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ALTERNATIVE PROOF OF PANDORA’ S RULE
IN OPTIMAL SEARCH FOR THE BEST ALTERNATIVE

By Seizo Ikuta

The present paper provides an alternative proof of Pandora's Rule in optimal search pro-
blem that was verified by M.L. Weitzman {1], whose proof Is quite technical as he himself
states in his paper. As compared with it, the proof that we are goingz to present here Is
well enough systematic to be successfully spplied to more general search problems.

INTRODUCTION

M.L. Weitzman posed the following interesting search problem [{]. Suppose there exist
N closed boxes. Ineach box i, I £ 1 £ N, is contained a certain amount of reward =xi.

It is the following three that can be known about each box 1 before opening it:

1. probability distribution function ¥F.(x:) of reward x: in it,
2. cost c¢;i to open and learn reward xi; in it, and
3. time lag ti after which-since opening it reward x: in it becomes known.

- Assume that both cost and reward are evaluated in the same monetary value and that all
costs and rewards are continuously discounted by the discount rate r (By being continu-
ously discounted, we means that one unit of monetary value at time t 1is equivalent to

e ™% at time 0). Furthermore, assume that an initial amount of reward yo 1is available
before starting search.

The search process proceeds as follows. First, you must decide either to accept the
initial reward yo with quitting the search process or to open any one of N hoxes with
paying cost. If deciding to open a box, say box 2, with paying cost c¢=, then you can
know reward X2 in it after tz unit times, and then you must again decide either to
accept the maximum reward y: = max{yo,X2} or to further open any one of N—1 boxes
remaining. If you have opened all the boxes, then you can get the maximum of rewards in
boxes opened. For example, suppose search was terminated after opening boxes 2, 5, and
3 in this order. Then the present discounted value obtained is

—r{tytbgetad

(1) —coe 7% — cse 72" & (max{yo,Xz,Xs,Xa} — Ca)e

Objective is here to maximize the expected present discounted value; i.e., the expecta-
tion of the present value of the maximum reward obtained after terminating search minus the
total present value of costs incurred to open boxes.

Weitzman proved that a decision strategy called Pandora’s Rule becomes optimal for the



search problem. Unfortunately, his proof is quite technical as he himself states in his
paper. The objective of the current paper is to provide well enough systematic proof to be
successfully applied to more general search problems.

In the next section, the functional equation for the search problem is given, and in the
section that follows, Pandora’s Rule is explained with the outline of his proof. In the
forth section, an alternative proof of Pandora’s Rule is stated, and in the last section,
by applying the idea of the alternative proof, a necessary condition is proved on which
Pandora's Rule is still optimal for the problem of opening only M of N boxes avail-
able, N > M = 2.

FUNCTIONAL EQUATION

For any real number vy, define
() Ka(y) =6 [maxtw,ybdB) — v i, 1< N
Then it can be easily shown that
(3) df:(y)/dy = B:F:(y) — 1 5 0.
Here we shall define
(4) hi = sup{y|K:(y) > 0},
called a reservation price of box i, where K:(y} >(L£) 0 for y <(2) hi because
K:(y) is nonincreasing in y from (3). Now, let us denote a set of - N boxes available
by S = {1,2,....N} and any subset of it by L. Define v(L,y) as the maximum

expected present discounted value starting with boxes L and the maximum reward y.
Then, from the princinle of optimality in dynamic programming, we have

(5) v(L,y) = naxly, nex {—c. + B [v(L,naxiy,nh) B0}
where -

(6) v(®,y) = v

(N By = e

(8) L, = L-{i}.

For convenience of later discussions, let us write (5) as



(9) v(L,y) =y + max {0, max K:(L,y)}

ielLl
where

(1) K(L.y) = [v(Lonax{y i d6) — vy — o
(11) Gelw) = B.I.Fi(w)a‘
Throughout the paper, without loss in generality, let

(12) hs 2 he 2 = 2 bn

PANDORA' S RULE

Weitzman proved that the optimal decision strategy for the search problem is given by
the following rule, called Pandora’s Rule:

Selection Rule : 77 2 box Is o be opened, It should be thal closed box with highest
reservallon price.

Stopping Rule : Ferminale search whemever the marimum sampled reward erceeds lhe reser-
vation price of every closed box.

In other words, it is optimal to open boxes in the order of the height of reservation
price and terminate search if the maximum sampled reward so far exceeds the reservation
price of the box just opened. The outline of his proof, based on induction on the number
of closed boxes, is as follows.

First it is clear from (9) that vi({k},y) = v + max{0, Kx(y)} for any k € S.
Therefore, if y < hk, then opening box k is optimal due to Ki(y) > 0; otherwise, not
opening hox k is optimal due to Ku(y) £ 0.

Next assume Pandora’s Rule is optimal with m closed boxes remaining and any maximum
reward y, and let search start with any m+1 closed boxes, say L = {1,2,...,m+1},
and with the maximum reward y. Then, by Oo we shall denote the expected present dis-
counted value from not opening any box in L clearly Qo = y.

Suppose ¥ = hi.. Then, since max{y,w} > hi = hz for any w, the expected present
discounted value from opening any box k becomes Ox = B Imax{y.w}dFu(w) — & from
the induction hypothesis, yielding Owx — Oo = Ku(y) £ 0 due to ¥ = h: = hx. There-
fore, in the case, it follows that not opening any box, or stopping search with accepting
the current maximum reward y, is optimal.

Suppose ¥y < hi, and let O, denote the expected present discounted value from open-
ing box j and then stopping. Then O, = 8. I max{y,w}dF:i(w} — c., we have O, — Qo
= Ki{y) > 0, implying that not opening any box is not optimal. Accordingly, a question



to be answered here is which box to be opened; opening box 1 is its answer as Pandora’s
Rule claims. Roughly speaking, his line of argument is as follows: first define the ex-
pected discounted present values of opening box 1 and of opening any other box k he
designated by, respectively, A and B, next express them in a form into which some appro-
priately defined terms are assembled into in a dexterous fashion, and finally arrange the
difference A — B in a form which is capable of making us ascertaine its positivity.

In this discussions, in addition to the fact that the forms of A and B become very
complicated, the last step is remarkably technical.

ALTERNATIVE PROOF

In order to prove Pandora’s Rule, it suffices to show the next two: for all L where
let k¥ = min L, the smallest element in L,

i. vw(L,y) =y + nax {0, Ke(L,y)}

ii. Ke(L.y) >(g) 0 on y <(2) hk

Instead of directly verifying the above two, we shall prove the following general theorem
including them.

THEOREM 1. Forany L = {ji,jz,»-dm} with 1 £ j1 < j2 < =+ < jn £ K,
(a) v(L,y) =y + max{0, Ku({L.¥)}, k = j1 (= min L)
(b} EKu(L,y) is nonincreasing in y with Ku(L,hk) = 0
(c) K_jl({jl,ja,"',jm},.')’) = KJI({jlijs"'sjm—l}:y) on y=2h

, 2 < m<g M.

ig

Proof: First consider any L with m = 1, say L = {1}. Then (9) and (10)
become, respectively,

(13} v({i},y) = v + max{0, K. ({1}.¥)}

(14) K:({1},¥) = Ku(y)

Accordingly, (a) and (b) become true for {1}, hence for any L with m = 1. Next,
consider any L with m = 2, say L = {1,2}. Then, arranging {10) by using (13) and
(14) for {2}, instead of {1}, yields

15  K{L2hy) = Kudy) + [max{o, Ro(max{y,w})} d G (w)

For y 2 hs, clearly K.{({1,2},y) = Ki(y) = K.({1},y) due to max{y,w} = hs for any
w. Therefore, (c¢) holds for {i,2}, hence for any L with m = 2.



Assume that (a) and (b) hold for any L € La, 1 £ n < n—1. Then, forany L &

Lam, say L = {1,2,...,m}, we have, from the assumption,

(18) V(L17Y) = Y + max {0: KZ(Llsy)}

(17) v(Li,y) = v + max {0, K;.(Li,y)} 2 <1 €N
Arranging (10) by substituting (16) and (17) into yields
(18)  Ka(L,¥) = Kaly) + [max{0, Ka(Ls,max{y, )} dGa(w)

(19} Ke(L,y) = Kaly) + [max{o, Ki{Li,max{y,whH}dGi(w) 2 <1 <N

It can be easily seen from (18) and the induction hypothesis that (b) holds for {1,2,--,
m}, hence for any L € Lgn. Now, if y = ha, then since Ko2({2,3,-.m},y) = K2({2,3,-

n—1},y) from the induction hypothesis, we have
(20) Ko({1,2,--.m},y) = Kuly) + Imax{ﬁ, K2({2,3,,m},max{y,w})} d Gy (w)

= Kuly) + Emax{ﬂ, K2({2,3,+,m—1},max{y,w})} dG.1{w)

= K.({1,2,---,m—1},¥)
Thus, (c) was proved for {1,2,---,m}, hence for any L € Ln.

If h: <y, then (a) is true because Ki(L,y) £ 0 forall i =1 from (18) and
(19). Below, let y € hy. Then (18) and (19) can be arranged as
. "

(21) Ki(L,y) = Ku(y) + (KL, y)6a(y) +IK2(L1,w)dG1(W))I(yshz)

(22) K(L,y) = K;(y) + Ki(Li,y)G:(y) +jK11(L1,w)dG1(w) 2<i<N

where I(S) is an indicafor function in which § represents a statement, either true or
false. Then, differentiating the above with respect to y produces

(23) dE:{L,y)/ dy = Gu(y) — 1 + dKa(Li,y)/dy Gu(y)I{y<hs)

(24) dRi{L,y)/dy = Gi{y) — 1 + dK:i(Ls,y)/dy Gi(y) 2

A

i<N

Let Tw(y) = Gi(¥)G2{y)--Gu{y). Then expressing {23) in an expanded form yields
m-1

(25) dii(L,y)/ dy = Tu{y)l(ha<y)}+ 2 Tul{y) k1 <yShe) + D) [{(y<ha) —1
k=2

From this, we have



(1) I(ha <)+ 3 Tal9) (hrers <y <hie)

k=2

It

(26) dK:(Li,y)/ dy

+3 Ty (1) (s <Y <hie) + T(¥)0e (1) 1(y Sha) — 1

=t 9<1i<n—1
1

(27) dBi(Lmy)/ dy = Fl(y)I(hz<Y)+mZ- Py (her 1 <y Shie) + Ta(¥)Gn(y) "2 {yLhm) — 1

k=2

Arranging (24) by substituting (26) and (27) into produces

(28)  dK(L.y)/dy = Ta@B(ni(ha<y)+ 3 Trly)Ge(y)I(hers <y<hi)

k=2
1

+ 2 Tl <yghd) + Tu(W{ygha) -1 2 £ 1 < -1

{29) dia(L,y}/dy = Pl(Y)Gm(y)I(hz<y)+mz:1I‘k(y)Gm(Y)I(hk+1<yshk)
From (25), (28), and (29), we have
(30) dX.(L,y)/ dy —dK:(L,y)/dy
= Fl(y)(l—Gi(y))I(h2<y)+12:11Fk(y)(1—61(Y))I(hk+1<yshk), 2<ign

This is nonnegative for all ¥y with being equal to 0 for y < hi; in other words, K:i(L
,¥) — Ki(L.,y) is constant on y £ h: and increasing on h: < ¥y £ hi. Consequently,

-it follows that it suffices to show Ki(L,hi) — Ki{(L,hy) = 0 forall i > 2 in

order to prove (a). By sequentially applying the induction hypothesis (c) with noticing
max{hs,w} = h: 2 hisr 2 -+ 2 ha, we obtain

(31) K2({2,3,---,m},max{h:,w}) = K2({2,3,--,i—1},max{h;,w})

(32) K. ({1,2,---,1—1,i+1,-,m},hs) = Ki+({1,2,--,i—1},h1)
Using this, we have
(33) K. ({1,2,-,m},ha) = Kolhy) + [max{[], K2({2,3,~,m},max{h;,wh} d Ga(w)

= K, (h:) + [max{O, K2({2,3,-,i—1},max{hs,w}) } d Gs{w)

1l

K ({1,2,+-,i—1},hs)

ll

(34) Ki({1,2,-,m},hs) Emax{ﬂ. Ko({1,2,-,i—1,i+ 1, m},max{hs ,w})} dG:(w)
< Ko ({1,2,+,i—1,i+1,,m},h:) = Ko({L1,2,---,i—1},h1).
29 <1 <N



Accordingly it follows that K.«({1,2,--,m},hs) — Ki({1,2,---,m},h:) = 0; hence, K,{L ,h:)
— Ki(L,h:) 20 forany L € L. Thus (a) was proved. [

PROBLEM OF ONLY OPENING M OF THE N BOXES

The section considers a more general case of only opening M of N Dboxes available, N
> MW = 2. Here, by Ln, 1 £ n £ N, we shall denote a family of sets consisting of n
elements in S. Let va(L,y), 1 £ n £ N, be the maximum expected present discounted
value starting with any L € Lw-msm and the maximum reward y. Then (5) becomes

(35) valL,y) = max{y, max{—c: + [vmwl(Li,maX{Y;W})dGl(W)}}

iel

where Li€ Lin-msm-1 and ve(L,y) =y forany L € Ln-m, and {(9) and (10) becomes

(38) vo{L,y) = v + max{0, max K= (L,y)}

ilel

where
37 L,y = ]vm-l(Ll,max{y,w})dGL(w —y -

Now, does Pandora’s Rule determine an optimal ordering for the search problem ? Un-
fortunately, its answer is “No” : a counter-example is shown in [1]. However, it is easily
realized that, if the following two requirments are satisfied for any L € Lw-w+m Wwith
1 £ m £ M, then Pandora’s Rule determines an optimal ordering:

Vu{L,y) = max{0, E™(L,y)}

[oh

ii. ¥Km(L,y) is nonincreasing in y with E™(L.,y) >{£) 0 on y <{=) hg
In Proposition 2 below, we shall verify that inequalites
(38) BiFi(w) £ B2F2(w) € - £ BuFu(w) for all w

is a necessary condition on which the above two requirements are met. Now, under (38), it
must be that

(39) 51 < 52 < - £ BN

If (39) holds as well as if

(40) Fi(w) £ Fa(w) £ - £ Fulw) for all w,



then clearly (38) is satisfied. Here remenber that the assumption (12) was made throughout
the paper. Therefore, a question arises whether or not there exists such cases that all of
(12), (39), and (40) are satisfied. Examples of such cases include one in which (42} is

satisfied, B = B2z = =+ = L, and ¢: = ¢z = - = c¢x; under the conditions, K:(y),
a nonincreasing function of y from (3), is nondecreasing in i for all y (Lehman [2]).

LEMMA 1. If (38) holds, then, for all v,
(41) max{0, Ko(y)} = nax{0, Kz(y)} = - = max{0, Kx(y)}

Proof: The difference Ki(y) — Ki+2(y), 1 £ i £ N—1, is nonincreasing in
vy because d&i(y)/dy— dKiw:(y)/dy = Guly) — Gi+a(y) £ 0 for all y. In addition,
since Ki(his1) — Kiss(hies) = KiChier) 2 0, it follows that, on ¥ £ hiss, Ki(y) —

Ki«2{y) = 0, hence max{0.K:(¥)} = max{0,Ki+1(y)}. On hi+s:s < y € hs, Ki(y) 2 0 2

Ki+1(y), hence max{0,K:(¥)} = max{0,Ki+s(¥)}. On he < y, 0 = Ki(y) and 0 = K:iss(y),
implying max{0,Ks(y)} = max{0,K:+:(y)} = 0. Thus, the above inequalities hold for all

Y. O
If Few) =0 on w < 0 for all i, then (41) yields
(42) max{0, Bigi—c1} = max{l, B2u2—c2} 2 - 2 max{0, Buvttn=—cn}

‘Hence, in the case, it follows that at least the above inequalities must be satisfied if
you wants to assume (12) and (38).

PROPOSITION 2. Suppose (38) holds. Then, for any L = {Jji,Jz,**,Jn-rtsm},
1 <n <M, with ji < jz < = < jn-mem where let k = j, (= min L),
(a) vo{L,y) =y + max{0, K=(L,y)}
(b) K= (L.,y) is nonincreasing in y with K™(L,hx) = 0
(c) ijl({jlajz,”',jN—M+m},Y) is independent of {jm,Jm+1,***,in-Memt,¥} for y 2 h_jm: mz2.
(d) KmJ1({j1,j2,"'st-H+m},y) = Km_l_jl({jl:jZ,"'st—Mﬂn—l}:Y) for y 2 hjm’ m= 2.

Proof: First, for any. L € Ly-w+1, {a) can be immediately verified from (41),
and (b) is also clear. For any L € Ly-m+2, say L = {1,2,---,N—M+2}, we have, for
any vy 2 hz,

(43) K2.({1,2,- N=M+2},y) = Kuly) + [max{ﬂ, K*2({2,3,- ,N—M-+2},max{y,w})} d G:(w)

= K. (y)
= K*({1,2,-- ,N—M+1},y)

Therefore, {c) and {d) hold for {1,2,--,N—M+2}, hence for any L € Lyn-msz.



Suppose (a) to (d) are true for any L ELn-mn, 1 £ n € n—1. Then, forany L €
Liw-msm, say L = {1,2,--,N—M+n}, we have

(44) K= (L,y)

Kily) -+ [max{ﬂ, K™= to( Ly, max{y,w})} dG.(w)
(45) K= (L.,y) = Ki(y) + fmax{O, K=t (Ly,max{y,wh}dG:i(w), 2 <1 < N=M+n
Here note that, from the induction hypothesis, for ¥y 2 hm,

1. Km‘lz({2,3,---,N'-—M+m},max{y,w}) is independent of {m,m+1,++ ,N—M-+m}

2. B"2({2,3, N—M+n},max{y,w}) = K™ 2,({2,3, ,K—M+m—1},max{y,u})
Accordingly, for y 2 ha, the expression
(48) K" ({1,2, - ,N=M+n},y) = Ke(y)+ Imax{(], E=15({2,3, - ,N—M+n},max{y,w}) } d Go(w)
becomes independent of {m,m+1,---,N—M-+n} and can be rewritten as

(47) Kml({l:23.'.UN_-M+H]}9Y):K1(Y)+ EmaX{O, mezz({2,3,"',N—M'i‘m'“l},max{y,W})}dGl(W)
= B4 ({1,2, N—-M+m-—1},y)

Thus, (c} and (d) were proved for {1,2,--,N—M+n}, hence for any L € Lx-msm. Now,

if hs <y, then since K=:(L,y) €0 for 1 <i <M from (44) and (45), (a) holds

for {1,2,-+,N—M+n}, hence for any L € Ly-wwm. Below, let y £ hy. Then differen—
tiating (44) and (45) with respect to y produces

(48) dB*:(L,y)/dy

Go(y) — 1 + Gu(y) k™ 22(L1,y)/ dyl(y<hs)

H

(49) dk”:(L,y)/ dy = Gu(y) — 1 + Gu(¥)dE™*s(L,,¥)/dy 2 <1 < N—M+n
Expressing (48) in an expanded form yields the same expression as (25); i.e.,

(50) dk™:(L,y)/dy = the right side of (25)

where notice that there exists the relation of

(51) dE* 1 (L,y)/dy = dR={L,y)/dy —Tu-1(¥){Caly) = DI{y<ha)

From this, we have

(52) dE™*(Li,y}/dy = the right side of (26) 2<1i €1

(53) dEk™* (La,y)/dy = the right side of (27)



(54) dEk™t(L,,y)/dy = the right side of (25) with replacement of m by m—1
n+l £ i £ N—M-+m
Arranging (49) by substituting (52), (53), and (54) into produces

1l

(55) dEk= (L,y)/ dy the right side of {28) 2 <1 <n-1

(56) dEm(L,y)/ dy the right side of (29)

Ge(y) + Gi(y)d¥™ "t (L,y)/ dy —1 n+l £ i £ N—M+n

Then we have

(58) d¥* (L,y)/ dy —d¥™(L,y)/dy

fthe right side of (30) 2<1 <

(1=G:(y)) d¥™(L,y)/ dy — Ge(9) {1+ Tna (ML =Ga(y))I(yLha)) + 1
T - 1(¥) (6(y) —82(¥)) S0 y<ha

= + g. _
(1= (1) (dR™(L.y)/dy+1) 20 § > ha 1<igN-¥+n

\
If 2 < i < n, then, for the same reason as in the previous section, it suffices to

show E™,(L,h:) = K (L,h:) in order to prove (a). If m+1 £ 1 £ N—M+n, then
since K= (L,y) — K= (L,y) becomes nonincreasing on y < hn and nondecreasing on hm

. <y < hy, it suffices to show K:(L,ha} — K:i(L,hm) = 0 in order to prove (a). First
suppose 2 < i < m. Then, by sequentially applying (d), we obtain

(59) Km_lZ({2:3:"' sN_M-i—m}vmax{hi sw}) = Kl_lZ({Z :3:-" :N_M+ i},m&X{hL,W})

(60) Em3,({1,2,,i—1,i+1,,N=M+m},hs) = K ({1,2,0,i=1,i 41, . N-M+i+1},hs)

Then
(61) K= ({1,2,--,N—M+n},h:) = Ki(ho)+ Emax{[!, Km=2,({2,3, ,N—M+m},max{h;,w}}} dG.(w)

= Ki(hy) -+ [max{ﬂ, K1-15({2,3, - . N—M+i},max{hy,w})} dG1(w)
= K&, ({1,2, N=M+i},hy) (1%)

(82) Ko ({1,2,- . N—M+m},hs) = Kih:) + [max{[}, K=, ({1,2,--,i—1,i+1,
eoo N—M+n},max{hs,w})} dGe{w)
< K=ty ({1,2,--,i—1,i+1,- N=M+n},hy)

= K&, ({1,2,,~,i—1,i+1,~ N=M+i+1},hi) (2%)



Next suppose m+1 £ i < N—M+m. Here notice K" *1({ji,iz,",in-msm-1},hn) 1is inde-
pendent of Jm, Jmes, °-*, Jn-msm from (c} and (d). Then, from (d)

(63) k= ({1,2, N—M4+m},ha) = K= 2.({1,2, ,N-M+m—1},hn) (3*)

and from (45),
(64) Kns({1,2,-- ,N—M+n},ha)
= Ku(ha) + | max{0, Kot0({1, 2, 0 = L i+ 1, N=Hn} max(hm, 1)} d 6 ()
< Bty ({1,2,,1— 1,0+ 1, N—H+n}, ha) (4%)
Since both (1*) to (2*) are independent of {i,i+1,-.N—M+i+1} and since both (3*)
and (4*) are independent of {m,m+1,-+,N—M-+n}, it eventually follows that (1*) = (2%)

and (3*) > (4*); that is, E™y({1,2,-,N—-M+m},hx) = K™({1,2,-- ,N—M+m},he) for 2 £
i < N—M+m. Hence, (2) was proved for {1,2,--,N—M-+n}, hence for any L € Ln-mem. O
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