weight functions &, (e € F).

Theorem 8.3 ([FujiS80b]): Let z* be the base in B(f) obtained by the greedy
algorithm described above. Then z* is the lexicographically optimal base with
respect to the weight vector w.

(Proof) We see from the greedy algorithm that for any e, ¢ € B such that

z* (e)fw(e) < z* (') fw(e") (8.14)
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(e,e') is not an exchangeable pair associated with z”. The optimality of z*
follows from Theozems 7.1 and 8.1. Q.E.D.

t should be noted that the above-described greedy algorithm traverses the
leaves, from the leftmost to the rightmost one, of the binary tree mentioned in
Remark 7.1 in Section 7.2. For a general submodular system (D, f), computing
A* in (8.13) is not easy even if we are given oracles for saturation capacities
and exchange capacities for P{f). One exception is the case where D is induced
by a laminar family of subsets of E expressed as a tree structure.

Also, in case of multi-source multi-sink networks considered in [Megiddo74]
and [Fuji80b}, the problem can be solved in time proportional to that required
for finding & maximum flow in the same network (see [Gallo + Grigoriadis
Tarjand9], where use is made of the distance labelling introduced by A. V.
Goldberg ([Goldberg + Tarjan88})).

Lemma 8.4 (see [Fuji79]): Let z* be the lexicographically optimal base with
respect to the weight vector w. Then, for any A € R 2* A (Aw) = (min{z"(e),
Aw(e)}: e € B} is a base of Aw (i.e., Az* is & maximal vector in P(f)**).

(Proof) Since the lexicographically optimal base z* is unique and the above

greedy algorithm finds it, the present lemnma follows from the algorithm . Q.E.D.

In the sense of Lemma 8.4 we also call #* the universal base with respect
to w (cf. [Nakamura + Iri81}).

Now, let us examine the relationship between the lexicographically optimal
base and the subdifferentials of f.

Theorem 8.4: Let ¥ be the lexicographically optimal base of (D, f) with
respect to w. For A € R and A € D we have Aw € &f(A) if and only if,
defining

At ={e|e€E, 2"(e) < duwle)}, (8.15)

AT ={e| e€ E, 2"(e}) < Auw(e)}, (8.16) )
we have A\~ C A C AT and 4 € D(z*) (i.e., 2*(4) = f(4)).

(Proof) The “if” part: Suppose that Ay~ C A C AyT and A € D(z*). Then
for any X € D such that X C 4 or A C X, we have

Aw(X) = dw(A) €2 (X)) —z"(4)
< F(X) - £(4). (8.17)

From Lemma 5.4 we have Aw € 8f(A).
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The “only if” part: Suppose Aw € 8f(A). From the greedy algorithm z*
satisfies

e (A7) = (A7) (8.18)

From (8.18) and the assumption we have

Aw(AyT) — Aw(4) < F(Ax7) - £(4)
<2 (A7) —2"(4) (8.19)

or
Aw(Ay7) —~2"(Ax7) < dw(4) — 2" (4). {8.20)

Since from (8.16) Aw(X) — z*(X) is maximized at X = 4=, 1t follows from
(8.20) that X = A also maximizes Aw(X) — z*(X). This implies 4y~ C 4 C
AT because of {8.15) and (8.16). Since we have

Aw(ArT) — 2" (Ar7) = dw(4) — 2" (4), (8.21)
- from (8.18), (8.21) and the fact that z*(A) < f(4) we have

Aw(dr7) — Auw(4) > F(Ar7) - f(4). (8.22)
Since Aw € 8f(4), we must have from (8.22)

o*(4) = (4). (8.23)

’Iﬁhis completes the proof. ‘ Q.E.D.

Corollary 8.6: Under the same assumption as in Theorem 8.5, Aw belongs to
the intetior of 8f(A4) if and only if Ay~ = 4, 7.

(Proof) Suppose that Aw is in the interior of 8f(A). If 4 # Ay, then

Aw(ArT) = dw(4) < f(Ax7) — F(4)
<z {AN7T) —2*(A). (8.24)

This contradicts the fact that X = A3~ maximizes Aw(X)—2z*(X). Therefore,
we have A = Ay~ . Similarly, we have 4 = A3t and hence 4y~ = 4,7.
Conversely, suppose Ay~ = Ayt. Then X = A(= Ay~ = A;*) is the
unique maximizer of Aw(X) — *(X), so that
Au(X)—2"(X) < Aw(d) —2*(4) (X €D, X #A). (8.25)
From (8.25),
(X)) = dw(A) < 2(X) - 2*(4) < H(X) = f(4) (X ED, X # 4), (3.26)
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where note that o*(A4) = f(4). Hence Aw belongs to the interior of 87(4).
Q.ED.

Let
87 (4o) = 8f(B), 3f(A1), -, f(4;) = 8f(E) (8.27)

be the subdifferentials of f whose interiors have nonempty intersections with
the ine Z = {\w | A € R}, where the subdifferentials in (8.27) are arranged in
order of increasing A € R. Suppose that for each i = 0,1,---,p (N, \iy1) 1s
the open interval consisting of those A for which Mw belongs to the interior of
Af(A;). We see from Theorem 8.5 and Corollary 8.6 that foreach: =1,2,-+,p

*(e) = Aywle) (e € A — Aiq). (8.28)

Compare the present results with those in Sections 6.1.a and 6.2.b.1 (also see
{Fuji84c]).

The concept of lexicographically optimnal base is generalized by M. Naka-
mura [Nakamura8l] and N. Tomizawa [Tomi80d]. Suppose that we are given
two (polymatroid) base polyhedra B(f;) (i = 1,2) such that every base of B(f;)
(: = 1,2) consists of positive components. If & 1s the lexicographically optimal
base of B(f1) with respect to a weight vector ba € B{f;) and by is the lexi-
cographically optimal base of B(jf2) with respect to b1, then the pair (b1, bz)
is called a universal pair of bases (the original defirition in [Nakamura81] and
[Tomi80d] is different from but equivalent to the present one). Some charac-
terizations of universal pairs are given by K. Murota [Murota88].

9. The Weighted Max-Min and Min-Max Problems

We consider the problem of maximizing the minimum {or minimizing the
maximum) of a nonlinear objective function over the base polyhedron B(f).

9.1. Continuous Variables

For each ¢ € F let h.:R — R be a right-continuous and monotone nonde-
creasing function such that limg_ 1o he(€) = 4o and limg_, _ oo he(é) = —oo.
Consider the following max-min problem with the nonlinear weight function A,
(e € E).

Py Maximize n}i}% he(z(e)} (9.1a)
g€

subject to = € Br(/f), (9.1b)



9.1. THE CONTINUGUS MAN—MIX AND MIN-MAX PROBLEMS

where Br(f) is the base polyhedron associated with a submodular system
(D,f) on E and the underlying totally oidered additive group is assumed to
be the set R of reals.

For each e € F let w.: R — R be a convex function whose right derivative
wet is given by k..

Theorem 9.1: Consider Problem P, in (7.1) with w, (¢ € F) defined as above.
Let 2 be an optimal solution of Problem Pi. Then z is an optimal solution of
Problem P, in {9.1).

(Proof) Define

71 = min{k.(z(e}) | e € E}, (9.2)
Sy ={e|e€R, hlzle)=m}, (9.3)
851" = U{dep(m,e) | e € 51} (9.4)
We have from (9.4) -
2($1") = F(517). (9.5)

It follows from Theorem 7.1 that
we” (z(e)) <m (e € S1¥). (9.6)
If there were a base y € B(f) such that Y

m < min{ke(y(e}) | ¢ € E}, (8.7)

then from (9.2)—(9.7) we would have

z(e) <yle) (e € 51), (9.8)
w(e) <yle) (e €5 = S1), (9.9)
since b, = w, 7. Hence, from (9.5), (9.8) and (9.9),
F(51%) = 2(S17) < y(St"), (6.10)
which contradicts the fact that y € Br(f). QED.

We see from the above proof that the decomposition algorithm given in
Section 7.2 can be simphlified for solving Problem P, as {ollows. We may put
z*(e) = z(e) for each ¢ € By U By in Step 2 and apply the dcomposition
algorithm recursively to the problem on E_ but not to the one on E. in Step
3 (cf. [Ichimori + Ishil + Nishida82]). In other words, we only go down the
leftmost path in the binary decomposition tree mentioned in Remark 7.1 in
Section 7.2.
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Next, consider the following min-max problem
P*: Minimize max he(z(e)) (9.11a)
£
subject to = € Br(/f). (9.11b)

Here, we assumne that h, is left-continnous rather than right-continuous for each
e€c E.

For each ¢ € F let we: R — R be a convex function whose left derivative
we ™ 1s given by k.. Then we have

Corollary 9.2: Consider Problem P in (7.1) with w, (e € E) such that
w,~ = h.. Let z be an optimal solution of Problem P;. Then x is an optimal
solution of Problem P* in (9.11).

The proof of Corollary 9.2 is sumilar 4o that of Theorem 9.1 by duality.
An optimal solution of Problem P* can be obtained by the decomposition
algorithm given in Section 7.2, where we orly go down the righimost path of
the binary decomposition tree mentioned in Remark 7.1.

Moreover, suppose that for each ¢ € E h, 1s continuous monotone nonde-
creasing function such that limg_, 4o A.(§) = +00 and im0 he(¢) = —o0.
From Theorem 9.1 and Corollary 8.2 we have the following.

Corollary 9.3: Consider Problem P; in (7.1) with w, (e € E) such that the
derivative of w, is equal to &, for each e € F. Let = be an optimal solution of
Problem P;. Then 7 is un optimal solution of Problem P* of (9.1) and, at the
same time, an optimal solution of Problem Py in (9.11).

A simultaneously opiimal solution of Problems P, and P* can be cbtained
by ihe decomposition algorithm given in Section 7.2, where we only go down
the leftmost and righimost paths of the binary decomposition tree mentioned
in Remark 7.1.

Problems P, and P* are sometimes called shaering problems in the lit-
erature ([Brown79], {Ichimori + Ishil + Nishida82]). The sharing problems
with more general objective functions and feasible regions are considered by U.
Zimmermann [Zimmermannd6a}, [Zimmermann86b].

9.2, Discrete Variables

For each e € E let he:Z — R bea monctone nondecreasing function on
Z such that limg, 4 he(€) = 400 and limg,_ o A(€) = —oco for each e € B.
Consider

IP,: Maximize mmh (z(e)) {(9.12a)
subject to = E Bz(f), (9.12b)



r

'3

10.1. FAIR RESOURCE ALLOCATION: CONTINUQUS VARIABLES

where Bz(f) is the base polyhedron associated with an integrel submodular
system (D, f) on F and the underlying totally ordered additive group is the set
Z of integers. :

For each e € E let w.: R — R be a piecewise-linear convex function such
that the following two hold:

© (i) Its right derivative w, T satisfies w.™ (€) =k (¢) (¢€2), (9.132)°

(i) w, is linear on each unit interval [¢,¢ +1] (§ € Z). {9.13b)

Theorem 9.4: Let , be an integral optimal solution of Problem P in (7.1)
with w, (e € E) defined as above. Then z. is an optimal solution of Problem
IP, in (9.12).

(Proof) Foreach e € Elet h,:R— R be a tight-continuous piecewise-constant’
nondecreasing function such that k.(n) = he(§) (n e, +1), £ €Z). Tt
follows from Theorem 9.1 that an integral optimal solution of Problem P with
w, (e € E) defined by (9.13) is an integral optimal solution of Problem Py in
(9.1) with k. (e € E) defined as above. Therefore, z. is an optimal solution of
Problem IP. Q.E.D.

It should be noted that ihere exists an integral optimal solution z. of
Problem Py in Theorem 9.4 due to Theorerm 7.3. The reduction of Problem
IP, 1o Problein P; was also communicated by N. Katoh [Katoh85]. A direct
algorithm for Problem IP, is given in {Fuji + Katoh + Ichimori88).

Moreover, consider the weighted min-max problem

IP*: Minimize meaﬁcﬁe(a:(e)) (9.14a)
subject to = € Bz(f). (9.14b)

For each e € E let w,: R — R be a piecewise-linear convex function such that

(i) its lelt derivative w,~ satisfies w,~ (§) = ke(¢) (¢ € Z), (9.152)
(ii) w, is linear on each unit interval [¢,6 +1] (£ € Z). (9.15b)

Similarly as Theorem 9.4 we have
Corollary 8.5: Let z* be an integral opiimal solution of Problem P in (7.1)
with w, (e € E) defined by (9.15). Then 2" is an optimal solution of Problem
IP* in (9.14).
10. The Fair Resource Allocation Problem

In this section we consider the problem of allocating resources in a fair
‘manner which generalizes the max-min and min-max problems treated in the
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preceding section. The readers should also be referred to'the book [Ibaraki
+ Katoh88] by T. Ibaraki and N. Katoh for resource allocation problems and
related topics.

- 10.1. Continuous Variables

Let g:R? — R be a function such that g(e, v) Is monotone nondecreasing
in v and monotone monincreasing in v. Typlca.l examples of such a functmn g
~are the following. : : '

glu,v) =2 —uo, (10.1)
glu,v) =ufo (u, v>0). (10.2)

Also, for each ¢ € F let 2, be a continuous monotone nondecreasing function

from R onto R.

Consider
P3: Minimize g(rr;a_.éjc he(:r:(e)),néig he(z(e))) (10.3a)
) e B eCE -
subject to =z € Br(f). {10.3b)

We call Problem Pj; the continuous fair resource allocation problem with sub-
modular constraints. This type of objective function was first considered by N.
Katoh, T. Ibaraki and H. Mine [Katoh + Ibaraki + 2 \rImeS.S] _

Using the same functions A, (e € E) appearing in (10.3), let us consider
Problems P, and P* described by (9.1} and (9.11), respectively. Denote the
optimal valnes of the objective functions of Problems P, and P* by v, and v*,
respectively, and define vectors I, » € R¥ by

(e} =min{a |« €R, k(o) 2 v} (e€EF), (10.4)
w(e) =max{a | @« €R, h.(a) <v"} (c€B). (10.5)
Theorem 10.1: Suppose that values v, and v* and vectors { and u are defined
as above. Then we have v« < v" and I < u. Moreover, B(f)F is nonempty

and any ¢ € B(f)} is an optimal solution of Problem Ps in (10.3), where
B(f)f ={z |z €B(f), | <z < u} (see Section 2.1.b).

(Proof) Let x, and =", respectively, be optimal solutions of Problems P, and
P*: If v, > v*, then we have

() < ule) < e} < zule) (e € B), (10.6)
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which contradicts the fact that z*(F) = f(E) = z.{F). Therefore, we have
v« < v*. This implies ! < u. Moreover, since z. € B{f);, 2* € B{f)* and
| € u, from Theorem 2.5 we have B(f)} # 0. For any = € B(f)f and y € B(§)

we have

g(rergﬁche(y(e)),gr&n he(y(e)))

2z 9(”*: 'U*)
= g(max he(2(e)), mig ho(z(e))), (10.7)

due to the monotonicity of g. This shows that any « € B(f)} is an optimal
solution of Problem Ps. Q.E.D.

The continuous fair resource allocation problem Pz is thus reduced to
Problems P, and £* and can be solved by the decomposition algorithm given
in Section 7.2.

1¢.2. Discrete Variables

We consider the discrete fair resource allocation problem, which is a discrete
version of the continuous fair resource allocation problem P; treated in Section
10.1 {see [Fuji + Katoh + Ichimori38]).

Let g:R? — R be a function such that g{n,v) is monotone nondecreasing
“in-w and monotone nonincreasing in v. Also, for each ¢ € E let hoi? —
R be a monotone nondecreasing function. We assume for simplicity that
Slimy g0 helé) = +eo and limg, oo Ae(€) = —co.

For a submodular system (D, f) on E with an integer-valued rank function
f, consider the problem

IP3: Minimize g(l;ieaﬁjtﬁe(m(e)), Jéréléifae(z(e))) (10.8a)
subject to = € Bz (f). (10.8b)

Problem [F3 is not so easy as its continuous version P; because of the integer
constraints.

Using the same functions 2. (e € E), consider the weihgted integral max-
min problem /P, and the weighted integral min-max problem fP*. Let 9. and
4", respectively, be the optimal values of the objective functions of IP, and

IP*. Define vectors {, 4 € Z€ by
() = minfe | @ € Z, he(a) > .}, (10.9)
i(e) = max{e | @ € Z, h.(a) <"} (10.10)
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We have 9, < %% but, unlike the continuous version of the problem, we may
a— ] ) '
not have { < % in general. However, we have

i(e) < @fe) %1 (e € ). (10.11)

Lemma 10.2: X we have{ < 4, then Bz(f)f“ is nonempty and any ¢ € Bz(f)?
is an optimal solution of Problem [P in (10.8).

(Proof) Since the vector minors Bz{f)*, Bz(f); and Bz (f);‘ are integral, the
present lemma can be shown simmlarly as Theorem 10.1. Q.E.D.

Now, let us suppose that we do not have { < @. Define
D={ec|e€RE, i{e) > ile)}. (10.12)

It follows from (10.9)—(10.12) that

(ey=ale)+1 (e€ D), (10.13)

l(e) <ile) (e€ E-D), (10.14)

ho(ife)) < 8, < 9" <k (i(2)) (e €D), (10.15)
By < ho(l(e)) < ko (d(e)) <& (e € E—D). (10.16)

I{}ioxeovre, define { A4 = (min{i{e),4(e)}: e € E) and [ Vi = (max{i(e), a(e)}:
e € £). Then, all the four sets Bz(f);, Bz(f)*, Bz(f);,, and Bz{f)V*
are nonempty since Bz{f)j; 2 Bz(f); # P and Bz ()5 3 Bz () £ 9.
Therefore, from Theorem 2.5 Bz(_;');:ij\n“2 and Bz(f)ﬁ:v""‘ are nonempty. Choose

any bases & € BZU)?/\& and § € Bz(f)ﬁj"'"". From (10.12) we have

2e) =4a(e), @le)=I(e) (c€.D). (10.17)

Hence, from (10.13)—(10.16),

gle) =2(e)+1 (e €D), {10.18)

he(#(e)) < 9a < 0" < he(§(e)) (e€ D), (10.19)

iy < min{he((e)), he(i(e))} < max{he(&(e)), he(§(e))} £ (e €E~D).
{10.20)

Let the distinct values of A (&(e)) (e € D) be given by
dy <dog <o < ody, (10.21)
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where note that dx < 9,. Also define
Ai={e|e€D, he(tfe)) <d;} (=1,2,-,k) (10.22)

We consider a parametric problem IP3* with a real parameter A associated
with the original problem I5;.

IP3*: Minimize g(nleagﬁe(m(e)),)k) (10.23a)
subject to = € Bz(f), (10.23b)
he(z(e)) > X (e€ B, (10.23¢)

where A < . Denote the minimum of the objective function (10.23a) by v{A}.
Then, we have

Lemma 18.3: Suppose that A = )\* attains the minimum of y(A) for A <
. Then any optimal solution of IP3* is an optimal solution of the original
problem IP; and the minimum of the objective function (10.82) is equal to

Y(A").

(Proof) Let z* and z°, respectively, be any optimal solutions of Problems IpAt
and IP;. Denote by v° be the minimum of the objective function (10.8a) of
Problem IP;, and define A° = min.cp h.(2°(e)). Then

¢ v’ = glmax he(2(e)),2°) 2 v(3°) 2 v(37). (10.24)
On the other hand, we have

v(A") 2 glmax ﬁe(w*(e)).ggg he(z"(e))) 2 »°. (10.25)

From (10.24) and (10.25) we have v° = y(A*) and 2* is also an optimal solution
of IP;. QED.

We determine the function y() to solve the original problem I'P; with the
help of Lemma 10.3. In the following arguments, &, g, &, 4; {t = 1,2, -+, k)
ate those appearing in (10.17)—(10.22). We consider the two cases when A < dy
and when &; < X < d;yq for some : € {1,2,---,k}, where dyyq = v..

Case I: A < dy.

Because of the definition (10.21) of dy, & is a feasible solution of IP3* for
A < dy. Since & € Bz(f)?z\-i’ & 1s also an opiimal soluticn of IP*. Therefore,
it follows from the monotonicity of g that

(A} = g(3%, A). {10.26)
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Case II: d; < X < diyq for some s € {1,2, -+, k} (dpy1 =97).
From (10.18)—(10.22) and the monotonicity of g we have

¥(A) 2 g(max ho(g(e) + 1), 2). (10.27)

It follows, from (10.18)—(10.20) for two bases & and ¢, that by repeated ele-
mentary transformations of & we can have a base Z such that

ile) =&(e) (e€D— A4y, (16.28)

sley = g(e) (=2(e) +1) (e€ Ay, (10.29)

min{&(e), §(e)} < #{e) < max{&(e),§(e)} (e€ E— D} {10.20)

We see from {10.18)—(10.20) and {10.28)—(10.30) that Z 1s a feasible solution

of IP;* for present \ and

max h.(2(e)) = I'réaf;ﬁe(f&(e) +1). (10.31)

From (10.27) and (10.31) £ is an optimal solution of JP5* and we have

Y(A) = g(max ke (2(e) +1), ). (10.32)

~ The fanction ¥{\) is thus given by (10.26) for X < dy and by (10.32) for
di < A S di-i-l (i =1J2J-..}k)'

Thecoren 10.4: Suppose that we do not have [ < 4. Then, the minimum of
the objective function (10.8a} of Problem [P is equal to the minimum of the
following & + 1 values

g('ﬁ*:dl'): g(ma,x fl-e(ft.{é‘.) + 1)1 di"!‘l) (3 =1,2,--, k) (10‘33)

ec Ay

(Proof) The present theorem follows from Lemma 10.3, (10.17), (10.26), (10.32)
and the monotonicity of g. Q.ED.

It should be noted that because of (10.17) we can employ @ instead of 2
in the definitions of &; and A; (i =1,2, -, %) in (10.21) anrd (10.22).
An algorithm for solving Problem IP; in (10.8) is given as follows.

An algorithm for the discrete fair resource allocation problem

Step L: Solve Problems IP, and IP* given by (9.12) and (9.14), respectively.
Let 9, and 3%, respectively, be the optimal values of the objective functions of
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IP, and IP* and determine values [ and 4 by (10.9) and (10.10). Ifi < 4,
then any base » € Bz(f)‘;;I 1s an optimal solution of [P; and the algorithm
terminates.

Step 2: Let D C E be defined by (10.12) and d; < dp < -++ < d; be the
distinct values of h.(@(e)) (e € D). Also determine sets A; ( =1,2,---, k) by
(10.22) with £ replaced by .

Step 3: Find the minimum of the following k + 1 values.

g(d*,dq), g(nela):‘c_ ho(t(e) +1),dip1) (F=1,2,,k). (10.34)

(3-1) If g(9*,d1) is minimum, then find any base & € Bz(f)fm and & is an
optimal solution of I Ps.

(3-2) If g(maxeca,. he(d(e) + 1),dinrq) for * € {1,2,--+,k} is minimum,
then putting w* = maX.c 4. ke(@{e) + 1), define I°, w° € Z% by

P(e)=min{a | ¢ € Z, hfe) > di-p1}, {10.35)
u%(e) = max{a | @ € Z, h.(a) < w*} (10.36)

for each ¢ € F, and any base £ € Bz(f);‘ou 1s an opiimal solutlion of
IPs.
(End)

£\

It should be noted that from the arguments preceding Theorem 10.4 we
have Bz(f)% # ® in Step 3-2.

Let us consider the computational complexity of the algorithm when Bz (f)
is bounded, i.e., D = 2%, Denote by T(IP,,[P*) the time required for solving
Problems [P« and IP*. Let M be an integral upper bound of | f(X)| (X C E).

Then we have
—SIM < f(B) - F(B-{eP) <@ <f{e) <M (10.87)

foreach ¢ € Bz{f) and e € E. Therefore, given 9, and 9", we can determine the
values of [(e) and @(e) in (10.9) and (10.10) by the binary search, which requires
O(log M) time for each e € E. Also, finding a base in Bz(f)}1 requires not more
than O(T(IP., IP*)) time. Hence Step 1 runs in O(T(IP., IP*) +|Fllog M)
time.

Determining set D in Step 2 requires O(|&[) time. The values of dy, da,
.-+, di are found and sorted in O(|E|log|E|) time. Instead of having sets
4; (i =1,2,---,k) we compute differences 4; = A; ~ 4; 1 ({ = 1,2, --,k)
with Ag = @, which requires O(]F|) time. Note that having the differences
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A; = A;— Ai1 (i =1,2,--+,k) is enough to carry out Step 3. Then, Step 2
requites O(|E]log {F}) time.
In Step 3 we can compute all the valaes

r%a,A:;sz(a(e) +1) (1=1,2,-,k) (10.38)

in O{|F|) time, nsing the differences A;=A4;—A;,_1 (t=1,2,--, k). Moreover,
for each ¢ € £, 1%(e) and w’(e) can be computed in Oflog M) time, and a

0

base & € Bz(f)},, or # € Bz(f)jp can be found in O(T(IP.,IP*)) time.
Consequently, Step 3 runs in O(T(IP., IP*) + |E|log M) fime.

The overall Tunning time of the algotithm is thus O(T (IR, IP*) + | B
(log M + log |E|)} for gemeral (bounded) submodulax constraints. When spe-
cialized 1o the problem of Katoh, Ibaraki and Mine [Katoh +Ibaraki + Mine83],
where

Ba(f)={o|z€Z}, 1<a<n, 2(B)=¢}, (10.39)

F(E) (= ¢) can be chosen as M, T(IP,IP") is O(|E|log(f(E)/|E]) by the
algotithm of G. N. Frederickson and D. B. Johnson [Frederickson + Johnson82],
and hence the complexity becomes the same as the algorithm of [Katolh +
Ibaraki + Mine85].

}'l. A Neoflow Problem with a Separable Convex Cost Function

In this section we consider the submodular flow problem (see Section 4.1)
where the cost function is given by a separable convex function. .

Let G = (V, A) be a graph with a vertex set V and an arc set A CA—
R U {+cc} be an upper capacity function and ¢ A — R U {~co} be a lower
capacity function. Also, for each arca € Alet w,: R — B bea convex function.
Suppose that (D, f) is a submodular system on V' such that Ff(V) = 0. Denote
this network by Nss = (G = (V, 4),¢,%,w. (€ 4),(D, f)).

Consider the following flow problem in Nss.

Pss: Minimize 2 we(p(a)) (11.1a)
ac A

subject to cla) < ¢la) <a) (e € 4), (11.1b)

8¢ € Br(f). (11.1¢)

We call a function @: A — R satisfying (11.1b) and (11.1¢) a submodular flow
in Nss.

Optimal solutions of Problem Pss in (11.1) aze characterized by the fol-
lowing.
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11. A NEOFLOW PROBLEM WITH SEPARABLE CONVEX COSTS

Theorem 11.1: A submodular flow ¢ in Mg is an optimal solution of Problem
Pss in (11.1) if and only if there exists a potential p: ¥V — R such that the
following (i1)=~(iv) hold. Here, w,* and w,™ denote, respectively, the right
derivative and the left derivative of w, for each a € A.

(i) For each a € 4 such that ¢(a) < e(a) < &(a),

we ™ (¢(a)) +2(8%a) = p(67a) <0 L wot(p(a)) + (87 a) — p(57a).

(11.2)

(ii) For each @ € A such that ¢(a) = ¢(a) < &(a),
0 < wat(p(a)) +p(8Ta) — p(5a). (11.3)

(iii) For each a € A such that ¢(a) < p(a) = &(a),
we™ (9(a)) +p(8%a) — p(87a) < 0. (11.4)

(iv) 8y is a maximum-weight base of B(f) with respect to the weight
vector p.

(Proof) The “if” part: Suppose that a potential p satisfies (i}—(iv) for a sub-
modular flow ¢ in NMgg. Then for any submodular flow ¢ in Mg we have

Do wa((@) 2 Y wile(a) + 3 (p(87a) — p(8%2))($(a) ~ ¢(a))

atA tEA eEA
. = > welo(e)) + Y p(v)(3p(v) - 86 (v))
eacA vEV
> > we(p(a)). (11.5)
et d

Therefore, ¢ 1s an optimal solution of Problem Psg in (11.1).

The “only if” part: Let ¢ be an optimal solution of Problem Psg in (11.1).
Construct an auxiliary network N, = (G, = (V,4,),v,) associated with ¢
as follows. The arc set 4, is defined by (4.40)—(4.43) and v,: 4, — R is the

length function defined by

w.t(p(a)) (@ €4,
Yo (@) = ¢ —wz ™ (9(@)) (2 € B,*, & (€ A): a reorientation of )  (11.6)
0 (a € C,),

where A,", B, " and C, are defined by (4.41)—(4.43}. Since there is no directed
cycle of negative length relative to the length function v, due to the optimality
of ¢, there exists a potential p: V' — R such that we have

Yo (@) +p(870) —p(072) >0 (¢ € A,), (11.7)
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V. NONLINBAR OPTIMIZATION

where 8%, &~ are with 1espect to Gy, . (11.7) is equivalent to (i)—(iv). (iv) is
due to Theorem 2.13. QE.D.

Theorem 11.1 generalizes Theorem 4.2. It should be noted that if w, is
differentiable for each « € A, then (i)~(iif) in Theorem 11.1 is eguivalent to
the following (a) and (b).

(a) For each e € A, w,'(p(a))+p(8%a) ~p(8~a) > 0 implies ¢(a) = cla);
(b) Foreacha € A, we'(p(a))+p(8Ta) —p(8a) < 0implies ¢{a) = F(a).
Bere, w,’ denotes the derivative of w, for each a € A.

- Given a submodular fiow ¢ in Mss and a potential p: V — R, we say that
an arc a € A 1s in kilter if one of (1)—{iil) in Theorem 11.1 is satisfied and that
an oxdered pair (u,v) of vertices u, v € V (v # v) is in kilter if (1) p{w) > p(»)
or {2) p(x) < p(v) and u € dep{dyp,v). Also, to be out of kilter is to be not
in kilter. We see from Theorem 11.1 that if all the arcs and all the pairs of
distinct vertices are in kilter, then the given submodular flow ¢ is optimal. For
each arc @ € 4 we call the set of points (¢(a),p(67a) ~ »(87a)) in R? such
$hat arc @ 1s in kilter the characteristic curve (see Fig. 11.1).

@ (a)
A

|
i
|
|
[
I
l
1

c@

| — ER) p(da) - p(S)

Fignre 11.1.
Theorem 11.1 suggests an out-of-kilter method which keeps in-kilter azcs
in kilter and monotonically decreases the kilter number of each out-of-kilter

arc, which 1s a “distance” to the charactenstic curve for a € A or p(u) — p(v)
I
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for (u, v) such that u € dep(8¢,v). When w, is piecewise linear for each a € A,
The charactreistic curve for each ¢ € A consists of vertical and horizontal line
segments and the out-of-kilter method described in Section 4.5.c can easily be
adapted so as to be a fintte algorithm.
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