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We consider the Bayesian collective choice problem in which utilities
are fully transferable. There exist at least three agents in the society.
Agents® private informations are interdependent in a weak sense. Moreover,
each agent’'s utility depends on the other agents’ private informations as
well as his own one in a weak sense.

First, we show that there exists typically a direct mechanism with
budget balancing in which truth-telling is a Bayesian equilibrium,
sustaining the optimal decision plan.

Next, we consider a c¢lass of indirect mechanisms, where each agent
simultanecusly announces two types of opinion: The one is an opinion about
his own private information. The other is an opinion about the way that his
neighbor annownces the first type of opinion. We present sufficient
conditions on the common prior under which there exists a indirect mechanism
with budget Dbalancing in which truth-telling is a unidque Bayesian
equilibrium, sustaining the optimal decision plan.

Finally, we Iintroduce two-stage mechanisms, in which, one agent, say,
agent 1, makes a proposal about the choice of alternative by the central
planning board after all agents’ announcements. We will construct a two—
stage mechanism in which truth-telling is typically a unique perfect

Bayesian equilibrium.
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1. INTRODUCTION

We consider the Bayesian collective choice problem explored by
D’Aspremont and Gerard-Varet [1], Myerson [13], and éo on. Agents agree to
delegate a collective choice to some central planning board according to
some well-specified mechanism. Each agent has his own private information
which concerns all factors determining all agents’ preferences. These are
unknown to the central planning board, but, have to be taken into account.
We have to construct a mechanism that induces each agent to reveal his true
private information honestly.

Many authors considered this problem on the éssmnption that utilities
are fully transferable, and required that the transfer-payment amongst
agents is always budget balancing. Groves [5] showed that there exists no
mechanism with budget balancing in which truth-telling is a dominant
strategy vielding the efficient public decision.

D’Aspremont and Gerard-Varet [1] weakened the solution concept. They
confined attentions to the case that agents’ private informations are
independent each other. They constructed a direct mechanism with budget
balancing in which truth-telling is a Bayesian equilibrium, yielding the
efficient public decision.

According to these saminal works, we will also argue on the assumption
of full transferability. We assume that there exist at least three agents in
the society. Our basic solution concept is Bayesian equilibrium according to
D’Aspremont and Gerard-Varet [1].

We have two purposes 1in this paper: The one is to present an idea

different from D’Aspremont and Gerard-Varet [1], which confirms, in genaral,
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the existence of a direct mechanism with budget balancing in which truth-
telling is a Bayesian equilibrium, sustaining the optimal decision plan. In
Section 4, we introduce a condition on the common prior, Condition 1, which
requires that each agent’s belief about his neighbor’s private information
varies with respect to his private information. Condition 1 excludes the
above "inforamtional independence" case explored by D’Aspremont and Gerard-
varet [1], and is, however, regarded as one of the weakest conditions which
distinguish the case that agents’ private informations are interdependent.
Condition 1 is, indeed, much wesker than the conditions introduced by Cremer
and Mclean ([2], Matsushima [9,10], and so on. It is shown in Proposition 2
that, under <Condition 1, there exists a direct mechanism with budget
balancing in which truth-telling is a Bayesian equilibrium, sustaining the
optimal decision plan.

Condition ! ensures that, for every agent, say, agent i, there exists a
transfer rule for agent i that depends on his and his neighbor’s, say, agent
(i+1)’s, ammouncements only, which imposes a vast sum of penalty on agent i
whenever he deviates from truthful revelation and agent (i+1) conforms
truthful revelation. We regard such a penalty on agent i as a transfer-
payment from agent i1 to agent (i-1). Notice that such a transfer-payment
does not depend on agent (i-1)'s announcement on the assumption that at
least three agents exist, and therefore, does not disturb the effect of the
penalty on agent (i-1). This is the essential idea that clarifies the
compatibility of the sustainability by a Bayesian equilibrium with the
budget balancing requirement. Our possibility result is regarded as an
extension of the argument of Matsushima [9], where each agent’s utility is
assumed to be independent of the others’ private informations. Our

possibility result is not concerned with the shapes of either the utility
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functions or the optimal decision plan. This is the contribution of the
first half of this paper.

The second purpose of this paper is the following: It is well known
that a direct mechanism may have muliiple equilibria which do not vield the
efficient public decision. Matsushima presented an example with multiple
Bayesian equilibria in the article [10], which is the previcus version of
this paper. In Sections 5 and 6, we will show that, once we withdraw our
eyes from direct mechanisms, we can find a mechanism with budget balancing
in which the profile of honest strategy rules is a unique Bayesian
equilibrium sustaining the optimal decision plan.

Our argument is divided into two approaches: The first is a
construction of an indirect mechanism: Recently, Parfrey and Srivastava [15]
pointed out that, in pure exchange economic environments, it is possible to
expand the message spaces to remove unwanted Bayesian eduilibria. In
accordance with their suggestion, we will show that a wide class of profiles
of strategy rules can be _removed from the set of all Bayesian equilibria in
general situations with full transferability.

In Section 5, we shall confine attentions to a class of indirect
mechanisms where each agent simultaneously announces two types of opinion:
The one is an opinion about his own private information, which is the same
as direct mechanisms. The other is an opinion about the way that his
neighbor annownces the first type of opinion.

The logical core is that we can construct a transfer rule which imposes
each agent to inform honestly the central planning board of the way that his
neighbor announces the first type of opinion, which is an expectation based

on his own private information (see Lemma 3). This ensures that the central
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planning board can be informed of, to a considerable extent, whether agents
conform the honest strategy rules or not.

In Subsection 5.3, we introduce another condition on the common prior,
Condition 2, which excludes the case that the probabilistic structure is
unchanged with respect to permutations over the sets of feasible private
informations. This is fairly weak, and is described by finite inequalities.
Under Conditions 1 and 2, it is shown in Theorem 7 that there exists an
indirect mechanism with budget balancing in which the profile of honest
strategy rules is a unique Bayesian equilibrium, sustaining the optimal
decision plan.

Unfortunately, once Condition 2 is eliminated, the unigqueness of
Bayesian equilibrium collapses in our indirect mechanism. Announcing in
accordance with the permutations which meke the probabilistic structure
unchanged is a Bayesian equilibrium, which may not sustain the optimal
decision plan.

This drawback motivates us to study the second approach, which is a
construction of a multi-stage mechanism: Recently, Moore and Repulle [12]
and Palfray and Srivastava [14] have pointed out the importance of a
construction of multi-stage mechanisms. Roughly speaking, a construction of
multi-stage mechanisms has the following two roles in removing unwanted
equilibria. The one is the role of the perfectness or the other refinement
of equilibrium points. This, however, is a minor problem in our argument.

The other is much more essential in our argument. In a multi-stage game
situation, each agent’s decision will condition on the choices by the other
agents at the previous stages. As the result, the central planning board
will obtain much finer information about whether agents conform the honest

strategy rules or not.
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In Section 6, we confine attentions to the following two-stage game
situation: At stage 1, all agents simultaneously announce their respective
messages in the same way as indirect mechanisms discussed in Section 5. At
stage 2, one agent, say, agent 1, makKes a proposal about the choice of
alternative by the central planning board. We assume that the central
planning board allows the suggestion by agent 1, and therefore, cheoses the
alternative proposed by agent 1.

In Subsection 6.3, we introduce a condition on the utility functions,
Condition 3, which excludes the case that each agent's utility depends on
his own private information only which has been explored by the above
authors. Condition 3, however, can be regarded as one of the most weakest
conditions which distinguish the case that each agent’s utility depends on
the other agents’ private informations as well as his own one.

Under Condition 3, we can construct a transfer rule for agent 1 with
the following properties: Agent 1 proposes the efficient public decision
which corresponds to the messages amounced by all agents at stage 1
whenever all agents conform to the honest strategy rules. On the other hand,
agent 1 proposes an alternative different from the efficient public decision
whenever all agents announce according to the permutations which make the
probabilistic structure unchanged.

By cambining the rule with the transfer rule in Subsection 5.1, we can
make the central planning board informed completely of whether agents
conforms the honest strategy rules or not. It is shown in Proposition 11
that, wunder Conditions 1 and 3, there exists a two-stage mechanism with
budget balancing in which every Bayesian equilibrium yields the efficient

public decision. Moreover, we will argue in Theorem 12 that in the two-stage
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~mechanism, the profile of honest strategy rules is a unique perfect Bayesian

equilibrium.

We can also put our work in the context of full implementation of
general sccial choice rules explored by Maskin [7]: Matsushima [8] and Moore
and Repullo [12] showed that almost every social choice rule is fully
implementable by Nash, or, perfect Nash, equilibria. Their arguments,
however, crucially depend on the assumption that agents share information,
which contradicts the necessity of decentralized decision making. This
drawback will be resolved in this paper at the expense of full

transferability.
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2. THE BASIC MODEL

According to Myerson [13], our model is defined in the following way. N
= {1,...,n}) is the set of agents in the society.

For every 1i,jsN and every integer k, we write 1 + X for j and agent
(i+k) 1is saild to be identical with agent j if and only if there exists an
integer h such that j +hn =1 + k: For example, n + 2 for 1, 1 - 1 for n,
and so on.

Agents have to choose amongst the set of all alternative public

decisions, X, which is nonempty and compact. We assume that:

ASSIMPTION 1: There exist at least three agents in the societ‘f, i.e.,

nzs.

We introduce a coamodity called money in order to allow any Kind of

transfers amongst the agents., A transfer is denoted by an element t =
(tl,...,tn) of Rn, where ti is the transfer-payment to agent i.

Agent 1 has, a priori, a private information a; concerning all agents’
utilities. A, is the set of feasible a., which is nonempty and finite.
without loss of genarality, for every isN, the number of feasible ai is at
least two. Let A 1= x Ai and A_i 1= x A,

ieN jeN/ (i) J
p is a probability over A which is called a comon prior. For

convenience, we assume that:
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ASSOMPTION 2: For every asA,

p(a) > O.

Each agent, say, agent i, does not know, a priori, the other agents’

[a,]
private informations a_igA_i. The belief of agent i is represented by p -

[a.] '
P Y isa probability over A_i conditional on ai induced by p; that is, for

every asA,
P[ai}(a } o= pla)
-1’ - ¥, p(a/aj:)’
a!=A,
i
where a/ai' = (al"”’ai—l’ai’aiﬂ"'"an)' From Assumption 2, we know that

[a,]

P (a_;) > O for all aeA.

Agent i has a von Neumann-Morgenstern utility function Ui: XxRxA-
R. Ui(x,ti,a) is the payoff for agent i under asA given that x=X 1s chosen

and ti is transfered to agent 1i.

REMARK 1: We can regard Ui (x.ti.a) as an expected value: The realized
payoff for agent i 1is described by ”i(x’ti’“’i)’ where wy is a random
variable which has probability fi(wi;aJ that depends on asA. Finally, we

write

U, (x,t;,3) = X ni(x.ti,wi)fi(wi;a),

We Exiy
1 581

where szi is the set of feasible w; -
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We shall admit unrestricted side-payments with full transferability:
ASSUMPTION 3: For every i=N, there exists a bounded function u, from X

x A to R such that for every xsX, every ti =R and every asA,

Ui(x’ti'a) = ui(x.a) + ti.

We shall fix a function fram A into X, W, which is called the optimal

decision plan. For every as=A, W(a) may be efficient in the following sense:

For every asA and every XsX,

¥ u, (Wa),a) =z ¢ w (x,a).
i=N i=N
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3. MECHANISMS -AND BAYESIAN EQUILIBRIA

Agents agree to delegate the choice of alternatives and the choice of
transfer-payments, (x,t), to the central planning board according to some
well-specified rule. Before choosing (x,t), the central planning board can
not observe the private informations asA. Each agent, say, agent i, has to

publicly and simultaneocusly announce some Message m, . Mi is the set of

feasible m, , and let M = x Mi' The central planning board takes m:=
isN

(mi)iSNsM into account.

We define rules by which the central planning board abides in the

following way: A decision rule is a measurable function g:M -» X. Given that

agents announce mesM, the central planning board chooses the alternative g{m)

according to g. A transfer rule is a measurable function s = (si)iEN:M > R

!

Given that agents announce msM, for every is=N, the central planning board

chooses the transfer-payment to agent i, si(m), according to S;- A pair of a

decision rule and a transfer rule, (g,s), is called a mechanism.

A transfer rule should be budget balancing in the following sense:

DEFINITION 1: A transfer rule s is budget balancing if for every msM,

T Si (m) = 0.
isN
A message my of agent i is regarded as a pure strategy for agent i. We
denote by n; a probability measure over Mi’ which is called a mixed strategy

for agent i. We can write py =m if by assigns m; probability one. A
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strategy rule for agent 1 1is a mapping oy which assigns aisAi a mixed

strategy gi(ai) for agent i. o3 is said to be a pure strategy rule for agent

i 1if for every aisAi. Ui(ai) is a pure strategy for agent i. A profile of

strategy rules is denoted by g := (Gi)isN’

DEFINITION 2: A profile of pure strategy rules sustains the optimal

decision plan W through a decision rule g if for every asA,

g{g(a)) = W(a),

where g(a) = (“1(a1)""’ch(an”'

Given a mechanism (g,s) and a profile of strategy rules ¢ = (g, )

i7isN’

the agent i1’'s expected paycff conditional on a; given that agents conform g
is
v, (0.3;;9.8)

1= y L s .. s {tifg(m),a) + gi(m)}q_(%_)(dq )

[a. ]
.+ a,(3,)(@m ) ]p * (ay)-

DEFINITION 3: A profile of strategy rules g is a Bayesian equilibrium

in a mechanlsm (g,s) if for every i=N, every aisﬁi and every strategy rule

gi for player i,

» ’-;JS ZV- "l ;’Ss
Vl(a 3, ;9 - 1(°/°i & 9 )

where o/c;y = (ogy ... ST Y- FPIPERNT: P
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Our purpose is to find a mechanism (g,s8) such that s is budget
balancing and there exists a unique Bayesian equilibrium in (g9,s),

sustaining the optimal decision plan W through g.
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4. DIRECT MECHANISMS

In this section, we shall confine attentions to, so-called, direct
mechanisms, such that for every isN,
Mi = Ai'
In a direct mechanism, each agent, say, agent i, announces a message m, as
being his own private information.

For every i=sN, we define the honest strategy rule for agent i, g:, as

the identity mapping: That is, for every aisAi,

- 4
.(a,) =a,.
01(a1) 4

F 4
According to dj » agent 1 always announces his true private information

x®
heonestly. Moreover, we define a decision rule g such that for every asA,
*
g (a) = W(a),

* ES *
that is, g is the same as W. Notice that g sustains W through g . We will

present below a sufficient condition on the common prior p wnder which there
%
exists a transfer rule with budget balancing, s , such that g* is a Bayesian

equilibrium in the direct mechanism (g*,s*).

~la;l
For every i=N and every aigAi’ let p * be the probability over Ai+1

conditional on 34 induced by the common prior p; that is, for every

=510

A3+1
~a, ] [a, ]
i i
P (a, ) = X P (a .).
i+l a.shA., +
J 1
jeN/{1,1+1)
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We introduce a condition on the common prior p:

CONDITION 1: For every isN, every aisAi and every ai’sAi/{ai},

“[ai] “[ai]
P * D

We can regard Condition 1 as one of the weakest conditions which
exclude the case discussed by D’Aspremont and Gerard-Varet [1], i.e., the
case that, for every i=N, agent i’'s private information is independent of

agent (i+l)’s.

LEVYMA 1: Suppose that ‘Condition 1 holds. Then, for every isN, there

exists a function ri from Ai x Ai N into Rr1 such that for every aisAi and

1

every o, aAi /< a; Y,

~la,] ~a, ]
N R e R T L L e R TR TR R
1i+1%%+1 141500+
PROCE": We can prove this lemma in the same way as Proposition 1 in
Matsushima [11].
Q.E.D.

REMARK 2: We can prove Lemma 1 by construction: For every isN, let
ri@;,a;,4)

~la, ]

i 2 A[ai]
i=- {1 -p (ai+1)} - v p ("‘i+l)

LS PEACH
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It will be found later that we can check in the same way as the proof of
Lemma 3 in Subsection 5.2 that such a T, satisfies the inequalities in Lemma

1. This is also another proof of Proposition in [11], which is simpler than

the original proof.

Under Condition 1, we specify a function s* = (S:)isN from A into Rn in

the following way: For every i=N and every asA,

s* (a) ==z ( ] -2 r ( )
i P 2Ty Loy gy 1415141 0941 %540 70

where Zs» i=sN, are positive real numbers. For every isN, we choose Z, SO
large that for every asd, every “iEAi/{ai}’ every X=X and every X’eX,
“[ai]
2, L (T rfey) Tl 0P ()
i+171+1

> ui(x,a) - ui(x ,a).

It must be noted that s* is a transfer rule with budget balancing.

#
PROPOSITION 2: Under Condition 1, g is a Bayesian eguilibrium in

(g*,s*)-

PROOF: From the definition of s$, we know that for every i=N, every

aisAi and every “iEAi/{ai}’

{a,]

® x i
I {%(g(aha)+-%(anp (qil
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« % (3]
- L (g @/e),a) + s (/) P (a.)

a .sd . t
-17 -1
{ai]

= EA (U (W(@),a) - u (Wa/e ),a))p ~ (a;)

e |

"[aiI
+ zia EA {ri (ai,ai+1) = T (o l+l)}p (ai+1)
1+1%%41

> 0.

® * %
This means that g is a Bayesian equilibrium in (g ,s ).

Q.E.D.
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5. INDIRECT MECHANISM

In this section, we shall consider indirect mechanisms, in which each
agent simultaneously announces two types of opinion: The one is an opinion
about his own private information, which is the same as the case of direct
mechanisms. The other is an opinion about the way that his neighbor
announces the first type of opinion,

To be precise, we assume that for every isN,

Mi = Ai X Qi’
where Qi is the set of all probabilities over Ai+1' let Q = x_Qi.
isN
The interpretation of a message m, = (ai,qi) of agent i is that aisai

is agent 1i’s opinion about his private information and qngi is agent i’s

opinion about the way that agent (i+1) announces an opinion about his

i i ion: Th is, ;s A, . e i L’
private information at is, for every o, =A ., 4 (o, ) is agent i's

opinion about the probability that agent (i+l) announces 54p

~

For every izN, we define the honest strategy rule for agent i, O3 » as

follows: For every aisAi,

oi(ai) = (ai,p ).

~

According to dy » agent i announces his true private information honestly,

and suggests that agent (i+l) announces his true private information

honestly.

~

We define a decision rule g such that for svery msM,
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Fal

g(m) = W(a) whenever m, = (ai,qi) for all isN.

”~ Fa

g 1is independent of (qi)iEN and is the same as W. Notice that g sustains W

~

through g. We will present below sufficient conditions on the commeon prior p

Py

under which there exists a transfer rule with budget balancing, s, such that

”~ A A

o is a unigque Bayesian equilibrium in the indirect mechanism (g,s).

Fal

5.1. SPECIFICATION OF s

-~

Under Condition 1, we specify a function s from A x Q into R®: For
every isN and every m = (“i’quisNEM’
*
" Mg (00 Gag ) T Mg Cogeg %o )
For every 1isN, by and n; are specified in the following four steps: Before

FaY

presenting these steps, we define, for every isN, a subset Qi of Qﬁ’

P A[a.]
Q = {g;&9,: ¢4 =P 1 for some 3, =A; }.

A Aia‘]
Q is the set of feasible p

£

. *
Moreover, we choose two different elements of Ai, oty and oy

* *
arbitrarily. We denote by qisQi the probability over Ai+1 which assigns O 41
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probability one; that is, q:(a:+1) = 1. We denote by q:*sCE the probability

. . % Lo . . Kk kEk
over Ai+l which assigns o541 probability one; that is, d; (Qi+l) =1. It

”~

must be noted from Assumption 2 that neither q? nor qz* belongs to Qi‘

Finally, we define a subset of N, N, in the following way:
N := (1) whenever the number of agents, n, is cdd,

~

N := (1,2} whenever n is even.

Step 1: For every isN, we define a function My from Ai+ X Qi into R:

1

For every (“i+1’qi)£Ai+1 b Qi,

2 ,
Milogeg ) 2= 7 (1= g gy ) ) - % (g T -

LA TERAL TR,

Step 2: For every is=N, we define three positive real numbers, Ci‘ Di

and Ei: We choose Ci so as to satisfy

C, > max [{u (MW(e).a) + s (a)) - (4 (W(a'),a) + § (a)}].
D,y EA

We choose Di s0o as to satisfy that for every aisAi and every ai+12pﬁ+1’

“[ai]
Dip (ai+1) > Ci‘

Moreover, we choose Ei sc as to satisfy that for every aisAi and every

sA

a, .
i+17i+1°

“[ai]
Eip (ai+l) > Ci + Di.
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Step 3: For every isN, we define a function ny from Ai x Qi +1 into R:

~

If qi41 does not belong to QiﬂU{qT* H

i+l then

*%
ni((.‘(i sqi+l) - Di’

Rk
ni(ai,qi+1) = 0 whenever o oo

Fal

if qi+1 belongs to Qi+1' then

1l

"i(“i’qi+1) 0 for all aisAl .

Finally, let

* 3k
ni((xis -+1) - E. )

and

sk *
ni("‘i’qiﬂ) = 0 whenever @ * o -

~

Step 4: For every 1isN/N, we define a function ng from Ai X Qi+1: If

k34
does not belong to Qi+1U(q. }

L then

9541

k
ni(oci .C_[i+l) - Dj. »
and

- 4
ni(ai,qi+1) = 0 whenever o * o

~

It qi+1 belongs to Qi+1‘ then

"i("‘i’qi+1) =0 for all aisAi.
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Finally, let

ik ke

l’li(oci sqi+1) = E. »

and

( * ) = 0 whenever -
ng tog 9y’ = o * o

~

Therefore, the definition of s is completed. It must be noted that,

Fa

under Condition 1, such a s eXists and is a transfer rule with budget

balancing.
5.2. SEPARARIFE. STRATEGY RULES

We will argue that, without loss of generality, we can confine

attentions to strategy rules which are separable in the following sense:

DEFINITION 4: A strategy rule for agent i is separable if we can write

Ui = (dj_ ,ei))
where di is a function which assigns each element ay of Ai a probability

d, (a,) over A., and e. is a function from A, into Q..
i1 i i i i

A pure strategy rule for agent i is a separable strategy rule for agent

i, sav, o3 = (di,ei), such that di can be regarded as a function from Ai
into Ai. It must be noted that N is separable if and only if, for every

aisAi, gi(ai) assigns an element of Qi probability one. We denote by g =
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{d,e) a profile of separable strategy rules, where 0; = (di,ei), d= (dl)lsN

and e = (e,), Moreover, for every profile od separable strategy rules, g

i“ieN’
= {d,e), and for every asa, we denote g(a) = (d(a),e(a)) = (gi(ai))iSN

The following property of s will play an important role:

ILFMMA 3: For every isN, every qisQi and svery qi’sQi/{qi},

Lo Moy oG gy )2 M e 99 (g )
O3 +1 =01+ % +1 5541
PROCE": Fix qisQi arbitrarily. We consider the following maximization

problem: Maximize

(1) S 11 0lay )P G (g )~ 0layy T (1 g (gy )]
1+1EA +1

with respect to G(a )s(O 1) for all g, +1EAi+1 If g = (9(%j4_) 1+1EA o

is an element of Qi’ then (1) is egual to

O34+ %% 41

This means that Lemma 3 holds if g = 9 maximizes (1).
For every 1+18A and every @(ai+l)g[0,1]. the second-order

derivative of (1) with respect to 9(“i+1) is equal to - 2, which is less

than zero. Therefore, the second-order conditions hold, and g is the
solution of the above maximization problem if and only if g satisfies the

first-order conditions:

(1 - 0oy, )% (ogyq ) = Blogy ML = q (g, ))



_26_

for all °‘i+1EAi+1' This equalities mean that 9(“i+1) = ql (O?L+1) for all
o 41 5Ay 4 - Hence, the proof is completed.

Q.E.D.

As is checked in the following proposition, Lemmna 3 guarantees that, in

Ea Ty

any Bayesian equilibrium in (g,s), every agent always honestly informs the
central planning becard of the way that his neighbor announces an opinion

about his own private information:

~ A

PROPOSITON 4: If ai(ai) is the best response to 0.5 in (g,s) for all

aisAi, then, 03 is separable, i.e., g = (di,ei), where, for every ai sAi and

every o, 2Ai+1 .

ei(ai)(ai+1)

~a, ]
o= i
.-—a .E,A [m _(f )°i+1 (ai+1”dmi+1)]p (ai+1)'
1415041 M1 ™04 %49
PROOF : From Assumption 1, it must be noted that ri, ngs Migqo ri+1
and M 41 do not depend on qi. By definition, by depends on c_:]1 , but not on

Fix aiEAi arbitrarily. wWe know that, if a; (ai) is the best response to

R , For .20, ,
O_g» then every qlsQ1
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Zal

o514y G =Y

-~

2 L bl %9 Gegyy )

4158541
where Yi is the probability measure over Qi conditional on ai induced by 05 »

”~

and qi is the probability over Ai+1 such that for every ai+lSAi+1’
% (o 4q)
“[ai]
o= Lo s Oppg B gqp0(am )P 7 (3,,)-

354158y My =loyag 0% ,y)

~

From Lemma 3, Yy has to assigan qi probability one. This means that o3 is

separable, i.e., 0; = (di,ei), where

e, (8;) (o, )

~la, ]
=B s Gaq By (Am, IR T (3, )
35418841 Mgy =logag 0 Fayg)
0.E.D.

Proposition 4 ensures that if g i1s a Bayesian equilibrium in (g,s),

then for every isN,

o5 is separable, i.e., 0 = (di,eil,

and for every asA,

~lay ]

).
i+l
3 415P 4



_28..

Therefore, withour loss of generality, we can confine attentions to profiles

A A

of separable strategy rules in (g,s).

5.3. MAIN RESULT

~

From the above argument, we can check that g is a Bayesian equilibrium

A A

in (g9.s):

Pl A A

PROPOSITION 5: Under Condition 1, ¢ is a Bayesian eguilibrium in (g,s).

PROOF: From the proof of Proposition 4, we know that if o5 is a hest

Fal

response for agent 1 given that the others conform o_s » then oy is
separable, i.e., gy = (di,ei), where

“[ai]
ei(ai) =D for all aieAi.

All we have to do is to show that di is the identity mapping. Notice from

Fay

Assumption 1 that Sy depends on oty cnly through s: and n - Moreover, from

the definition of ns

Fal

ni(“i’qi+l) = 0 whenever qi+1sgi+1'
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”~ ~

Since agent i+l always chooses amcngst Qi +1 according to 04y WE know from

~la; 1
c o _ _ i
Proposition 2 that for every aiEAi and every m, = (ai,qi)sMi s if 4G =P

and . * a., then
1 1

~ ~ ~ [a-]

L {y(glat@)),a) + s (a@))p * (a;)

A ~ ~ [a.]
- {ygls@/m)a) + s a@/m))p T o(ay)

* [ail
{y; W(a),a) + s (a)}p (a_i)

1
M

[a.]

L3 1
- EA {y W(a/e ),a) + 5 (a/eg )} }P (ay)

+ E
-1 -1

P

This means that di is the identity mapping, and therefore, g is & Bayesian

Fa o

equilibrium in (g,s).

Q.E.D.

~

The drawback of s is that there may exist a Bayesian equilibria in

Fa ey ~

(g,s) other than g which does not sustain the optimal decision plan W: For

every isN, let vy be a permutation over Ai, and denote v = (u. ) By

i 'i=N"
”~

definition of s, we can prove in the same way as Proposition 5 that:



e
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PROPOSITION 6: Suppose that for every asA and every 1i=N,

~la, ] "[\Ji(ai)]

(2) s Y a ) =p (“i+1(ai+1))'

i+l

Moreover, suppose that a profile g of pure strategy rules satisfies that for

every izN and every ai sAi,

v, (3,))
o, (@) = (v; (8 ).p ).

A

Then g is a Bayesian equiliblium in (g,s).

PROOF: See Appendix A.

in order to exclude this trouble, We introduce a condition on the

common prior p:

CONDITION 2: There exists no v which is not the identity mepping such

that for every i=N and every asA, the inequality (2) holds.

The main theorem is the following:

~

THEOREM 7: Suppose that Conditions 1 and 2 hold. Then g is a unique

o~ A

Bayesian eguilibrium in (g,s).

We will present the proof of Theorem 7 in the next section.



_31_.

5.4. PROOF OF THEOREM T

From Propositions 4 and 5, all we have to do is to show that there

A ”~

exists no Bayesian equilibrium in (g,s) other than g which is a profile of
separable strategy rules.

First of all, we show that:

LEMMA 8: Suppose that Condition 1 holds. If a profile of separable

Ea T oY

strategy rules, g = (d,e), is a Bayesian equilibrium in (g,s), then, for

Fa

every isN and every aisAi, ea(ai) belongs to Qi‘

PROOF: Suppose that there exist isN and aisAi such that ei(ai) does

~

not belong to Qi' We will show below that this supposition contradicts the

Bayesian—equilibrium property.
We present the following four properties, which are proved in Appendix

B: For every isN and every ai+1sAi+1’

—~

P . _ k2 _ *
PROPERTY (1}: If i=N and ei+l(ai+l) =i then, di(ai) = oy for
all a,=A, .
1 1
ssq. . £
PROPERTY (ii): If ieN, ei+1(ai+1)EQi+1U{qi+1}/Qi+1’ and for every
' £ ’ *  then, d. (a,) = o for all a =A
8 41%R5 017 Ciag Bag) 7 g thEN. & (3) = oy Tor all g =4
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~

PROPERTY (iii): If isN/N and ei+1(ai+1)
for all'a.sA..
14
PROPERTY (iv): If ieN/N, ei+1(ai+l)sQ.

avery ai+1£Ai+1’ ei+1(ai+1) * q:jl, then, di(ai) =
From these
that either
d.(a.) = a? for all a, =A, ,
1 1 1 1 1
or

k%
di(ai) = o for all aisAi.

Based on these properties and Proposition 4,

following four properties: For every isN:

~

If isN and di+2(a

PROPERTY (Vv): "

)

%
then, d.(a.) = . for all a, =4, .
1 1 1 1 1

~

PROPERTY (vi): If i=N and di+2(a )

142

¥k
then, di(ai) = oy for all aisAi.

$k E3

Fal

*%
+1U{qi+1)/Qi+l, and £for

*
« FLor all a =4 .
1 171

properties, we know that ¢ has an agent, say, agent i, such

we can check easily the

for all ai+28A‘

k%
= 9142 1427

*
= q.l+2 for all ai+2EAi+2’
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—~

ss . : o kx
PROPERTY (vii): If i=N/N and di+2(ai+2) = 9540 for all ai+2EAi+2’
K '
then, d.(a.,) = . for all a,=A, .
it i i™1
sxza. . _ X
PROPERTY (viii): If is=N/N and di+2(a1+23 = qi+2 for all ai+2EAi+2’
*
then, di(ai) = o for all aisAi.

First of all, we consider the case that g has an agent, say, agent i,
‘ *
such that d.(a.) = o, for all a, <A, .
171 i 171

Suppose that the mumber of agents, i.e., n, 1s odd. Remember that in

the odd case, N = {1}. In the odd case, the set {1-2,i-4,...,i-2n} 1s
identical with N, and therefore, there exists Ks{1,...,n} such that
agent {i-2k) is identical with agent 1,

~

and for every kK=N/{k},

agent (i-2K) is not identical with agent 1.

Using Property (viil) recursively, we know that for every ke(l,....k-1},

for all ai—ZKEAi—Zk'

@
di o (@3 oK) = oo
Using Property (vi), we know that

d .(a ~i = a** . for alla .=A ..

iI-2k i-% i-2x i-2k  i-2k

Finally, using Property (vii) recursively, we know that for every

~

ke{k+l,...,n},



E2 3

o ok for all a, A,

) = 1~2kT 12K

Ay ok (350

Since agent 1 is identical with agent (i-2n),
d,(a,) = o for all a, =A
i{ai = oy for all a shA,,

which is a contradiction.

~

Suppose that n is even. Rememebr that, in the even case, N = {1,2}. We
define
N(i) := {i-2,i-4,...,i-n}.
We suppose that i is an odd number. Then, N(i) is regarded as the set

of all agents with odd number. Therefore, agent 1 belongs to N(i), whereas

agent 2 does not belong to N(i). Let kg{l,...,g} be the integer such that

agent 1 is identical with agent (i-2Kkj.

—~

Notice that, for every ks{l,...,%}/{k},

agent (1I-2kK) is not identical with agent 1.

~

Using Property (viii) recursively, we know that for every ke{l,...,k-1},
d . ( ) = o .. for all A
1-2k ‘Biox’ T @y op TOF AL By _op = o
Using Property (vi), we know that
ik
d ..(a .)=g ~ foralla .=sA ..
-2k i-Zk i-2k i-2k i-2k

Finally, using Property (vii) recursively, we know that for every

~

ks(k+l,...,%},

Bk

d (ai_ ) = 5 _op

1ok ok for all ai—2k3P3—2k°
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Since agent 1 is identical with agent (i-n),
d,(a,) = o for all a =A,,
which is a contradiction.
Next, we suppose that i is an even mumber. Then, N(i)} is regarded as
the set of all agents with even number. Therefore, agent 2 belongs to N(i),
whereas agent 1 does not belong to N(1). We can find a contradiction in the

same way as the odd-case.

Cn the other hand, we consider the case that ¢ has an agent, say, agent
i, such that di(ai) = a:* for all aiEAi' We can also find a contradiction in

the same way as the above argument. Hence, the proof is completed.

Q.E.D.

”~

From the definition of s, it is shown that:

ILFMMA 9: Suppose that Condition 1 holds. If a profile of separable

M

strategy rules, ¢ = (d,e), is a Bayesian equilibrium in (g,s), then, for

every isN,

di is a permutation over Ai’

for every aisAi,

~la, ]
_ 1
ei(ai) =p )
and for every ai+1EAi+l’
~fa. ] ~Id,{a, )]
i _ i
P (ai+1) =p (di+1(ai+1)).
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PROOF': From lemma 8, we know that for every i=sN and every a, =A, ,

-

ei(ai) belongs to Qi' From Proposition 4, there exists a function Ty from Ai

into Ai such that for every aisAi,

. (2. )]
_ i1
ei(ai) =p 1
and for every “i+1EAi+1’
“[Ti(ai)] “[ai]
P (ai+1) = . EA d1+1(ai+1)(“i+1}p (ai+1).
1+1571+1

In the same way as Propositions 5 and 6, we know that for every aiEAi'

A[T.(ai)]

that is, dy has to be a pure strétegy rule for agent 1.
We will show that Ty is a permutation over Ai: Suppose that 5 is not a
permutation. Then there exists “igAi such that, for every aiEAi’

. La, O v
Tl( 1) o

This, together with Proposition 4, means that for every ai-18Ai~1’

€11 B3y (e )] = 0.

From Assumption 2, however, for every ai €A,

1 EA 1o ei-l(ai—l) does not belong

~

to Qi—l‘ This is a contradiction, and therefore, for every isN, T3 is a
permutation over Ai.

Q.E.D.
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Under Condition 2, if 5 1is a Bayesian equilibrium in (g,s) which

”~

satisfies the properties in Lemma 9, then g = g must hold. This, together

with Lemma 8, means that there exists no profile of separable strategy rules

~ A A

other than ¢ which is a Bavesian equilibrium in (g,s}. Therefore, the proof

of Theorem 7 is completed.
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6. TWO-STAGE MECHANTISMS

Condition 2 is fairly weak, which is described by finite inequalities.
We, however, can not give an intuitive interpretation of Condition 2. In
this section, we will argue that, once we turn our eyes into multi-stage
mechanisns, Condition 2 is unnecessary for our unique Bayesian

implementation.
6.1. DEFINITIONS AND MODIFICATIONS

We consider the following two-stage game situation: At stage 1, all

agents announce their respective messages m = (ai,qi)is in the same way as

N
indirect mechanisms discussed in Section 5. AL stage 2, agent 1 make a
proposal ¢sX about the choice of alternative by the central planning board.
The central planning beard takes ¢s=X into account as well as meM.

We modify rules by which the central planning board abides: A two-stage

decision rule is a measurable function g:M x X =» X, where for every icN,

Mi = Ai x Qi‘

A two-stage transfer rule is a measurable function v = (yi)iEN:M x X = ﬁl. A

pair (g.,y) is called a two-stage mechanism.

In the same way as the previous section, for every isN/{1}, a strategy

rule for agent i is a function oy which assigns aiaAi a probability measure
gi(ai) over NE. On the other hand, a strategy rule for agent 1 is a pair of

functions (al,E), where % is a function which is defined in Section 3, and
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£ is a function which assigns (al,m)sAl x M a probability measure g(a1 ,m)

over X.
The interpretation is that agent 1 observes the announcements by all
agents, mesM, at the end of stage 1, and makes a proposal according to the

probability s(a;,m), provided that a; is his own private information. A

profile of strategy rules is denoted by (g,£).
Given a two-stage mechanism (g,v) and a profile of strategy rules

(g.£), the agent i’s expected payoff conditional on ai is
V; (d.8.3, 3R, v)

1= S L r .. 1 {1{111(3(¢.m),a)
a_isA_i mnstvll m, le peX

[, ]
+ v, (o.m) JE(ay M) (de) }g (g )(dn ) ... g () P~ ().

1

A profile of strategy rules, (g,g), is said to be a Bayesian equilibrium in

a two-stage mechanism (Rg,y) if and only if for every is=N/{1}, every a, sAi

and every strategy rule gi' for agent i,
V.l(o,s;.ai;;a,v) 2 Vi (G/c&_ 5,8 iR,y),

and for every aleAl and every strategy rule (al' ,£') for agent 1,

Vl(cr.s.al;ia,y) 2 Vi (csfci ,E',al JB.vY) .

We assupe that the optimal decision plan W is efficient in a strict
sense; i.e., for every asA and every xsX/{(W(a)},

L u (Wa),a) > §uxa).
isN ieN

~

We specify a two-stage decision rule, g, in the following way: For every

(m,¢)=M x X,



g(m,¢) = ¢.

According to g, the central planning board chooses the alternative proposed

by agent 1.

-~

We define a function £ from Al x M into X in the following way: For

~

every (a,,msA, x M and every XsX/{g(ai,m)};

u, (g(a,,m),x/a,} + § u, ((x ,m),q)
1L R PR R
> Ul(X,oc/a ) + E . (X)a):
i=N/{13

where we denote m = (“i’qi)isN and ¢ = Given that agents announce m

(“i’ism'

= (“i’qi)isN at stage 1, if agent 1 announces his true private information

a, A, honestly at stage 1, i.e., 2

188 R then, agent 1 choose the optimal

P

public decision W(x) according to g£; that is, for every m = (“i’qi)iaN and

every alsAl,

~

E(al,m) = W(y) whenever & = oy

~ A

The profile of strategy rules (g,g£) sustains the optimal decision plan W

Fal

through g; that is, for every asl,

Ca Tt ~ -~ o~ ~

B(&(al,o(a)),a(a)) = gW(a),g(@)) = Ww(a).
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Fa

6.2. SPECIFICATION OF y

We construct a two-stage transfer rule y = (viJ: For every msM and
every ¢eX,
v, {(m,9) = s, (m) + yoow(e,al,
! 1 1eN/ (1) *
Yo (M, 0) = 5, (m) - ¥ ow (,e) - fla.q .0),
2 E: 1N/ (1) K

Ya(m!q)) = SB(m) + f(cc,q4,¢),

and for every isN/{1,2,3},

~ "~

Yi {m,p} = S, (m},

where £ is a function from A x Q4 x X into R. Notice that y is budget

balancing, i.e., for every (m,¢)sM x X,

FaN

¥ v(m,¢) = 0.
isN

For convenience, we assume that, for every asA and every gsA, there

exists an alternative g(a,q)=X such that for every x=X/{s(a,x)},

Ul(é(a,oc),a) + ): (o8 (é(a,a),o&)
isN/ {1}
> ul(x,a) + ¥ ui(x,a).
i=N/{1)
Notice that for every asA and every m = (“i’qi)igNEM’

~

sla,e) = stai.m) whenever ay =g

and
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sla,x) = W(a) whenever a = «.

We specify f as follows: For every (a,q4,¢)2A b Q4 x X, if o ¥ 0; > G

~

belongs to Q, and there exists aszA/(g) with ¢ = s(a,q) and ¢ » W(x), then
f(oc-q4.¢) = - D4-

Otherwise,

1l
o

f(a:q4l¢)

Fal

We modify the definition of sl in Subsection 5.1, to be precise, z1 and

zZ in Section 4: We choose z; so large that for every alsAl, every

2

“lgAlf{al}’ every x=X and every Xx'sX,

~{a,]
1
2y ¥ {rltal.az) —rl(al,aQ)]p (az)
ayEh,
> {u (x,a} + } u (X,a/e )} - {u (x",2) + § u (x’,a)}.
1 isN/(1y * 1 4 isN/(1) *

We choose z2 so large that for every a2£A2’ every @2852/{32}’ every xsX and

every X’ sX,

~fa,]
%2 EAB{rz(Eb’ai) " T le,35) )P T (35)
58

> {u, (x,a) = % u (x,a/e,) ) - {4 (X',a) - T u (x’,a)).
2 isN/¢2) T 2 2 isNz(2y 1

~

In the same way as the previous sections and from the definition of v,

we can check that:
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AA

PROPOSITICON 10: Suppose that Condition 1 holds. Then, (g,£) is a

~ A

Bayesian equilibrium in (g,vy). Moreover, if (g,£) is a Bayesian equilibrium

in (g,v}, then,

oy is separable, i.e., 0 = (di’ei)’ for all isN,

where for every isN,

di is a permutation over Ai,

“[di(ai)]
ei(ai) =p for all aisAi,

and for every asA,

E(al.(d(a),e(a))) = ¢g(a,d(a)).

FPROCE: In the same way as the proof of Proposition 4, we can check,

for every i=sN, if gy is the best response for agent i to oy in (g,vy), then,

oy is separable, i.e., g = (di’ei)'

~

Notice from the definition of v that £ is the best response for agent 1

A

to g = (d,e) in (B,y) if and only if for every alsﬁi and every m =

(“i’qi)isNgM’ each element in the support of g(al,m) maximizes

Fou (X, * T (x,a)d. (&, ) (e )
isN/{1} © a_lsA_lul % @) (o

[al]

. dn(an)(ah)p (a—l){ % qz(qz)(qz)
a—lgALl

[al] -1
e dn(an)(ah)p (a_l)}
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with respect to x=X whenever dl(al)(al) > 0. Therefore, £ is the best

~ AN

response for agent 1 to ¢ in (g,v) if and only if for every aisﬁi and every
m= (“i’qi)izNEM’ a(al,m) maximizes

E u, (X,cx) + U (X,C(/ )
ieN/(1) T 1 °1

~

with respect to X=X whenever oy =&- This means that £ is the best response

~ A A

for agent 1 to g in (B,v).

”~

By modifying the definition of s in the above way, we can check in the

~

same way as Proposition 5 that for every isN, gy is the best response for

~ ~A A

agent 1 to g_; in (g,vy). From these arguments, we know that (g,g) is a

AA

Bayesian equilibrium in (g8,v).

Finally, we can also check easily that the logic of Lemmas 8 and 9

A

applies to the two-stage mechanism (g,y) with a minor change. Therefore, the
proof is completed.
Q.E.D.

6.3. CONDITION AND RESULT

We introduce a condition on (ui) Condition 3, which is regarded as

i=N’
cne of the weakest conditions which distinguish the case that each agent’s
utility depends on the other agents’ private informations as well as his

owWn one:
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CONDITION 3: For every asA and every «=A, if a » &, then,

sfa,a) * Wia).

If ui(x,a) does not depend on a—i for_ all isN, then, s(a,«) = W(“/al)

holds, and therefore,
s(a,x) = W(g) whenever 3y = ooy

This means that Condition 3 does not holds in the "independent-utility" case

»

explored by D'Aspremont and Gerard-Varet [1], Cremer and Riordan [3], Green
and Lafont [4], Groves [5], Matsushima [10], and so on.

The main result in this section is the following:

PROPOSITION 11.: Conditions 1 and 3 hold. Then, (g,&) is a Bayesian

A~

equilibrium in (Rg,y) if and only if

Fal

g = d»

and for every asA,

~

a(al,o(a)) = W(a).

PROOF: From the argument in the proof of Proposition 10, we know

that if F,(al,a(a)) = W(a) for all a=A, then, (g,£) 1s a Bayesian equilibrium

A A

in (g,y). All we have to do is to show that if (5,£) is a Bayesian

A ~ Fa

equilibrium in (g,v), then g = g, and, for every asA, s;(al ,a(d)) = wW(al).
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Suppose that (g,£) is a Bayesian equilibrium in (g,y), where g = (d,e).

ol

Suppose that d is not the identity mapping. Then, there exists asA such that

-~ ~ ~

d(a) = a and d;(a;) = oc;-

Fal

We know that 34(a4) belongs to Q4 for all §4EA4. From the definition of £

and Condition 3,

~ Fal ~ ~ ~ ~ Py ”~

f(d(a),e4(a4),a(al,a(a))) = f(d(a),e4(a4).c(a,d(a))) = - D4,

whereas,

~ A -~ -~ >~

* *
£(d(a)/uz.e,(3,),£(a ,o(aJ/(a3,€3(83))) = 0.

~

This, together with the definition of D,, means that, if a3 =ag and my =

*
(a3,e3(a5)), then

I3 [{US(E(ai’O(a))’a) + vz(o(a),i(ﬁ..o(a)))}

-37-3
- [a;]
- {ua(gtal,a(aJ/ng),a) + sf3(o(a)/n5 &3 ,o(a)/ng,) J)}Ip (a_3 )
) [a_] : [a,] ™

s T (S-S @@/eg)e ° ag) -Dp 0 (ag)

a cA

-37-3
< 0.

This is a contradiction of the Bayesian-equilibrium property. Hence, the

proof is completed.

Q.E.D.
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A

Proposition 11 means that any Bayesian equilibrium in (8,y) sustains W

~

through Rg. Once we reguire the perfectness of equilibrium points according

~ A

to Selten [16] and Kreps and Wilson [6], we can check that (g,g) is a unique

perfect Bayesian edquilibrium in (gR,v): If (g.,g) is a perfect Bayesian

equilibrium, then for every alsAl and every msM, g(al,m) maximizes the

conditonal expected payoff for agent 1 irrespective of whether (al,m) is

~

reacheable or not. Therefore, if (g,g£) is a perfect Bayesian equilibrium in

~ M

(R,y), then, for every alsAl and every m = (ai,qi)istM, E(ai.m) maximizes

u (X,e/3,) + § U, (X, )
1 L ez

e ~ A

with respect to xsX. This means that £ = g. Since (g,2) is a perfect

Fa S oY

Bayesian eqilibrium in (g,y), we obtain the following theorem:

A

THEOREM 12: Suppose that Conditions 1 and 3 hold. Then, (g,£) is a.

A

unique Bayesian equilibrium in (g,v).




*

APPENDIX A

PROOF OF PROPOSITION 6: From the proof of Proposition 4, we know that

if Gi: is a best response for agent 1 given that the others conform aj» then
g; 1s separable, i.e., g = (di,ei), where

v, (B.)]
e;(a,) =p for all a,=A, .
1 i 1 1

All we have to do is to show that di = vy -

From the same argument as Propositions 2 and 5, we know that for every

~la,]
_ . _ i
aieAi and every mi = (ai,qi)eMi, if ql =p and o * W (ai ), then

~ ~ [a-3

£ {u(glala)),a) + s (al@}p ~ (ay)

a .eh
-1 -1

- }:A {ui(g(a(a)/mi),a) + si(o(a)/na)}p (a_i)

-1 501

. . [a, ]

= R gA {u; (g (v(@)),a) -y (g (v(a)/ui),a)}p (a;)

-1%0-4

"[\aj_(ai)]
vy bl (e ) o e o8, )P @)
1+1%%1+1

> 0.

This means that di' = vy and therefore, such a g is a Bayesian equilibrium

A A

in (g,s).

Q.E.D.



.._.49..

APPENDIX B

We show that four properties, (i), (ii), (iii) and (iv) hold. For every

ieN, we define

Ay = {aisAi: g, (a;,)eQ },
* *
Ay 1= {a, A, : ei(ai) = ai},

and

ok R
e C P (3,) = o }-

PROOF OF PROPERTY (i): Notice that Afjl is nonempty. By definition,

. _ *
for every aiEAi and every m = (“i‘qi)EMi’ if ql =8 (ai) and o * of > then

~

®
N EA E [{y (90leg .8 (30, Cog oy () g 05y),3)
e A R s |

~

+

x

-~

{ui(g( (aj ,ej (aj ) stN’a)

~ [a,]
s ((aere, (@) D) T o:@) (e )P =
LT N gy TS

+

(a.)

1

"[ai] A[a-i]
Ei ¥ " P (ai+1) - Di ) . p (ai+1
354141 841584

)

v

fL {9 (/g )R

a_,8A .o .=A .
S A R B
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. [a, ]
- U (g («)ad} 1 a (a, )(03 )p (a; )
jeN/(1y I
+ (e )
A, EA {r; log soq4q
F3+1% 41 %41 41
~a;]
Ty log ey I o By Moy P T ()
“[ai]
> E, % P (8,0 = C - D
35+15M41
> 0.
. R
This means that di(aj.) = oy for all aisAi.
Q.E.D.
PROOF OF PROPERTY (ii): Notice that A’;jl is empty and Az+l is

nonempty. By Qefinition, for every aisAi and every mi = (“i’qi)ENE’ it qi =

*k
ei(ai) and mi % (xi , then

Fa

&k

+

hk

3 5eN/ (i)

A

{ui(g((aj,EH(ajJ)jgN.a)

~ [a.]

+5, (ere.(8,)). I} T a(@)le)p & (a,)
LTI e gy 3 % i
~la.]
ES *k
=D, Y P (a.. ,) + ) Y {uw (g («f ),a)
L P i+l a_.EA_.oc_.SA + * Oi

AR Rt T o
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* _ [ai]
ui(g ()o@} 1T o, (azj)(mj p (a,}

5eN/ (1) - .
E$ 3
+ oz, ¥ Y {r: (o »o6,q)
la A, sA, S

i+ 1%+ 551

~la,]
1
T T leg ey I b0pag Beg Vo )P (80

~la, ]

1
2 Di E** p (ai+1) Ci

35 415P 4
> 0.
Thi that g.(a.) = o = for all a, =A
15 means a (ji ai = (xi o aiE y -

Q.E.D.

We can prove Property (iii) in the same way as Property (i), and

Property (iv) in the same way as Property (iij.
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