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(1) Introduction

In recent years, a few developed countries havé experienced a trend toward zero
natural growth rate. In Japan, for example, it is predicted that the total
population would become constant in a few decades. This trend, however, does
not always imply that the population of every region in a country will become
constant. Rather, it is likely that the population of some regions will decline
through migration processes. In conjunction with this trend, an increasing
attention of regional planners is paid to regional policies that will yield
the "stable" regional population. For instance, the Japanese Economic Planning
Agency (1977) has proposed so-called the stable regional settlement plan .
Paralleling these regional policies, much effort of regional analysts has been
focused upon the study of the "stable" regional population by use of interregional
migration models. (See Rogers(1966), MacKinnon(1976) and Shishido, Kitayama
and Wago(1976), for example). Along these lines, this paper attempts to obtain
the '"stable" state conditions of regional population under zero natural growth
rate in the context of a certain general class of nonlinear migration models.

The following Section 2 defines a class of population-dependent migration
functions. Any migration models that are the function of the population of
some regions, (for example, origin and destination regions; recall the gravity
migration model}, are subsumed under this class. Next an explicit

definition of the stable regional population under zero natural growth rate



is provided. With these preliminaries, Section 3 first shows a theorem
regarding the stable state conditions of the population—dependent migration
functions. Second, as a specific case, the stable state conditions of the
gravity migration meodel are derived from this theorem. Section 4 considers
the empirical implications of the theoretical results. First, the parameter
values of the gravity migration model are estimated by the data of inter-
prefectural migration flows in Japan. 3Based upon these results, second, a
possibility of achieving the stable state in Japan is discussed. The paper

ends in Section 5 by summarizing the major cenclusions.

(2) A Class of the Population~Dependent Migration Functioms
Consider a situation in which there are =n regions, R,, R,, ..., R,
1’ 72 n
in 2 country where it is assumed that:

Assumption 1. The natural growth rate of every region Ri’ i=1, 2, ...,

e
- 0

is zero after a certain point in time, ¢

Let Pi(t) be the population of region Ri at time t, and Mij(t) be the
migration flow from region Ri to region Rj at time t. It is then
obvious that the population dynamics of the regions Rl’ Rz, cees Rn are

described by

(1) dPi(t) E %
2 - i = ey H t
Ir 44 Mji(t) 41 Mij(t), i=1, 2, n; £t >t

With respect to migration functions Mij(t), a variety of models has
been proposed. (For instance, see Reeds and Wilson (1975), and Greenwood
(1975), among others}. In this paper, however, we shall confine our atten-

tion to a certain class of migration functions characterized by:




Assumption 2. Migration function Mij(t) is the function of the

population of some regions {(at most n regions), i.e.,

(2) Mij(t) = Mij(Pl,(t), Pz'(t)’ vees Pm,(t)),

i%j,i,j=l,2,...,n, m'gn.

Moreover; ~ equaticms (1) and (2) is closed in the sense that these

equations are sufficient to determine Pi(t), i=1, 2, ..., n. t> t_.
0

For convenience, we shall call these migration functions a class of the

population-dependent migratiom functions. It should be noted that

parameters such as a distance between regions are not excluded from this

class. For example, the gravity migration model given by

YL [2]
P, ()P (0)

(3) M) =6 o
is obviously subsumed under the class of the population~dependent migration
functions. Furthermore, it is noted that migration functions of variables
X are also subsumed under the same class if variables X are the function
of population variables P' = (Pl, P2’ veas Pn) and equation (1) with
Mij(x) = Mij(X(P(t))) can be transformed into the closed form.

One more assumption is added to the class of the population-dependent

migration functions, that is:

Assumption 3. Funections Mij(P),[B] i#3,1,§=1,2, ..., n,
are continuous with respect to t{ >to) and P{(>0). Moreover, there

exist BMij/a?, i#j,1i, 3=1, 2, ..., n that are continuous.



This |

Iassumption may imply that migration flow changes smoothly as the population
of the regions changes. The existence of unique solutions will be guaranteed
by this assumption. (See Pontryagin (1965)).

Before examining the stable state of the regional population P(t), an
explicit deﬁinition of that state should be stated here.
Throughout this paper, we shall employ the concept of Ljapunov's stable state

(4]

with a certain restrictiom. The stable state in almost Ljapunov's sense
implies that the population P of the regions neither increases nor decreases
at P = P* (an equilibrium population), i.e.,

(5) 48 =0, t>t,

dt P = Pk

and that any population P close to P¥ satisfying P e E={» |
n n
%
Z Pi = I Pi} moves to the equilibrium population P*%. In other words,
i=1 i=1 '

even if the population of the regions happens to run off P%* a little, the

populatioﬁ will return to P*, In mathematical terms, the stable state is

defined as an equilibrium point‘ P* given by equation (5) such that i}
there exists a sufficiently small number o > 0 and if | P~ P [ < P,

P & (-, then the solutions ¢P(t, P) of equation (1)' with the initial condi~
(5],

tion P(to) = P* exists for t > to ; ii) for any positive number ¢ ,

there exists positive number &§ < p, and if ]P - P*| <§, P e, then

| (e, P) ~ P*| < c.[6]




(3) Conditions for the Stable State of Regional Population
With the above preliminaries, we are now ready to investigate the

stable state conditions of the population-dependent migration models, i.e.,

' dPi n n
% - I M.i.(fP(t)) - I Mi.(P(t)), i=1, 2, ..., n.
i#i sl

To make the analysis intuitively tractable, we first examine the case of

two regions, say the north RN and south R, regions, and next the general

S

case n > 2 will be investigated. It should be noted that the north-south

region case has not only analytical simplicity, but may also have a practical

(7]

implication in considering so-called the north-south problems. -

The population dynamics of the north-south region case are given by

dPN(t)
“ J —gr— = M (P(E)) - M (R(E)),

l apg(t)
L M) - g (),

P.Y. The equilibrium population P* will be obtained from

(M M @F) = M (PR,

which may or may not exist. Suppose that the equilibrium population P¥*
exists. Now by use of Taylor's expansion at P#%, (which is guaranteed by
Assumption 3), the behavior of equation (6) in the close neighbourhood of

P%, i,e., in { P* +p: | p | < p~ 0}, (see Fig. 1), may be examined by



¢ 9y (BMSN i BMNS) (BMSN i BMNS) )
| 3t 3P P ‘PN + VP 5. P8
N N S S
(8) ;
arg (BMNS BMSN)P +.f8MNS Ay )
_ - ¢ - o,
dt ap, ~ op ‘PN WP T 3P 'S

Fig. 1. Population dynamics of two regions in the close neighbourhood

of the equilibrium population

To see the state of the equilibrium population P#* , one may borrow the
results obtained in mathematics.[s] {See Pontryargin (1965), for instance). )
We shall, however, employ the following intuitive method because of a

specific nature of Assumption 1, that is, the total population is constant

over time, i.e.,

(9) py +Pg = 0.

Upon substituting equation (9) into (8), we obtain

-
1 dPN ) (SNSN N BNNS)
(10) ; at op,  9Pg ‘PN’
/
t dPS ) _(BNSN . BNNS)p
dt BPN BPS N, .
where N,, = M,., - M.., i, j = N, S, (net migration flow).

1ij 1ij ji




Now consider any population P that satisfy ]p [< g and Py = —pS > 0

(or Py, = “Pg < 0), say point A (or A') in Fig. 1. If the equilibriug
population P®* is stable, the vector dP/dt at A (or A') 1s directed
toward P* that is, dPN/dt = —dPS/dt < 0 (or dPN/dt = —dPS/dt > 0)

at A (or A'). In examining these conditions and equation (10), oné

would reach the following conclusion: the population-dependent migration
functions shows the stable state if and only if there exists the equilibrium

population P* given by equation (7) and the relation

(11) BNSN . BNNS
BPN BPS

<0 at P = P*

holds. As a corollary to this result, one would easily see that:

Lemma Suppose that the natural growth rate is zero in two regioms RN

and RS, and that the population-dependent migration functions MNS and

R . pE 0 = "
MSN have the equilibrium population P*, i.e., MﬁS(P ) MSN(P ).

Then, if the relation

ON.. B(Mji“Mij)

(12) BPJl = 5 >0 at P =P*, i,j = N, S,
i i

holds, the equilibrium population P* is not stable.



Having established this lemma, let us now consider its implicatioms.

For illustrative purposes, suppose that the equilibrium population P#* is

* )
given by PN = 20,000 and PS = 10,000. At this equilibrium population
P*, it is obvious MNS(P*) = MSN(P*), or NSN = 0, that is the net migration

h [9] region is zero. Next, the population

flow from the south to the nort
of the north region happens to increase by 1,000. (Consequently the

population of the south region decreases by 1,000). Since the population
P runs off the equilibrium population P*% | the net migration flow NSN
is likely to change, i.e., NSN # 0. Noticing that the‘population of the
north region becomes larger than before, it may be natural to expect that

the net migration flow into the north region will increase, say NSN = 1,000,

In mathematical terms, this condition may be written as (12). In this case,

8,000 and hence
%
]

however, the population becomes = 22,000 and PS

N

*
it does not return to the equilibrium population P = 10,000.

N 20,000 ané P

Stated differently, if the marginal net migration flow is positive at the
equilibriuﬁ population P*, or the "attractiveness" of a destination increases
as the destination's population increases at P#*, then the equilibrium
popuiation P% 4is unstable.

Alternatively, the above lemma could be viewed as follows. Suppose

that the relation

aN, .
(a2’ It 0 at P =@*% i, § = N, S.

aP.

i
holds. This condition implies that at the equilibrium population, the
marginal net migration flow into a destination decreases as the destination's

population increases. In this case, the relation (11) is satisfied, and hence




the stable state will be achieved. In other words, the stable state will

be established if the equilibrium population is satulated, that is, the
"attractiveness" of a destination decreases when the destination's popu-
lation exceeds the equilibrium population. This property may correspond

to the "diseconomy'" of regional population-size. Hence we may alterndtively
say that the stable state will be achieved when the "diseconomy" of regional
population~size appears.

Up to the above argument, we have assumed Assumption 1, that is, the
total population remains constant. It may, however, be 6f interest to ask
what will happen if the small amount of population p > 0 is added in the »
stable state population P* from the outside, for instance, people migrates
from foreign countries. In this case, it is readily seen that the population
P% + p will not return to P¥%, for Py + Pg > 0, Hence the equilibrium

f10]

population P#% 1is not stable in a strict sense. However, after a few

steps of_derivation, one wou%d realize that if the relation (ll) holds, the

population P* + p of the north and south regions will reach a new stable

equilibrium population P% + p*, An illustrative figure is shown in Fig. 1,

in which points B and 0" correspond to P* + p and P* + p* respectively.
With the above specific case n = 2 in mind, let us now investigate

a general case n > 2. Although the necessary and sufficient conditions

for the stable state could formally be obtained by use of the results found

in mathematics,[ll] we wish to show the following sufficient conditions for

the unstable state, because the implications of the latter may be more

tfactable than the former in our context.
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Theorem. Suppose that the natural growth rate is zero in every region

Rl’ RZ’ vaes Rn’ and that the population-dependent migration functions

Mij(P) have the equilibrium population P%* given by

n n
(13) I M. (P%) = % M_,(P%), i=1, 2, ..., n.
jEL 3t jAi

If there exists at least.one i for which the relation

(14) o IX s 0at p=pr
hys FI

holds then the equilibrium population P* 1is not stable.

Since the proof of this theorem appears to be rather suggestive than

mere mathematical, let us now follow the proof. BSuppose that regions

Rl’ RZ’ vy Rn are spatially aggregated into regions Ri

Rys wves Ry g5 Rypis woos RO},

region, ‘ﬁi. If the population of the regions Rl’ R2, vees Rn

it is evident that the population of region Ri and ﬁi, i.e., P,

j#i
this property.

Proof. From equation (1)', we obtain

5 dP, Tt
(16) — = I M, _(P(t)) - & M, . (P(t)),
i dt i ji 341 ij
k d?i n n
o= 5 M E®) - p oM @),

J#i hi!

and R, = { R;>

that is, region Ri and the rest of the

is stable,

and
i

P, = % P,, is also stable. To prove the above theorem, we shall use
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By use of Taylor's expansion at P#*, the behavior of equation (16) in

the close neighbourhood of P*, i.e., A= {P*+p| |p] < pn 0,
n .
z p, =0 } may be observed by

i=1

dP_ o . i
( i E ( ; aNJl ; 8N31 ( Pl
17 foodt R )

17 ( f= Piti OF1 j#1 8 P,

! L |
P 1
tdP, ! | n aN,, n 3N ©
: 1)\. X 2 1 , Z 1 - l
S : =l ..

Ly 0F1 341 %0 ) U P

If the equilibrium population P* 1is stable, then for any P E/V: the
vector dP/dt at P is directed toward P*. We claim, however, that this

cannot be so for a certain P eﬂyf'if the condition (14) holds. Consider

~ 4 N N
P'= (P*l, vee.y PR+ Pis vevees P*j + pj’ Ceaens P*n)guﬁf’ln which

i
Py = —pj.[lz] (Note that P 0 if Lk #i, j). Then the value of dPi/dt-

and d?i/dt at P =P is given by

(2 F B, Tl
(18) J dt s#1 0% 541975 Py
i
! Jr. dp .
i i
\ode o T de

Since the relation (14) holds, it is plain that the vector (dPi/dt,
dfi/dt)_ is not directed toward P*. (ﬁecall that Iji = —pj). (Q.E.D.)

Concerning this theorem, one should notice that the term 3 I Nji/BPi
= BN{i/BPi, (which indicates the marginal net migration flow between

region Ri and its outside), corresponds to the term aNSN/aPN in the
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above lemma. One would thus understand that the implications of this theorem
are almost the same as those of the lemma having discussed in the above.
Hence, we do not repeat them here, but we shall obtain more concrete implica-
tions by specifying a form of the population-dependent migration functioms.
As an example, let us consider the gravity migration model given by equation

(3). A corollary to the theorem now follows.

Corollary . Suppose the population-dependent migration functions Mij(P)

is ‘given by equation (3) (the gravity model), and the equilibrium population

P,

(19 5 b s IR L S

19 - . = . , o, L =1, 2, (.c.y M,
j’]él Jj1 ] 1 j?gi 1] 1 J

(where bij = Gi/dini) exists. If there exists at least ome i for which

the relation

(20) rzl ( 8) b P*BP*Yj_l 0 atpP =8
Yi = P, P, >0 a =
AN 3i%3 4
or
(21) Yj >R, j=1,2, ..., 1

holds, then the equilibrium population is not stable.

The proof is readily established if equation (19) is substituted into

equation (14).
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To consider an implication of this corollary, let us decompose the

y
. K.
gravity migration function GiPiBPj Ly dij *  into the "pushing' function

' 2] it Ys K.

GiPi and the "pulling" function Gin + *. In these terms, the

i]
above corollary may be stated as: if the pushing function is more concave
or less convex than the pulling function, or the pushing function is concave
and pulling function is convex, then the stable state will not be achieved.
Stated differently, if the marginal pulling power is larger than the marginal
pushing power for sufficiently large population, the stable state will not

be achieved. Obviocusly the reverse relation is necessary {not sufficient)

for the stable regional population.

(4) An Empirical Examination

With the above theoretical results, we now wish to analyze the Japanese
inter-prefectural migration flow in 1966, 70 and 75. (Japanese Bureau of
Statistics (1977)). During that period, the natural growth rate of every
prefecture had not been zero, which makes the above corollary unapplicable.
(Recall that the corollary assumes zero natural growth rate). However, it
may be of interest to ask a hypothetical question: provided that the
natural growth rate had been zero during that period, would Japan have
achieved the stable state? We shall consider this question here.

As is stated in the above corollary, the model to be examined is the
gravity migration model, i.e., equation (3), which is alternatively written

as

(22) Log Mij = B fog P, +y; 208 Pj - k; 208 dij + fog Gi,

i#3,3=1,2, «..o,n3i=1,2, ...,0
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To estimate the parameter values of B, Y; and Ky> We employ the following

estimation method: first, parameter g is estimated by

46

(23) g I Mij =B g P, tc+ gg0 1 =1, 2, ..., 46.
i=1

1
Second, parameters Yoo K4 and Gi are estimated by

(24) Log Mij = y; %08 Pj - k; %08 dij +gog G, + €55
jFdi, 3=1,2, ..., 46; 1=1, 2, ..., 46.
Last, the parameter values of Gi is obtained from

fog éi - é log Pi’

(25) %08 G,

~h ~

where Gi -and [ are respectively the estimated values of Gi and g.

Table 1 Estimated parameter values of the
gravity migration model

The numerical results are tabulated in Table 1. TFrom the correlation
coefficients listed in this table, one may say that the ekplanatory power
of the gra@ity migration model is fairly good in 1966, (the average is
.813) and good in 1970 and 75, (the averages are réspectively . 905 and
.904). It is noted that equations (25) and (26) of every prefecture are
statistically significant at .95 level. Concerning the pushing function

GiPiB, we notice that its shape varies from concave (g = 0.618 in 1966)
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to slightly convex (B = 1.06 and 1.10 in 1970 and 75 respectively). This
fact may imply that the relative mobility of large population prefectures

to that of small ones becomes higher in the course of time. With respect

to the pulling function, the average values of Yy in 1966, 70 and 75 are
respectively .911, 1.502 and 1.371. Thus the relative "attractiveness' of
destinations had a peék in 1970. Regarding the distance deterrence function

K
1/4d,,. 1, we notice from Table 1 that about eighty percent of Kj values

ij
of 1975 become smaller than those of 1966. This fact may imply that distance
deterrencé becomes weaker in recent days than before. It should‘be noted, .
however, that Ki values of Ehime, Kochi, Fukuoka, Saga, Nagasaki, Kumamoto,
Oita, Miyazaki and Kagoshima show the reverse trend. It is of interest to
notice that all these prefectures are located in Shikoku and Kyushu regioms,
(‘the southern part éf Japan) .

Having estimated the parameter values, we are now ready to examine
whether or not the unstable state conditions obtained in the coxollary of
Section 3 are satisfied. First, let us examine the sufficient conditions
for the unstable state, i.e., condition (23): Y > B for all prefectures.
In comparing the values of Y with R listed in Table 1, one would
notice that this condition is not satisfied, and that the number of
prefectures satisfying the relation s > B decreases in the course of
time. (To be precise, 42, 41 and 38 in 1966, 70, 75 respectively.) It
should be noted that the prefectures showing the reverse relation, i.e.,

Yi < f, in 1966, 70 and 75 are Osaka and those adjacent to Osaka. It
should also be noted that Tokyo showed the relation Y; > B in 1966 and
70 but Y, < B8 in 1975. Hence 1975 appeaxrs to be a turning point for

Tokyo in the sense that the pulling power dominated the pushing power before
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1970 but the later dominates the former after 1975. Since the gufficient
condition is not satisfied, we now turn to the necessary condition for the
unstable state, i.e., condition (20) of the corollafy. The value of
equation (20) is calculated and listed in Table 1. These figures show

that there exists more than one prefecture that satisfy the condition (20).
It may hence be concluded that Japan woﬁld not have achieved the stable
state. It should be noted, however, that the number of prefectures not
satisfying the condition (20) increases in 1975. (From one to five). This
fact may indicate that Japan tends to appraoch the stable state although

Japan is apart from that state at present.

(5) Conclusions

The major theoretical conclusions of this paper are summarized in the
theorem shown in Section 3. In brief, it states that the stable state will
not be achieved if the marginal net migration flow is positive at the
equilibrium population, or if the "sttractiveness" of a destination increases
as the destination's population becomes large.

The main empirical results are tabulated in Table 1. From these figures,
it may be inferred that Japan would not achieve the stable state in the

near future, but is trending toward that state.
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Footnotes

* Lecturer of the Institute of Socio-Economic Planning at the University

of Tsukuba

(1) The case of the total population being increasing, see Okaba (1977).
(2) Since the parameters of this model will be estimated by cross-sectional
data, we use B inétead of Bi. See Section 4.
(3) TYor convenience, the left side of equation (2) will be simply written
as ‘Mij(P(t)) hereafter.
(4) See footnote 5 below.
(5) This condition is satisfied by Assumption 3.
(6) The stable state in strictly Ljapumnov's sense do not assume Pei.
(7) Moreover, it will be seen later that the analysis of this case provides
a good clue to that of a general case n > 2
(8) The solution of equation (8) is written as
P(t) = <y exptklt) hl + e, hz. See Pontryagin (1965).
(9) From - to is used to determine the sign of NSN'
(10) See footnote (5).
(11) See Theorem 7 of Chapter 2 in Pontryagin (1965).

(12) Recall that the total population is comstant.
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Year 1966 1970 1975
2 NY. 1.06 1.10
R .78 .96 .97

Table 1-(a)



Year 1966

Prefacture

01
02
03
ok
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Hokkaido
Aomori
Iwate
Miyagi
Akita
Yamagata
Fukushima
Tbharaki
Tochigi
Gunma
Saitama
Chiba
Tokyo
Kanagawa .
Niizata
Toyama
Ishikawa
Fukui
Yamanashi
Nagano
Gifu
Shizuocka
Aichi

Mie

Shiga
Kyoto
Osaka
Hyogo
Nara
Wakayama
Tottori
Shimane
Okayama
Hiroshima
Yamaguchi
Tokushima
Kagawa
Ehime
Kochi
Fukuoka
Saga
Nagasaki
Kumamoto

‘0ita

Miyazaki
Kagoshima

Table 1-(b)

P

T T N N Ll T A S ey s

.91
.01
Ok
O
.07
.99
.03

.80
.75
.78
.79
71

.98
.99
098
.90
.78
.92
6L
.77
.62
33
.68
.55

.68
48
.32
.07
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.00
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.00
.02
.03
11
.10
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. 00
.20
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Year 1970
,(20)

A
m
b

Prefecture ¥ S

x10~%

1 1.61 1.27 .01 L.sg
2 1,68 2.11 .92 5.6
3 1.71 1.91 .92 8.9
I 1,58 1.50 .05 10.7
5 1.83 2.02 e 7.8
6 1,68 1,68 .93 8.2
7 1.55 1,51 .96 10.5
8 1.25 1.13 .95 7.5
9 1.32 1.19 .96 6.7
10 1.31 1.23 .96 6.4
11 1.23 V72 .95 11.8
12 1.29 .56 .95 9.3
13 1,14 .66 e 22.6
14 1,22 JLg .91 13.1
15 1.63 1.77 .95 7.8
16 1,60 1.50 .95 .2
17 1.50 1.41 .92 .2
18 1,42 1.53 .92 2.4
19 - 1.35 1.14 .96 3.4
20 1,47 1.53 .96 6.2
21 1.07 .66 80 L.8
22 1.21 .53 93 7.3
23 .97 45 74 12.8
2h 1,14 .96 .90 3.9
25 1.01 .80 .85 -11.2
26 .83 . 89 84 5.2
27 .83 .93 .74 25.6
28 1.03 1.01 .80 15.6
29 .96 .91 .85 0.0
30 1.34 1.25 .86 3.0
31 1.65 1.76 .89 3.3
32 1.90 2.37 .92 5.2
33 1,4 1.55 .90 15.9
34 1.57 1.95 .92 18.9
35 1.69 1.71 .89 19.6
36 1,60 1.81 LOL 5.2
37 1,72 1.68 .93 9.5
38 1.79 2.07 .92 11,7
39 1.76 2.03 .95 5.8
Lo 1.92 1.57 .93 60,6
L1 2.01 1.36 .90 36.7
Lo 2.05 1.68 .90 18.5
43 2.08 1.44 .88 36.4
Ll 2.04 1,71 .94 16.1
Ls 1.96 1.71 .88 13.9
Lé 2.25 1.83 .86 13.2

Table 1-(¢)



Year 1975

Prefecture
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Table 1-(4d)
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