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Abstract

This paper studies a single-item multi-period inventery model in which a
procured item is sold with fluctuating market prices, Tﬂe feature of the model
is that the procurement is a random variable, which reflects the uncertainty of
the production of agricultural or marine products. The paper determines the
optimal policy which maximizes the total expected discounted reward over an
infinite planning horizon. It also discusses the relationship between the

maximum expected reward and the storage capacity.



1. Introduction

In many kinds of agricultural or marine production and in the production
of certain industrial items, it is not certain how many units of the item is
procured when an order, i.e. a request to replenish the stock, is placed. This
paper considers the inventory problem of ordering such a commodity and selling
it with fluctuating market prices so as to maximize the total expected
discounted reward over an infinite planning horizoa.

The model studied assumes that decisions are made at regular intervals.
An order can be placed in each period, and between order and delivery we assume
there is a lag of one period of time, At the beginning of each period the
price quotation and ( if an order has been placed ) the procurement are known
before a decision is made. Prices in future perfods are determined by either
an independent stochastic process or a Markovian stochastic process. The
special assumption is that the procurement is a random variagble instead of a
fixed known amount. The sum of the procurement and the carryover from the
previous period is the all amount which can be sold. If it is observed that
the commodity should not be sold, it can be stored away as carryover to a
warehouse.

When a particular price quotation and a particular procurement are
obtained, the decision maker must make the following decisions:

1. How many units should he sell at the current price? ( Or, equivalently,
how many units should he carry over to the next period? )

2. Whether to place an order or not.

In this paper, however, we assume that an order is placed in each period,



and investigate the optimal selling policy alone. The problem imvelving the
ordering decision is so complicated that the author wishes to leave it as an
open question.

" a warehouse problem "

The model extends the inventory problem known as
to the situations in which price and procurement are random variables instead
of being known with certainty. Although a family of the warehouse problems has
been studied by several authors, published work involving uncertainty is very
scarce, The Charnes et al. paper [1l] introduced uncertainty of price and cost
offers, but it essentially removes the stochastic nature of the problem.
Uncertainty of procurement was first introduced by Karlin [2] in his static
inventory model. However, it seems that the extension to a dynamic model has
not been made yet. If we postulate a fixed amount of replenishment in a
warehouse problem, problem is equivalent to that of purchasiﬁg and stockpiling
sufficient quantities of a commodity in order to satisfy a constant demand in
each period. Magirou [3)] investigated this kind of problem with fluctuating
prices, and obtained an optimal policy which minimizes the total expected
discounted cost over an infinite planning horizon.

The problem will 5e approached by means of the functional equation
technique of the theory of dynamic programming. The model is defined precisely
in Section 2. From Section 2 through Section 4, we assume that the successive
‘prices are stochastically independent. Section 3 presents the dynamic
programming formulation and derives the optimal value function. The optimal
poliey and its characteristics are discussed-in Section 4 in light of the
structure of the optimal value fumction. The case in which the sequence of

price quotations forms a Markov chain is discussed in Section 5.



Remarks.

(1) The model involves no holding cost. It will be noticed that our approach
is also applicable to the situation where a couvex increasing holding cost
function is assumed.

(2) An constant ordering cost is implicitly assumed. Since it is postulated

that an order is placed in each period,.the cost is treated as naught.

2, Definition of the Model

This section formulates the model more precisely., First, the variables

rd

P, X yt and a_ are defined as follows:

- t

Pt = discrete random variable representing the market price of a unit of
commodity in period t, whose value becomes known at the beginning of
the. period. The realization is denoted by P, and is bounded,
0 < P, < p.

Xt = discrete random variable representing procurement that occurs im
period t. The realization X, is bounded, 0 £ X, < x.

¥, = the sum of X, and a,_1» i.e. the all amount which can be sold in
period t,.

a, = the carryover to period t+l.

It is assumed that the commodity argued in this paper is countable, and hence

Xps Yoo and a_ are integers.

The couples of price and procurement (pt,xt), t=1,2,3,..., are



determined by an independent stochastic process which is defined by
£y X(.,.) £ the joint probability function of P and X,
H
fx(.) = the marginal probability function of X,

£ x(.) = the conditional probability function of P given X=x.

P|
In period t, a selling decision is to be made on the basis of P, and
Yo Since there exists a storage capacity denoted by M, the following
constraint is effective:
-r
0<a, < (YtA M)'.

Assuming a discount factor ae(0,1l), the discounted infinite horizon
reward is
> t
I oo{p(y-a) 1}
t=1

The objective of the decision-maker is to find a policy d = {dl’ d2’
¢ss ) which maximizes the total expected discounted reward over an infinite
planning horizon, where dt specifies what act to choose in the period t as a
function of the history ht = (pl, Yo 2ys eees Pegs Yeops 3_p»
Pps yt) of the system up to period t. For an initial amount of commodity
¥, price p and poliecy d, the expected reward is denoted by
" .

t
I a{P(y-al)?,
£=1 t’t 't

[= T ]

vd(y’P)
where yl =¥ Pl = Py at = dt(pl’ Yls al’ e, yt’pt)’

and E indicates the conditional expectation with respect

Yesp = ¥ Epygs 1

to P, and Xt given that the policy d is employed.

T (ya¥) = min (v,



The maximum reward is defined as

V(y,p) = sup V (y,p).
d.

*
Let d represent the optimal policy if the above supremum is achieved by the

- * L4
policy d , i.e. V(y,p) = Vd*(y,p).

3. DP Formulation

Using Theorem 6.3 and Corollary 6.6 in Ross [4], the following holds:
1. V(y,p) is the unique solution to
(1) viy,p) = max { (y-a)p + aEV(X+a,P) },
0 < a< (yal) '
2, If we define the following recursion
(2) Vn+l(y,p) = max { (y-a)p + aEVn(X+a,P) Y
0 < a< (yaM)
for any bounded real-valued function Vo(y,p), we have Vn(y,p) + V(y,p)
as n + o,
3. The stationary policy which selects an action maximizing the right-hand
side of (1) attains V(y,p).
In order to specify the figure of a function defined on integers, we

introduce the following definition.

Definition A function f(i) defined on { 0,1,2,...,k } is called concave

iff £(i) - E(i-1) > £(i+l) - £(i) for i=1,2,...,k-1. //



Lemma 1. The optimal value function V(y,p) is nondecreasing in y and p,

and is concave in y for any fixed p. //

Proof. The nondecreasing properties are evident from (1). We shall

establish the concavity by showing that Vn(y,p) is concave in y for all n,
Let Vo(y,p) = 0, which is concave in y. Suppose Vn(y,p) is concave in y.
Let us define A(y) = Vol

evident that A(y) = A(y+l). If y =M, A(y+l) = p and

(YSP) - vn+l

(y-1,p). TFor y > M+l, it is
Aly) =V, (Mp) =V (M~1,p)
= max { (M-a)p + aEVn(X+a,P) Y
0<asH - max { (M-l-a)p + aEVu(X+a,P) 3
0 <a<lM-1
2 P

Hence, A(y) > A(y+l). For any fixed 1 <y £ M-I, define

M(s) max { (y-a)p + «EV(X+a,P) }.

0£af<s

Then, we have

[}

Aly) = M{y) + p ~ M(y-1),

Aly+l) = p + M(y+1) -~ M(y).
Since uEVn(X+y;P) is concave in y from the induction hypothegis, it 1is
sufficient for us to consider three cases:
Case 1. Maxima of M(y-1), M(y) and‘M(y+l) are attained by a common a such
that 0 < a { y-1. Then, A(y) = p = A(y+I).
Case 2, Maximum of M(y~1) is attained by a = y-1, and maxima of M(y) and

M(y+1) are attained by a = y. We have A(y) > 2p > p = A(y+1). The first .

inequality holds from M(y) > p + aEVn(x+y—1,P).



Case 3. Maxima of M(y-1}, M(y) and M(y+l) are attained by a = y-1, a =
and a = y+1, respectively. Then, we get
A(y) = oEV_(X+y,P) - aEV_(X+y-1,P),
Aly+1) = aBV (X+y+1,P) - aEV (X+y,P).
Since aEVn(X+y,P) is concave in y by thg induction hypothesis, we have
ACy) > A(y+1). Therefore, it is established that Vn+l(y,p) is concave in
y. /]
Let us define
8. (z) = E [ max({P,z} 1,
where Ex rgpresents the conditional expectation with respect to P given X=x.
The following properties of Sx(.) are easily verified.

1) For any z £ 0, Sx(z) = Vp whefe Hpyy 18 the mean of the

P

-

conditicnal distribution of P given X=x.
2) For any z > p, Sx(z) =z,
3) Sx(Z) is nondecreasing in z.
4) For any z 2-22’ Sx(zl)-Sx(zz) £ 2) = 2y
5) For any 8 <1, z - BSx(z) is nondecreasing in z.
6) For any B such that Be(0,1) and any real A,
7= BSx(z) + A
is a contraction mapping from Rl into Rl. Hence, the equation
(3) z = BSx(z) + A

has a unique solution.,



Proposition 1. The optimal value function is expressed as follows:

y
Tmax { p, c.} + ¢ ’ for 0 <y < M,
. 1 0 -7 =
i=1
v(y,p) =
M
(y-M)p + I max{ p, e,y + cq for M+l { y £ M+x.’
i=1

The sequence Cys Cpavees Oy is nonincreasing and is the unique soliution of

the system of equatious

M~i : x
(4) c; = o E fx(x)sx(cx+i) + E fx(x)pplx )
x=0 x=M-i+1 ]
for i=1,2,,...,M.
<4 is given by
« ¥ X E3 M
(5) e, = —{ L £.(x) 28 (c.) + I £,(x)Z s _(c.) =
0 1-c x=0 X i=1 X 1 w=M+1 X i=1 X 1 + 3 fx(x)(x—M)pPlx}’

x=M+1

where p|x is the mean of the conditional distribution of P given X=x. //

Proof. From (1), we have
v(0,p) = aEV(X,P),

(6) V(y,p) = max{ p + V(y-1,p), oEV(X+y,P) >} for 1 <y < M,
V(y,p) = (y-M)p + V(M,p) for M+l <y £ M+X.

Let us define css i=0,1,2,...,M, by

¢y = CEV(X,P),



c; = GEV(X+i,P) - oEV(X+i-1,P) for i=1,2,...,M.
Then

y
(7 aEV(X+y,P) = % cis
i=0

and hence, (6) is written as

v(0,p) = ¢4, ,

V(y,p) =max { p+V(y~1,p), EZ c. Y for 1 {y <M,
i=0

V(y,p) = (y-M)p + V(M,p) for M+l <y < M+x,

By induction, we shall show that V(y,p) and s satisfy

v(0,p) = ¢

0’
¥y
(8) V(y,p) = I max {p,ci} *+ ¢, for 1 £y < N,
i=]
V(y,p) = (y-M)p + V(M,p) for M+1 <y < M+x.

We observe that V(1,p) = max{p,cl} * chs which satisfies (8). For any

1 { k £ M-1, suppose

k
V(k,p) = Z max{p,c.} + c..
. i 0
i=1
Then
k k+1
V(k+1l,p) = max { p+ I max{p,c.}+c., I c. }.
. 1 0’ .-, 1
1=1 i=0
If p > Crs1? (8) holds with k+l. If p < Cpppr ¥e got from the
nonincreasing property of e i=1,2,...,M



k+1 k+1
V(k+l,p) = £ c; = I maX{P’ci} +c

3
1=0 1=1 0

which completes the induction. Substituting (8) into (7), we have

¥ M-y x+y X M
(9) Tec., =of I £ (x) 285 (c.) + T £ (x) z 8 (c.)
j=g T x=0 ¥ j=1 * * x=M—y+]l * =1 ¥ *

} + ac

X .
+ z fx(x)(x+y—M)pPlx 0

x=M-y+1

for y=0,1,2,...,M,
Letting y = 0, we get (5). Taking the difference of (9) with respect to y, we

obtain (4). Since the equation (4) with i=M is a kind of equation (3), Cy is
uniquely determined. Similarly, it is shown recursively that Cyps e+t 1Sy

are uniquely determined, which proves the proposition. [/

Remark. The sequence Cis Cpaeves Cy in Proposition ] satisfies
0« Sy £ Cy—1 £ o0e £ <, < ¢y Lp. - !/
Proof, It suffices to show that <y £ P, since other inequalities

are obtained by Lemma 1. Suppose ¢ > P. From the properties 1), 2) and 3)

of Sx(z), we have
(10) Sx(c
(11) Hplx < Sx(cl) =cy.

Substituting (10) and (li) into (4) with i=1, we get

M-1 X
¢, & o I £(xde) + I £u(x)e; ) Lacy,

x=0 x=M

~10-



which contradicts to the assumption that ae(0,1).

4.0ptimal Poliey

Theorem 1. When the process is in state (y,p), the optimal a = d (y,p)
is described as follows:

1} If there exists a k such that ¢ <pX< € then

k+l
k ifFk <y ( sell y-k units ),
a =
{ y itk >y ( sell nothing ).
2) If p £ cy» then ”
a=(yaM) ~ ( sell nothing or sell the excess of

the commodity over the storage capacity).
3) 1f p > ¢, then
a=0 ( sell all ), !
Proof., If there exists a k such that sl <pX Cpo by

Proposition 1, we get for 0 { y < M

k

(y-K)p + E ¢, if k <y,
Lo
i=0

g

V(y,p) = I max {p,c.} + ¢, =
. i 0
1=1 y

I e, if k 2y,

and for M+l <y < M+x

—-11-



M
V(k,p) = (y-M)p + £ max{p,ci} + ¢
i=}1

k
(y-k)p +.E c; + ¢ge
i=]1

it

Employing equation (7), we have in either case

(y-k)p + aEV(X+k,P)

Viy,p) = {
GEV(X+y,P)

if k <y,

if k >y,

Therefore, if k < y, then the maximum of (1) is attained by a = k, and if

k >y, it is attained by a = y, which proves case 1) of the theorem.

Similarly, if p £ Cy? then

[ e e
0
1]

i=0

V(y,p) =
M

(y-M)p + T c.

. i
1=0

[}

¢EV(X+y,P)

(y~M)p + cEV(X+M,P)

if 0 <y i,

if M+l <y £ M+X,

and if p > ¢y V(y,p) = yp + ¢y = ¥P + ®EV(X,P), which completes the

proof of case 2) and case 3). //

-12-



The optimal carryover in state (y,p) is described by the subsets on the

range of the price as shown in Figure 1.

l )
case 2) | case 1) { case 3)
! !
! I
| |
|
sell nothing: sell nothing f sell some ! sell all
. [
[ : 1
I 1 I
| — 1 sy
¢ “M-1 cy cy—l y-2 2 P
a=y-1 a=y-2 a=]
sell sell sell
1 unit 2 units y-1 units
Figure 1. Optimal decision rules for a given 1 {y < M

A numerical example is presented on the next page.

-13-



Example. Assume that X and P are independent, and that their distributions

are

0.2 for x=0,1,...,4,
fx(x) ={

0 otherwise,

0.025 for p=1,2,...,40,
fP(p) = {

0 otherwise.

Let ¢ = 0.9 and M = 10. Using the method of successive approximations, the

sequence of ¢, is obtained as follows:

o = 500.027
¢y = 24,846
c2 = 24.679
cy = 24,413
e, = 24,077
c5 = 23.691
c6 = 23.271
20

' “\\\____“n ¢, = 22.104
cg = 21.055

¢y = 20.104

e, = 19.240



Next proposition describes the relationship between s i=1,2,...,M,
and M. Let ci(M) denote c; under the storage capacity M. Define
S(z)= E[ max{P,z} ]. 8(.) has the same properties as Sx(z) presented in

Section 3, and satisfy

(12)

il o1 =

fx(x)Sx(z) = 8(z).
x=0

Proposition 2.
1) ci(M) is nondecreasing in M.
2) When M increases to M+l, cO(M) increases by

s 9SC e G8l) ) = ¢ (el 3.

3) As M tends to infinity, cO(M) converges to

o X *
I z xfx(x)Sx(c ),
x=0
* *
where ¢ = aS(c ).
Proof. 1) By (4), we have
X

cM+1(M+1) = af fX(O)SO( cM+1(M+I) ) + xilfx(x)pplx Y,
x

CM(M) = af fX(O)SO( CM(M) )+ X fX(X)pP[x ¥
x=1

-15-



Since the equation has a unique solution, we get cM+l(M+1) = cM(M), Applying
(4) successively, we obtain
(13) e, (M+1) = ¢, () for i = M, M-1, ..., 1.
Thus, we have from the nonincreasing property of c;
Ci(M+1) > ci+l(M+l) = ci(M) for i =1, 2, ..., M,

which completes the proof of part 1) of Proposition 2. //

Proof 2) Employing (13), we have
X X x+1

(14) T 8ele, ) = % 8pe,, (k1)) = I 8y (c, (M+1))
i=1 i=1 i=2

With the help of a little algebra we get from (5), (12) and (14)

s

cO(M+1) - cO(M)

M ‘ X

= I%E [ S(cl(M+1)) - E £,(x)8 (e, (M+1)) + _E £ (x) M (x ¥ )
x=0 x=M+1

= = as(e, (W1)) - ¢ (1) )

The last equality is established by (4) with M+l. //

Proof 3) From the remark in the previous section and part 1) above, cl(M)

approaches to a limit, say c+, as M > », Employing (13), we have

+

lim ci(M) = 1lim cl(M—i) =c for i =1, 2, ..., X.

Moo Mye0

-16-



Hence, we get from (4)

X

+ . L

e = lim cl(M) = lim o 2_fx(x)Sx(ci(M))
Moo Mo x=0

x
= a I £.008,(c") = as(ch).
x=0

* *
Uniqueness of the solution yields et = ¢ , where ¢ =‘uS(c+). Thus we obtain
from (5)
x
. o %
lim e. (M) = — I xf_(x)S (¢ ). [/
0 l1-o X x
Mo x=0

5. Markov Chain Model

let us consider the case in which prices in future periods are determined
by a Markovian stochastic process. Assume that the set of realization of P is
{ Py Pps sees P Y. The conditional probability mass function of Pt
is denoted by f

given X, =xand P (.), and the

t~1 - P P]x,pk

conditional probability-mass function of Pt given Pt—l = Py ( the
transition probability of P ) is represented by fP[p (.).

' k

Since the optimal value function and the optimal policy is derived by the

same procedure used to establish Proposition 1 and Theorem 1, we shall only

exhibit the results.

-17-



Proposition 3. The optimal value function is expressed as follows:

It~

max {pk ,c?k} + cgk for 0<y<H,
i=1

viy,p, ) =

=

(y-M)pk + E max{pk ,cpk} + cgk for M+1<y<M+x.
=1

The sequence c?k, i=1,2,.4.,M, k=1,2,...,m, is nonincreasing in i for any fixed

and is the unique solution of the system of the equation

Pp
p M-i m p
(15) c;k = a{xgﬂfx(x)J§1§ix{ Py ciJ}fPlx,pk(pj)
%
+ b fx(x)pP!x - ), for i=1,2,...,M,
x=M-i+] k=1,2,...,m.
cgk, k=1,2,...,m, is given by
M X m
(16) cPr=al T £ (x) I T max{ p. c. (p.)
0 x=0 X7 i=1 j=1 Py PI X,Py ®3
+§f()’§§a{ Boye, . (p))
p. 4 max C A
=M X071 =t Py» Cf Plx,p P}
x
+ —_—
x=§1+1fx(x)(x M)pPl } ]
m
+ o X
e P[pk(P )c
where Hp| p denotes the mean of the conditional distribution of Pt
2
] k
given Xt = x and Pt“l = Py

When the pfocess is in the state (y,pk), 0y <M, 1 {k<m, the

*
optimal a =d (y,pk) is described as follows:

-18-



1) If there exists a certain Jj such that c?El <pX c?k, then

3 if <y ( sell y-j units ),
{ y ifj>y ( sell nothing ).

2) 1£ p £ cﬁk, then
a=(yaM) ( sell nothing or sell the excess of

the commodity over the storage capacity ).

3) 1f p > cik, then

a=0 ' ( sell all ). 7/

We will show that above two systems of equations (15) and (16) have

unique solutions, respectively. Letting i = M in (15), we have

m

P, _ P,

(17) ek o fX(O)ngmax{ Py cMi}fP|0,Pk(pj) )

+ o E il
x=1

X(x)pPIX,pk for k=1,2,...,m.

Define a mapping T from R" to R" such that

=
nea
=]
o
]
~~

. wl }alj + A

1 i 1

= hj
T(w) B I max{ pj, W }akj + Ak

i .
B i max{ Pj’ w }amj + Am R

~]18-



— 2 m .t _ .
where w = (W, w,eee, w ), 3 = fP|Pk(Pj)’ Re(0,1) and A is any
1. For amny u, = ( ul u2 uy )t u, = ( ul 'u2 un )t
real. 1 E 12 U s s Uy = gs Upseees Ug ),
_ 1 2 m ,t - 1 2 m .t
W, = ( Wis Wiseers W) )" and w, = ( Wos Woseen, ¥ )" such that
ul=T(wl) and u2=T(w2), we have
" . ,
max | uk - uk | = B max | £ a,.[ max{ p., w3 - max{ P., widy 11
1 Z «_q KJ | 1’2
k k j=1
m ] 3
{Bmax I a, .| [ max{ p,, w3} - max{ p,, wi} I
- Kk 3=1 kj J 1 J 2
J
m .
{Bmax I ak.[ W{ - W% [
koj=1
< B max | wj —-wj |.
= 1 2

h]
The first inequality holds by the triangle inequality. The third one is

obtained by the fact that a , < 1. Therefore, the mapping T is a contraction

kj
mapping, so that the equation u=T{u) has a unique solution, and hence the
sysfem of equations (15) has a unique solution %}, k=1,2,...,m.

pk cpk pk k=1,2’.oo,m0

Similarly, (15) has a unique solution ey Culgseees o8

Let us display the uniqueness of the solution of (16). We write

m
P, . P, -
(18) cok ajflakj coit By for k=1, 2,..., m,
where akj = fP[Pk( PjM) and - ]
= - J
b = MO et Py o My p (P
. m ‘F).
+ £ (x).% % ., ¢ .
X X iy pg o Plx,pk<pJ)
f - .
g KO CWpy ]

=20~



(18) is equivalent to

~1l/a Ak

which is written as

(19)

where

r-1/ot Al

1/o A2

/e A
o m

P: _ P
aijOJ 1/a cok for

anl an2

k=1,2,..

- M,

lm

2m

a .- 1/a

However, it is known that the absolute value of the eigenvalue of any transition

probability matrix is smaller than or equal to 1, so that the determinant of A

cannot be 0 from the assumption that oc(0,l). Therefore, the equation (19),

or the system of equations (16) has a unique solution.

-21-



6. Conclusions

An optimal selling policy of the inventory madel has been presented in
both the case where price quotations are i.i.d. random variables and the case
where the sequence of price quotations forms a Markov chain. The poliey is
specified by a sequence obtained as a unique solution of a system of equations.
The policy seems to be intuitively natural owing to the following properties:
1. The more we have, the more commodity should be sold.

2. A critical price which determines whether the optimal action is to sell at
least one unit or to sell nothing decreases aélthe amount of commodity at
hand becomes large.

3. As the storage capacity becomes large, the critical price stated in 2
becomes higher and the amount of commodity to be sold becomes smaller.

A furtﬁer outcome is a quantitative evaluation of the maximum expected
reward under a certain storage capacity. The expected reward under the optimal
policy is an increasing function of the storage capacity.

Comparing the expected reward and the cost of building a warehouse, the
long term problem of determining the optimal storage capacity can in principle
be solved, although the calculation is rather intricate. When the successive
price quotations are i.i.d. random variables, the beneﬁits one can obtain from
additional storage capacity is evaluated. This will be available to determine
whether one should expand the present warehouse or not, We have also obtaiﬁed
the limit to which the maximum expected reward under no initial amount of
commodity converges as the storage capacity tends to infinity. It will show

the manager the upper bound of the cost of building the warehouse.

-22-
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