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Abstract

With a view to obtaining an efficient procedure for sclving
large-scale systems of equations, a canonical block-triangular form is
defined for layered mixed matrices, and some practical examples are
presented. The canonical form is obtained from a straightforward
application of the decomposition principle for submodular functions.
The relation to the existing decomposition techniques for electrical
networks, as well as to the Dulmage-Mendelsohn decomposition, is also

discussed.
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1. Introduction
When solving a system of linear equations

Ax=b (1.1)
repeatédly for various values of the right-hand side vector b=b(0)
containing parameters 0, it is now standard to first decompose A
{possibly with permutations of rows and columns) into LU—factors as

A=1LT, T (1.2)
and then solve the triangular systems Ly=b, Ux=y for different values
of b=b(B). It is most important here that the LU-factors of A can be
determiped independently of the parameters 8.

No less of interest are the cases where the coefficient A, as
well as b, changes with parameters, but with its zero/nonzero pattern
kept fixed. Such situations often arise in practice, for example,
in solving a system of nonlinear equations by the Newton method, or in
determining the frequency characteristic of an electrical network by
computing its responses to inputs of various frequencies. In this
case we caunnot calculate the LU-factors of A in advance, so that we
usually resort to the so-called graph-theoretic methods and rearrange
the equations and the variables to obtain a block-triangular form
(see, e.g., (8], [151, [16], [17]). In particular, the
block-triangularization besed on the structure theory of bipartite
graphs has proved to be effeciive, and is known as the

Dulmage-Mendelsohn decomposition (abbreviated to DM-decomposition)

[2]1, [31, [4], [5]. Then, each time the parameter values
are specified, the equations corresponding to the DM-blocks may be

solved either by direct inversion through LU-decompositicn or by some



iterative method.

The above two approaches, the LU-decomposition and the
DM-decomposition, are two extremes in tha£ the former admits arbitrary
elementary row transformations on A and the latter restricts itself to
permutations only. In other words, the LU-decomposition regards the
entries of A as numbers belonging to a field in which ﬁrithmetic
operations are defined, whereas the DM-decomposition treats them as if
they were symbols, or indeterminates if one prefers algebraic ierms.
It is often the case, however, that part of the entries of A4 are to be
regarded as numbers and the remaining as symbols.

To be more concrete, suppose a system of linear/nonlinear
equations

f(x) =0 (1.3)
is to be solved by the New%on method. The equations may be devided
into linear and nonlinear parts as

£f(x) = Q x + glx), ] (1.4)
where Q is a constant matrix. Accordingly, the Jacobian matrix J(x)
of f{x) is expressed as

J(x) = Q + T(x), _ (1.5)
where T(x) is the Jacobian matrix of g(x). Then we may regard the
nonvanishing entries of T(x) as independent symbols on which no
arithmetic operations are expected, whereas the usual elimination
operations could be defined for the matrix Q.

Another typical example is a system of equations describing an
electrical network, which is made up of equations for conservation
laws (i.e., Kirchhoff's laws) and those for element characteristics

(see’Example 3.1). The former, stemming from the topolegical



incidence relations in the underlying graphs, involve only %1 as the
coefficients and hence is amenable to elimination operations. Thé
latter, on the other hand, consist of coefficients which are
contaminated by various noises and‘errors, and therefore méy be
modelled as independent transcendentals.

The present paper aims at establishing a decomposition technique
for such systems of linear/nonlinear equations that the coefficients
are classified into two groups as explained above. A canonical form

is introduced for a matrix A of the form
Q .
A= [___] , - (1.6)

where the entries of Q belong to a subfield K and the nonvanishing
entries of T are transcendentals in an extension field F which are
algebraically independent ovef E. A uniquely determined
block-triangular form is obltained with the diagonal square blocks
being nonsingular; for a singular A, rectangular blocks (corresponding
to horizontal and vertical tails in the DM-decomposition) also appear,
both being of full rank. The decompesition can be found by an
efficient algorithm so that it can be applied to large-scale practical
problems, of which some examples are given in §4.

In the literature on electrical network theory, ii has been kunown
that a system of equations describing an electrical network can be
put in a bleock-triangular form if one chooses appropriate bases
(tree-cotree pairs) for Kirchhoff's laws and rearranges the variables
and the equations (for both Kirchhoff's laws and element

characteristics). As far as the present author knows, the



decomposition of a pair of current-graph and voltage-graph is
investigated in [27], [28] in graph-theoretic terms for the
networks involving controlled sources. Decompositions of such
networks as have the admittance exéression are considered in [12],
[14] with the aid of the notion of minimum-cover in an independent-
matching problem. An attempt has been made in [22], [23]1, [24] to
define a block-triangularization for a system of equations describing
the most general class of networks with arbitrary mutual couplings
(such as those containing controlled sources, nullators and norators)
by means of the theory of principal partition of matroids, or the
decomposition principle for submodular functions [111, [13],

(141, [21], [25], [32]1, [33]. Unfortunately, however, the

method proposed in [22], [23], [24], as it stands, produces too
fine a partition for block-triangularization, which will be
demonstrated in &5 below. Ne%ertheless, the idea of [22], [23],
[24} can readily be modified to yield a block-triangularization not
only for the equations of electrical networks but also for those of
more general systems. In fact, the canonical form defined in this
paper is obtained by choosing a suitable submodular function
assoclated with the matrix (1.6) and by utilizing the decomposition
principle for submodular functions, just as has been done in [22],
(23], [24] with another submodular function.

The relations of the proposed canonical form to the
above-mentioned decompeositions, as well as to the combinatorial
canonical form of a matrix with respect to its pivotal transforms
introduced in [10], is also discussed in §5 and §6 with special

reference to the admissible row transformations on matrices.



2+ Preliminary

Some results on the decomposition prineiple for submodular
funetions [11], [131, [14], [21], [25], [32], [33] are
briefly summarized here for later references.

Let C be a finite set, and p:2C+R be a submodular function
defined on i%, il.e.,

p(XUY) + p(Xn¥) s p(X) + p(¥) (2.1)
for X, Y c C. fhe family of those subsets of C which give the minimum
of p will be denoted by L(p):

L{p) = { X | %<C, p(X) = p(¥) for all ¥cC }. (2.2)
From the submodularity (2.1), it follows that

XUY, XnY € L(p) for X, Y e L(p) .

In other words, L(p) is a (distributive) sublattice [1] of the
boolean lattice 2C. Note that the length of a maximel chain in L(p)
from min L(p) to max L(p) is uniquely determined.

By the structure theory of distributive lattices [1], there
exists a one-to-one corréspondence between sublattices of 2C and
partitions of C into partially ordered blocks. Furthermore, when a
sublattice is derived from a submodular funmction as (2.2), '"minors"
are induced on the blocks. To be more specific, the following is

known.

Theorem 2.1. Let p be a submodular funciion defined on a finite
set C, and L(p) the family of minimizers of p. Put X,=min L(p) and
X =max L(p).

(1) Any maximal chain in L{p)

Lhgetig gk,



determines a family of intervals (difference sets)

{ o, | C,=X,\X, 1 i=1,000,7},
which is independent of the choice of a maximal chain, and hence
provides a unique partition of € ihto disjoint subsets {blocks)

P = {co; Cys eemy G C. 1,

13
where C,=X, and Cm;C\Xr. (CO end/or C_ can be empty.)
(2) The "minors" defined by

0, (Y) = p(X; V1) - p(X; 4)y forYcg (2.3)

i~1Y
(i=1,+4.,r) are uniquely determined independently of the choice of a
maximal chain.

(3) & partial order (<) is defined on g}{co, C.} by the relation

C, < Cj iff Gj c X € L(p) implies C, <X,

A

where i,j £ r. The partial order is trivially extended over to
P by

CO < Gi < G, for i=1,...,r.
(4) The "minors" defined in (2) above are expressed also as

for i=1,...,r, where

Ceis = uf cj | cj < Cys cj #0; 1. (2.5)

Note that a linear extension of the partial order defined in (3) above
can be obtained by choosing a maximal chain in L(p) as in (1) and by
defining the total order on E by

C. £C, iff i £j.
i77



3. Mixed Matrices and Layered Mixed Matrices
Let X be a field, which contains Q, the field of rationals, and
of which F is an extension field:
QcEKcl. ' (3.1)
The set of mXn matrices over F is denoted as M(F;m,n) or simply as
M(F).
A matrix A € M(F) can be expressed as

A=Q, +T, (3.2)

in such a way that Q, € M(K) and the nonvanishing entries of T, are in

FA\K. To mske the decomposition unique, we will assume that (QA)ij=O

if (T ij¢o. If, in addition, the collection of the nonvanishing

o)
entries of TA is algebraically independent [34] over K, the matrix A

is called a mixed matrix with respect to K. We denote by MM(F/K;m,n)

the set of m*n mixed matrices over F with respect to K. The notion of
mixed matrix is introduced in [19], [20] as a mathematical tool
for dealing with structural aspects of physical/engineering systems.
See [20] for detailed discussion on its physical meanings.

A subclass of mixed matrices is defined here. We call a mixed

matrix A eMM(F/K;m,n) a layered mixed matrix with respect to K, if

the sets of nonzero rows of QA and TA are disjoint in the expression
(3.2) for a mixed matrix A, i.e., if A can be put in a partitioned

matrix of the form
Q
[, o

where Q € ng;mQ,n), Te ﬁﬂF;mT,n) (mQ+mT=m), and the collection of

Lt



the nonvanishing entries of T are algebraically independent over K.
The set of mXn layered mixed matrices consisting of mQ+mT TOWS as

above will be designated by IM(F/K;m ) or simply by LM(F/K}.

QsmTan

Obviously we have

IM(F/K;m ) © ﬁﬁ(F/K;mQ+mT,n). (3.4)

Q,mT,n
Consider. a system of equations (1.1) where the coefficient matrix

4 € M(F/K;m,n) is of the form (3.2). Introducing an auxiliary vector

m . .
w € R, we can express it equivalently as

Sl NE

-I T
It may be assumed that we can choose m numbers in F, say t1, cany tm,

. (3.5)

m A

that are algebraically independent over the subfield of F to which the
entries of TA belong. Then, multiplying each of the last m equations
by the transcendentals t,, ..., t_, we obtain an augmented system of

1 m

equations

I Q w | b
-D DT X 0
m m- A

Dm = diag(t1, LI ) tm)’ (3.7)

which is still equivalent to the original system (1.1). The

coefficient matrix of (3.6) is a layered mixed matrix with respect to

K since the nonvanishing entries of [_DmIDmTA] are algebraically

independent over K. In the case of a system of linear/nonlinear

equations (1.4), the above tranformation from (1.1) tol(3.5) may be

interpreted as assigning w to the nonlinear part g(x} to obtain
w+tQx=0,

(3.8)
-w + g{x) =0,



which is equivaleni to (1.4).
In general, with a mixed matrix 4 € MM(F/K;m,n) we will associate
a layered mixed matrix K € IM(F/K;m,m,m+n):
T = [ Tn % ] , . (3.9)
Dy Dply
where D is given by (3.7). Note that the column-set of X has a
natural one-to-one correspondence with the union of the column- and
the row-set of A. Since we have the obvious identity
rank X = rank A + m, ‘ (3.10)
we may restrict ourselves to layered mixed matrices when we deal with
the unique solvability of a system of equations having an mixed matrix
as its coefficient.
For a matrix G over a field in general, we will denote by M(G)
the linear matroid [35] defined on the coiﬁmn-set of G with respect
to the linear dependenée of the column-vectors. The rank of a layered
mixed matrix A of (3.3) is kmown [35] to be expressed as follows in
terms of the rank of the union of two matroids M(Q) and M(T). Both
M(Q) and M(T) are defined on the column-set, say C, of the matrix A,

and their rank functions will be dencted by 0 and T, respectively.

Theorem 3.1. Let A € LM(F/K) be a layered mixed matrix of the form
(3.3). Then

rank A = rank( M(Q) v M(T) )

min { p(X)+1(X)~|X] | X<C } + n . o



~r

Note that the rank of the union of two matriods can be found by an

efficient practical algorithm [6].

Corollary 3.2 ([20]). Let A € MM(F/K;m,n) be a mixed matrix of the

form (3.2). Then
rank A = rank( M(Im|QA) ) v M(ImITA) ) - m.

(Proof) Immediate from (3.10) and Theorem 3.1.

Example 3.1 ([22], Example A.i.B). Consider the free electrical
network of Fig. 3.1, which is taken from [22]. It consigts of 6
resistors of resistances r, (branch i) (i=1,...,6), and 3 voltage-
controlled current sources (branch i) with mutual conductances Yi
(i=7,8,9); the current sources of branches 7, 8, 9 are controlled
respectively by the voltages across branches 2, 4, 5. Then the
current Ei in and the voltage n; across branch i (i=1,...,9) are to
satisfy the structural equations (Kirchhoff's laws) and the
constitutive equations, which altogether are expressed as in {(1.1)

with x = (51,...,69 ; ﬂ1,---,ﬂ9) and

- 10 -



3 .4 .5 6 .7 .8 .9
Eaaiaéa’émnannAnS%

N, Mg N

7 8 9
0 0 00 0-1 0 O
1T 1+ 00 0 1 0 O
i 01 1 0 1 01
0 0 0 0 1 0 0=t
1T 01 ¢ 0 1 1 0
g-1 1 1 0 0 0 O O
4 0110 0-100
c 00 1-1 0 0-1 O
c 0 0 0-1-1 0 0O-1
- _— ____:1
r, -1
Xy =1
r4 =1
Ty - -1
rg -1
-1 Yr
-1 Yg
-1 Y

- 11 =

(3.11)

=t
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The unique solvability of the neiwork reduces fo the nonsingularity of
the matrix A.

It may be justified for physical reasons (see, e.g., [20]1) to
regerd T, (i=1,+44,6) and Yy (i=7,8,9} as real numbers which are
collectively algebraically independent over the field of rationals.
Then we have A € MM(R/Q;18,18), and the unique solvability of the
network can be determined efficiently by Corollary 3.2. Or
alternatively, we may directly apply Theorem 3.7 with Q being the
first 9 rows of A and T being the last 9 rows of A, since we can put A
in the form of a layered mixed matrix by multiplying the last 9 rows
by independent transcendentals, just as we did for (3.5) to get (3.6).

This example will be taken up again in Example 4.2.

- 12 -



4. Combinatorial Canonical Form of Layered Mixed Matrices
This section defines a block-triangular cononiecal form for an mXn

layered mixed matrix A € IM(F/K;m ,n) of the form (3.3), where

QT

m=m.+m,. For A of (3.3), we consider the transformation of the form

QT

s’ o0) [ @ ‘
SEHIRD
T

where SQ is an mQXmQ nonsingular matrix over XK (i.e., SQEGL(mQ,K));
Pny P and P are permutation matrices of orders m,, m and n,

T* "r c T
respectively., The transformed matrix of (4.1) also belong to

;ﬁ(F/K;mQ,mT,n) and is equivalent to A in the ordinary sense in linear

algebra. We will say that two matrices are IM-equivalent if they are

connected by the transformation above. In the following, we will look
for a canonical block-triangular matrix among the matrices
IM-equivalent to A. The canonical form to be considered should reduce
to the DM-decomposition when m=m,, and mQ=O.

Let R and C denote the row- and the column-set of A,
regpectively; the former is the disjoint union of the row-sets, say RQ
and RT, of Q and T: .

R =Ry URg. (4.2)
For IcR and JcC, A[I,J] means the submatrix of A with row-set I and
column-set J.

Theorem 3.1 states that the rank of A[R,J] (JcC) can be expressed
by p(X) = rank Q[Rq,X] and T(X) = rank T[RT,X] (XcJ). On account of
the algebraic independence of the nonvanishing entries of T, the rank

T(X) equals the term-rank {26] of T[RT,X], which is known [35] to

- 13 =



be expressed by the adjacency associated with T; namely we have

T(X) = min{ y(Y)+|X\Y| | ¥<X }, X c ¢, (4.3)
where |

Ip(Y) = { ieR, | Tij¢o for some j € Y}, Y ¢ G, (444)

v(Y) = IFT(Y)[, YeC. {4.5)

We consider two functions:

p.(X) = o(X) + ©(x) - |x|, Xcg, - (46)

p (X) = o(X} + v(X} - [X], Xcoc. (4.7)
Sinece T(X) 2 Y(X) by definition, we have the obvious inequality

p,(¥) = p (X). (4.8)

These functions, however, share a common minimum value when restricted
to 2J for any J < C.
Lemma. 4.1. For J < C, we have
| min{ p (%) | %<J } = min{ pY(X) | X7 }.
(Proof) From (4.6) and (4.3) it follows that
_min{ p. (¥) | X<T }
= min{ p(X)-|X] + min{ YO +|X\Y| | I<X )} | %I }
= min{ p(X)+Y(¥)-|Y| | YcXcT }
= min{ p(Y)+y(¥)-|¥| | YT }

= min{ pY(Y) | YeT 1. o

Combined with Theorem 3.1, this gives a characierization of rank A in
terms of p and Y, instead of p and T.

Theorem 4.2. Let A € LM(F/K;m ) of the form (3.3). Then

QPP
rank A[R,J] = min{ pY(X) | X7 } + 131,

for JcC, where p., is defined by (4.7). O

Y

- 14 -



Ciz of (4.7) is submedular, and

The important fact is that py:é
hence, as explained in §2, its minimizer L(pY) determines a unique
partition of the column-set C of A into partially ordered blocks. To
):

be specific, we choose {cf. Theorem 2.1 (1) ) a maximel chain in L(p

Y
XO g.X1 G g Xr (4.9}
to get the blocks:
CO=XO; Cj=Xj\Xj—1 (j=1yeeuyr)s Cm=C\Xr. (4.10)

A partition {RTj|j=O,1,...,r,w} of the row-set Ry of T is induced
from (4.9) naturally as follows:

¥ R =YTj\YT

TOS Fpj (j=1yeas,r)s RTm=RT\YTr, (4.11)

Bimg™ i1

where

Xj) (3=0,140ayT). (4.12)
Though the partition (4.11) is defined here with reference to =
particular choice of a maximal chain (4.9), it admits a direct
expression in terms of the partial order among the blocks, as follows.
Lemma 4.3,

T[RTi,Cj] = 0 unless Ci < Cj’

and therefore

RTj = FT(c<j>ucj) \ FT(c<j>), (3=1yeauyr),

where C is defined by {(2.5).

5>

(Proof} Suppose C, and Cj are not ordered, i.e., that neither Cicc<j>
G

nor C.cC,... Put X=C_ ., U Since X, XuUC,, XuUG, and XUC,UC, all
jLis <i> i j i™7;]

belong to L(pY), we have p

5>

= )= L= UG, ).
Y(X) pY(XUCl) pY(XUGJ) pY(XUCl cJ)

This implies, by the submodularity, that

I

p(XUGiUCj) ~ p(Xuc,) p(Xucj) - p(X), (4.13)

Y(XUCj) - ¥(X). (4414)

Y(XUCiUCj) - Y(XUCi)

It is easy to see that (4.14) means

- 15 =



PT(Ci) n FT(Gj) c PT(X),

which establishes the lemma. o

As for the matrix Q, it can be transformed to a block-triangular
matrix @ by the usual elimination operations; that is, for some SQ €
GL(mq,K), the row-set of @ = SQQ is partitioned into disjoint subsets

{RQj|j=O,1,...,r,m} such that

Rgol = (%),
IRQjI = D(Xj) - D(Xj—1) (j:‘],_._’r)’ (4.15)
IRQOQI = IRQI - D(XI')’
and
Q[RQi,Gj] =0  (0sj<ise}. (4.16)

By the same argument as the proof of Lemma 4.3 (by (4.13) in

particular), we may further assume that

Q[RQi,Cj] =0 unless Ci < Gj' (4.17)
We will put
3 ‘
YQj = izO RQi (i=0,1y40s,7), (4.18)
Yj = YQj u YTj (j=0,1,4e0,7), (4.19)
Rj = RQj U RTj (320,15 000yTy%). {4.20)

Consider the matrix

el
[}
—————
= &l
[—
Il

5.Q
[ Q ] , (4.21)
T

- 16 -



which is LM-equivalent to A (under the transformetion (4.1)). The:

T
into blocks {Rj]j=0,1,...,r,W}, on which the partial order (X) on

row-set R=RQUR of &, as well as the column-set C, is now partitioned

{Cj|j=0,1,...,r,m} can naturally be induced.
Theorem L.Ah. Let K be as above, whose row-set R and column-set
C are partitioned inte paftially ordered blocks.
(1) K[Ri,Cj] =0 unless G, < Gj' In particular,
K[Ri,Gj] =0 if i>j. (4.22)
(2) Ryl < Igy] if ¢y # 4,
]le = ICj| for j=1,ee.,r,

|R

ol

> |o | if ¢ # 8.
(From the last relation follows a more symmeiric statement:
IR, > [c,| if R, #8.)

(3) rank KEYj,Xj] = rank E[R,Xj] = Ile (320,71, 0au,r).

(4) rank Q[YQj,Xj] |YQj[ (3=0,Tye00sT),

rank T X,] =

Tpyekg) = |ig
(5) rank A{R

(3=031ye0eyr).
O] = |Rols
|RJ| = IGJ| (j=1,---,I‘),

k A[R,,C.
rank A[ 37 J]

rank E[R_,C_1 = |C_

(6) For j=0,1,¢4.,ry®, the submatrix K[Rj,cj] (e IM(F/K) ) is
irreducible in the sense that the submodular function ﬁj {defined
on Cj), the correspondent of Py of (4.7), has no minimizers
distinet from @ and C..

J
(Proof) (1): Immediate from Lemma 4.3 and (4.16).
(2): If Co%ﬁ, then 0 = p

|RO|—|CO

> i =
Y(Qj) min p, = Py

- 17 -



For j=1,...,r, we have pY(Xj—1) = pY(Xj)’ i.e.,
) + (X

By (4.11), (4.12), and (4.15), this reduces to ICjI=IRj

o(X; ) = Xl =)+ vixy) - X

If G #f, then p (C) > min ﬁY = p(X), which implies Ir|-|c] =

p(e)+y(c)-lcl > p(x yy(x )-|x_| = |T_ |-[X [. Hence IR = [Rr]-]¥ | >

Jol-lxl = ol
(3): From (1) above and Theorem /.2, we have rank K[Yj’xj] =

k E[R,X.] = rank A{R,X.] = min{p_ (X)|X<X.} + |X,| = X.) + |X,
ran [ ’ J] { ’ J] PY( )| j | Jl PY( J) I JI
=p{X.) + X.)=|¥..| + [¥I..] = |Y.]|.
p(X;) + ¥(Xy) = [To, ] + [pyl = [1,]
(4): Immediate from (3) above.
(5): The identities for j=0,1,...,r are immediate from (1) and (3)
above. By Theorem 4.2, we have

rank A[R_,C_] = min{p_(2)|2cC} + jC_],

where

p.(%) = rank Q[R, ,Z] + [FT(Z)nRTm[ -lz].

QCO’

On the other hand, this turns out to be nonnegative, since

Bo(2) = (P(X UB)-p(X)) + (Y(X UuZ)-v(X)) - |Z]

(X,02) - p(X,)

Py
(4.23)

pY(XrUZ) - min Py

(6): First consider the case of j=%. Recalling X

max L(pY), we see

from {4.23) that p_ has the unique minimizer of Z=p. The second case

of j=0 is easy, since ﬁo(Z)=pY(Z) has the unique minimizer Z=C,. ' The

other cases (12jsr) can be treated similarly using the expression
p;(2) = rank QlRy,,2] + |TT(Z)0RTJI - |z]

= pY(Xj—1UZ) - min Py o

- 18 -



This theorem shows that with sultable permutation matrices Pr and
Pc, PrKPc is 2 block-triangular matrix which is LM-equivslent to A.
The ordering of the blocks is uniquely defermined up to the partial
order (X). The following argumeht shows that it is the finest
block-triangular form that is LM-equivalent to A and enjoys the
properties (2) and (5) of Theorem 4.4.
Suppose that & is such a block-triangular matrix with the row-set

R and the column-set C being partitioned as

R

Il

U{R3]j=0,1,...,q,w}, (4.24)

G U{C&[j=0,1,...,q,w}, (4.25)

" where ﬁ[Ri,C&] = 0 for i>j. Since & is LM-equivalent to A, we have
from Theorem 4.2

rank & = min{ p_(X) | X<C } + |G| (4.26)

Y
with the same pY for A. Put

J
Xt = u ¢, . (j=O,1,...,q), (4o27)
i . i
i=0 .
J
YT. = U R'. (j=0’1,.||,q)l LS (4-28)
b . i )
i=0

Since & is block-triangularized and has the properties of (2) and (5)
of Theorem 4.4, we have

rank & = |C| - ixil + lyil (320,71, 000,q) (4.29)
Combining (4.26) and (4.29), we obtain

min p, = |13[ - |X3| (3=0,1,00e,q)
This shows that

x3 € L(py), (4.30)
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¥

since pY(Xﬁ) = p(Xﬁ) + Y(X&) - |X3| < IYél - ]Xj[ = min p,.

s Y).
Thus, the matrix PI_KPc with A constructed above provides the

Therefore, the partition (4.25) is coarser than (or an aggregation of)
{Cj|j=0,1,...,r,W} determined by L(p

finest block-triangular form among the matrices LM~equivalent to A.

It is named here the combinatorial canonical form of a layered mixed

matrix. It is obvious that it agrees with the DM-decomposition when

A=T (i.e., mQ=O). In parallel with the DM-decomposition, the
rectangular blocks corresponding to ROXCO and R _XC_, if any, will be

called the horizontal tail and the vertical ftail, respectively.

A comment on the algorithm is in order., From +the point of view
of practical application, it is very important that this canonical
form can be constructed by an efficient matroid-theoretic algorithm
that involves O(anB) arithmetic operations in the subfield K and

O((m+n)2n) operations for graph manipulations, as follows.

To be specific, we associate a graph G(V,E) with

Aegg(F/K;mQ,mT,n) having the row-set R=RQURT and the column-set C.
The vertex-set V of G is given by
V =Ry UGy U Gy, (4.31)
where GT and GQ are disjoint copies of C, and the arc-set E of G is
defined as
E = {(i,jT) € RpXCy | Tijﬁo }
U {(prig) € CpxCy | s el (4.32)

where jQ (GCQ) and o (eCT) are copies of j (eC}.
We consider the independent-flow problem [7], [14] on the

network with the underlying graph G; RT is the entrance vertex-set

- 20 -



with the free matrold on it, C, is the exit vertex—set with the dual

Q

of M(Q) defined on it, and each arc of E has the infinite capacity.
dny subset U of V can be expressed uniquely as

U= (RT\Y) U (CT\XT) Uz (4.33)

Q’

(cC,) and Z_. (cC.) are their copies. The

where Y c RT; X, ZcCs; X 9 Q

T T)
capacity c¢(U) of U above is given by
[¥] + p#(2)  if IAT,(X) and Xuz=C
c(U) = { (4.34)
oo otherwise,
where
p*(2) = p(C\2) + [2] - p(C) (4.35)
is the rank function of M(Q)¥*, the dual of M(Q). Noting Y=FT(X) for a
minimizer U of ¢(U), we see that the family of minimizers U of c(U)
determines the family L(PY) of minimizers of Pys by the relation
(4.33).

In this way, the desired partition of C for the combinatorial
canonical form can be constructed by first finding the maximum
independent flow and then decomposing the auxiliary graph associated
with it into étrongly connected components, among which the partial
order can be induced. (To be more precise, the column-sets CO and C,,
are determined by those vertices of GT (cV) which are reachable from

the entrance and to the exi%, respectively.) See, e.g., [14] for

detail. Example 4.1 below will illustrate this procedure.
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Example 4.1. Consider the following matrix A € LM(F/Q;3,6,7), where
{ti|i=1,...,13} are indeterminates over Q and F is the field of

rational functions in ti's over Q.

1 2 3 4 5 6 7

1.0 0 1 0 1 -1

A= b b, (4.36)
t, 5,
t te to
tg by B0 By
b2
RE

The graph G(V,E) for the associated independent-flow problem is
depicted in Fig. 4.1. The auxiliary graph for a maximum independent
flow is shown in Fig. 4.2, the decomposition of which inte strongly
connected components provides the partition (4.10) of the column-set C
of A:

U C,, (4.37)

=0, uUC

1 2
where c1={2,4,7}, 02={3}, c.=(1,5,6}. DNotice that co=¢, C;<C,, (i=1,2),
and 01 and 02 have no order relation. Thé combinatorial canonical

form for A is given by
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o~

2 4 7 1311 5

0 1 =1 1 1
ts tg O t,
et tao| AR
1 2 (4.38)
0 1 0
t, 0 %,
t3 t4 0
0 0 t,
0 0 t13

=i
Example 4.2. Recall the eletrical network of Example 3.1. With the
understanding, mentioned in Example 3.1, that the coefficient matrix A
of (3.11) can be considered a member of LM(R/Q;9,9,18), the
combinatorial canonical form of A is found as (4.39) below.

It has no tails {Co=RmF¢) and 9 square diagonal blocks with the

5={n9},

= —(£f - 5 &9 (R 3 4 7 8
06_{n6}j 07_{5 }, 08—{ﬂ5,€ ,g }, Cg"{E ,nzgg ,n3’€ ,n4,€ ,g }0 The

. _ _ 1l _
column-sets given by 01—{n7}, 02—{n1}, 03—{E }, CA_iHS}’ C

partial order among them are given by:

Gg X Gy < Gy < 0y5 Gy < G5 < G5 Gg < G, < G < C.
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i 6 5 .9| .2 3 4 7 .8
n1'€ '”8‘”9‘“6’5 |n5€ £ |’c; n2£ n3E nAE g

.-n7
-1y-1 1 1
-1 r1
1 -1
-1 -7 1
-11-1 =1
-1 r6
1 -1
0 1 -1} 1 1 (4.39)
=1 r5 C
Y9 0 -1

This example will be considered again in Example 5.1.
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We now consider how the combinatorial canonical form can be
applied to an efficient solution of a system of equations A(6)x=b(8)
for varying values of parameter 0. We express the coefficient matrix
as

A(8) = q, + T,(8) < (4-40)
and regard it as a mixed matrix, treating the nonvanishing entries of
TA(B) as if they were algebraically independent. As discussed at the
beginning of 83, we may introduce an auxiliary variable w to obtain
the augmented system of equations {3.5) or (3.6) with the layered
mixed matrix & of (3.9) as the coefficient. The combinatorial
canonical form of A determines a decomposition of the whole augmented
system into hierarchical smaller subsystems; we may repeatedly solve
the subproblems with the diagonal blocks as the coefficients.

For the subproblems to be solved, the diagonal blocks of the
combinatorial canonical form of X must be nonsingular. If the
assumption of the algebraic independence of the nonvanishing entries
of TA(G) is literally met, the nonsingularity of the diagonal blocks
is guaranteed by Theorem 4.4{5). It is obvious, however, from the
block-triangular structure that even if the assumption is not
satisfied, the diagonal blocks must be nonsingular if the original
coefficient matrix A is nonsingular at all. Therefore the
decomposition procedure above can be carried out successfully if the
original system is uniquely solvable at all.

Fach subproblem may be solved as follows. Let Aj be the
coefficient matrix of the J-th subproblem. Its row-set is divided as

(4.20) into R.. and RTj' Tts column-set Cj may also be partitioned as

QJ
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Cj = ij U ij, (4.471)
where ij and ij correspond to part of the variables w and x,
respectively. It is easy to see, by the irreducibility of Aj, that

z |c .| if Ry, 70 (4.42)

W] L
(and |cj|=1 if RTj=¢) and that the submatrix Aj[RTj,ij] is of the
simple form

' (-
nRgs050 = [ ] (4.43)

if RTJ%Q and ijﬁﬁ, where I is the identity matrix of order |ij|.

Thus the subproblem can be expressed as

. C_.
wl o X
ot Y %2 ) [, °
-I T, =|o0}, (444)
RTj: <
o T, j 0

where Bj=5j(8) is to be computed from b(6) each time 6 is given. On
eliminating the auxiliary variable wj, we obtain the system of
jlequations
Q,T.+Q b. |
171 72
[ ] x5 = { 3] (4+45)
T2 0
in ]ij| variables. The amount of computation needed to determine Xj
in this way may be estimated roughly by
3
R- C- G- + - L] -
[Ro;llogsHoy |+ 16,1773 (446)
Another approach may be conceivable that makes no distinection

between wj and xj. We may assume that the subsystem is given by

RQj:[ I q

RTj: T1 T2 5

where (31,22) is a rearrangement of (wj,xj). The Gaussian elimination

2

5.
= 9, (4e47)

2 0
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procedure applied to (4.46), possibly with permutations of rows in
RTj’ can be done with at most
2 3
Reo | |RAs] * . . .
B3| “1Rgz1 + [Rp;17/3 (4.48)
arithmetic operaiions.

The above considerations reveal that the matrix Aj contains an
identity matrix of order no smaller than max(wajl,|RQj|) as a
submatrix. Thus, we may adopt

mm(lcle,IRle) (4.49)

as a rough measure for the substantial size of the subproblem.

Example 4.3. This example is based on the reactor-separator model
(EV-6) of [36]. The system of linear/nonlinear eéuations to be
golved involves 120 unknowns and as many equations. The Jacobian
matrix, denoted as A, is sparse, containing 3571 nonvanishing entries.
The ordinsry DM-decomposition yields 4 nontrivial blocks involving
more than one unknown variable. The maximun size of the blocks is 25
(see Table 4.1).

Of the nonvanishing entries of A, 172 numbers are rational
constants (1 or -1) and the remaining 179 entries are regarded here as
algebraically independent numbers (in a field F) over Q. That is, we
consider A e MM(F/Q;120,120). As explained above, we may then resort
to the combinatorial canonical form.of the corresponding layered mixed
matrix X € LM(F/Q;120,120,240) to obtein a decomposition of the
augmented system of equations with auxiliary variables (see (3.2) and

(3.9)). The canonical form of K has no tails and yields 5 nontrivial

blocks, the maximum size of which being equal to 17. (The canonical
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form of & has been found by a slightly modified version of the FORTRAN
program originally coded by M. Ichikawa [9].) In Table 4.1, three
different decompositions are compared, where the number of rows of
T-part of each block, i.e., ]RTJ.‘] of (4.11), is indicated in brackets

and the third decomposition will be explained in §5. w}

Example 4.4. The system of equations considered here is compiled in
[9] from a real-world problem that has arisen from the analysis of an
industrial hydrogen production system. It involves 544 variables and
equations, and the Jacobian matrix A consists of 1142 rational
constants (1 or -1) and other 322 numbers which are regarded here as
algebraically independent transcendentals in ¥ over Q. Then we have
A € MM(F/Q;544,544). The combinatorial canonical form of the
corresponding layered mixed matrix X € LM(¥/Q;544,544,1088), computed
‘as in Example 4.3, has no tails and contains 23 nontrivial blocks with
‘more than one variable. The DM-decomposition of A and the
combinatorial canonical form of X are summarized in Table 4.2. Note
that the substantial sizes of the subproblems in terms of (4.49) are

much smaller than the block sizes of the subproblems obtained by the

DM-decomposition. m
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Table 4.7. Block-triangularizations for Example 4.3

DM-decomposition Combin, canon. form Decomposition of
of A of X (by p.) of & by p
Y T
size blocks sizge blocks size blocks
GX C = CW+Cx [RT] G = Cw+cx [RT]
5 1 17 =8 + 9 [9] T 16 = 8 + 8 [8] 1
10 1 15 = 6 + 9 [6] 1 14 =6+ 8 [5] 1
9 -2 14 = 4 +10 [9] 1 13 =4 +9 [8] 1
8 =0 + 8 [4] 1 8 =0+ 8 [5] 1
5=0+5 [5] 1
1 67 1 181 1 189

Table 4.2. Block-triangularirzations for Example 4.4

DM-deconposition Combin,., canon. form
of & - of X (by p,)

size Dblocks size blocks
G, C =G *C_ [RT]

104 1 114 =75 +39 [75] 1
28 1 2L =15+ 9 [15] 1
23 1 18 =10+ 8 [10] 1
14 1 14 = 8+ 6 [8] 1
10 5 6= 4+2 [4] 1

8 1 4= 2+2 [2] 15
7 2= 1 +1 [1] 3

b 2

3 9

1 240 1 846
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5, Relations to Other Decompositions

The first subsection clarifies the relation of the combinatorial
canonical form to the decomposition considered in [22], [23], [24], as
well as to the ordinary DM-decoﬁposition. The second subsection
points out that for a certain class of electrical networks considered in
[121, [14] the combinatorial canonical form gives essentially the same
block-triangularization as the method proposed in [12], [14] by way of

the structure of minimum covers in an independent-matching problem.

5.1. Decomposition by L(pT) and the DM-decomposition

In [22], [23], [24], a method for block-triangularization of
systems of equations, such as (3.11), for electrical networks is
proposed as an application of the principal partition associated with
'a matroid intersection problem. The method of {221, {231, [24], which

we term here the principal partition of M(Q)*AM(T), is based on

Theorem 3.1 and adopts the submodular function P of (4.6) to obtain a
decomposition of unknown variables (i,e., currents and voltages of
branches in the case of electrical networks) into partially ordered
blocks.

In the following, we compare the decompositions induced by the
two submodular functions p, of (4.6) and Py of (4.7) associated with a
layered mixed matrix A € ;ﬁ(F/K;mq,mT,n) of the form (3.3). Remember
that L{p) is defined in (2.2) as the family of minimizers of p:ZC+R

and that L(p) is a distributive sublattice if p is submodular.
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Lemma 5.1.
(1) p (X) s pY(X) for X c C.
{2) min p; = min Pye

(3) Lip)) > L(pY)-

{4) Tor X € L(pT) there exists Y € L(pY) such that ¥ c X.

(5) min L(p,) = min L(pY)-

(Proof) (1) and {2): Given in (4.8) and Lemma 4.1.

(3): Inmediate from (1) and (2) above.

(4): Let Y, (cX) be a minimizer of min{y(¥)-|¥| |t<x} = T(X)-|%].

From (2), we have min Py = min p_ = p(X)+Y(YO)—[YO[ z p(YO)+Y(YO)—|YO|
= pY(YO)’ ices, Ty € L(pY).
(5}: This follows from (3) and (4) above. o

In view of the correspondence between the distributive
sublattices and the partition into partially ordered blocks (82), this
lemma shows that the decomposition of the column-set € (i.e., the set
of variables) by the principal partition of M(Q)*AM(T) is finer
(including the partial order) than that of the combinatorial canonical
form of the present paper. In other words, the column-set of each
block of the combinatorial canonical form is an aggregation of the
blocks of the principal partition of M(Q)*AM(T)., It is indicated by
Lemma 5.1(5), however, that the column-sets of the horizontal tail are
identical in both decompositions.

In §4 we have seen that the decomposition of C based on pY
provides the finest block-triangular form under the equivalence
transformation of the form (4.1). By a similar argument it can be

shown that the principal partition of C associated with M(Q)*AM(T)
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leads to the finest block-triangularization with the properties (1) to
(5) of Theorem 4.4, under a wider class of transformations of the

£ollowing form:

s. 0 Q ’
T{o 8¢ T ¢

where SQ-E GL(mQ,K); Sp € GL(mT,F); and P and P are permutation
matriées of orders m and n, respectively. Note that the transformed
matrix no longer belongs to ;ﬁ(F/K;mq,mT,n). This suggests that the
block-triangularization by the principal partitibn of M(Q)*AM(T) is
more adequate when considered for a broader class of matrices. This
issue will be discussed in §6.

Let ', and I be defined as (4.4) respectively for A and Q. As

Q
is well known, the DM-decomposition is induced by L(pDM), where

pp(X) = [T, ] - ]2] (X <o), - (5.2)
Since ]FA(X)| = |FQ(X)[+|FT(X)[ > p(X)+Y(X), we have
pY(X) S ppy(X) (X el (5.3)

Theorem 5.2. If A (€LM(F/K) } is nonsingular, then
min P = min pY = uin Poy T 0
and
Lip,) 2 L(pY) > L{pg,) -
(Proof) The relations between p. end Py follow from Lemma 5.1. By

Theorem 4.2, the assumption is equivalent to min p, = 0, which,

Y
combined with (5.3) and pDM(¢)=O, yields min ppy = O. The inclusion

L(pY) o) L(pDM) is then evident from (5.3). o
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Exampie 5.1. This is continued from Examples 3.1 and 4.2. As given
in [22] (ef. Fig. 5.1), the principal partition of C={€i,ﬂi|i=1,...,9}
associated with M(Q)*AM(T) consists of 10 blocks; the block
08={n5,€5,€9} of tﬁe combinatorial canonicel form in Example 4.2
splits into two blocks {n5} and {55,59}. It should be mentioned that,
as opposed to the claim of [22], the unknown variables {65,59} cannot
be determined independently of n5 even after the variables of C. =

9
{‘52,?12,53,7}3,54,1’]4,57,58} are fixed. [m]

Example 5.2. For a singular matrix the canonical form is not a

refinement of the DM-decomposition., Consider, e.g., the matrix

1 2 3 4
1 1 1 1
1 1 1 1 _
A= ‘ ) (5-4)
0 o 1 1
0 0 1 1

which may be thought of as a member of LM(F/Q;4,0,4) (FoQ). The
canonical form consists of tails only; CO={1,2,3,4}, iRO|=2, Cmfﬁ,
IRw|=2. On the other hand, the DM-decomposition evidently decomposes

4 into 2 square blocks. o

Example 5.3. For the problem of Exampie 4.3 the decompositions

based on pY and p, are compared in Table 4.1. O
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5.2, Decomposition for electrical networks with admittance expression
In genéral, an electrical network can be described by the
structural equations and the constitutive equations among currents Ei
in and voltages N, across the branches (cf. Example 3.1). When the
branch charactristics are given in terms of self- and mutual
admittances ¥, the coefficient matrix A of the system of equations

in (&, n) takes the form:

£ n
D 0

A= 0 R s {5.5)
-I Y

where D and R are the fundamental cutset and circuit matrices
respectively. If the nonvanishing entries of Y are assumed to be
algebraically independent over Q, the trivial scaling of the
constitutive equations brings it into the class of IM(R/Q). In this
extended sense, we will regard A as a member of gﬁ(R/Q) of the form

(3.3) with

D 0
Q=[ ] T=(-T Y). (5.6)

The column-set C of A of (5.5) is the disjoint union of two

coples, say Bg and Bﬂ’ of the set B of branches; i.e.,

¢ = Bg U Bn. (5.7)

This allows us to identify the boolean lattice 2C with the direct
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B B ‘
product of 2 £ and 2 o1t may also be noted that the row-set of Y is

£}
The decomposition of C proposed in [12], [14] is as follows.

identified with BE’ while its column-set is B_.

Let u(I) and V(I) denote the renk and the nullity of the arc set
I {(cB) in the underlying graph. Obviously, we have

u(B\I) = v(J) - |J| + u(B). (5.8)
The nonsingularity of A of (5.5) can be formulated in terms of an
independent-matching problem on the bipartite graph representing ¥,
where the matroid with rank function uW is attached to beth Bg and Bﬂ'
Put

H={(1,]) | IeBy, J€B, I > rya 1, (5.9)
where FY is defined for Y as in {4.4), and

p,(I,9) = w(I) + u(B\J) - u(B) (IcBy, JeB ). (5.10)
Note that (I,J) € H iff (I,Bn\J) is a cover of Y, and then
pu(I,J)+u(B) is the rank of the cover in the independent-matching

problem. The set of minimizers of pulH’ the restriction of Py to H,

is denoted simply as L(pu), i.e.,

L(p ) = {(I,]) e H I p,(I,J) = mén Py s (5.11)

B B
which is a sublattice of 2 gXZ N sl (ef. (5.7)), and hence

determines a decomposition of C into partislly ordered blocks.

The rest of this subsection is devoted to establishing
Theorem 5.4 below, which implies that the combinatorial canonical form
for A of the particular form (5.5) gives an essentially identical

block-triangularization with the one provided by the method of [12],

[14].

- 35 -



From (5.8) and (5.10) we see that

pu(I,J)

On the other hand, Py of (4.7) for A of (5.5) is written as

u(I) + v(J) - |J| (IcBy, JeB, ). (5.12)

pY(IUJ)
=u(I) +v(I) - |3 + IPY(J)\I] (IcBg, JcBn), (5.13)

o(IuJ) + IIUFX(J)I - |TUF]

since the rank p of M(Q) is equal to W + V. Combining (5.12) and

(5.13), we obtain

p,(IU5) = p (1,5} + [Ty (INT] (IcBg, JcB,). (5.14)

- Lemma 5.3.

pY(IUJ) = pu(I,J) for (I,J) € H,

pY(IUJ) > pu(I,J) for (I,J) ¢ H.

(Proof) From (5.14) it follows that Py z Py where the equality holds

iff FY(J) < I. | ]

Theorem 3.4.
(1) winl 2 (109) | Te B, T8} =ainl p,(1,0) | (5,0) <8 ).
(2) L(pY) > L(pu)-

(3) {JcBnlIuJeL( )} = {JcBnI(I,J)EL(pu)}.

Py
(Proof) (1): By (5.13), we have

min p min{ min{u(I)+|{I,(I\I| [IcB.} +v(J)=|J| |IcB. }
Y g n

Y

min{ u(FY(J))+v(J)-|J[ |JcBn}, (5.15)
since min{U(I)+[FY(J)\I] [IcBg} ='min{u(I)+]rY(J)\I| IICTY(J)} =
u(FY(J)). This establishes (1) when combined with the rather obvious

relation

min pU

min{ w(I)+v(J)-|J[ | oIy (), JCB, }
H

= min{ W(T (7)) +v(J)-[J| IJcBn}. (5.16)
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(2): Immediate from Lemma 5.3 and (1) above.
{3): From (5.15) and (5.16) it is sasy to see that the families on

both sides of (3) agrees with the minimizers J (cBn) of

W(Ty(3))+v(3)-|J

The Theorem 5.4(2) shows +that the decomposition ggthqd.of the
present paper applied to (5.5) yields a finer partiiion of the
variables {&,n} than that proposed in [12], [14]. However, the
differenée is not substantisl, since, as indiceted by Theorem 5.4(3),
they provide the identical partition for the voltage-variables N which
play the primary role in (5.5); the current-variables £ are only
secondary as they are readily obtained from n by means of the
admittance matrix Y. In this way, we may say that they give
essentially the same decomposition. The following exemplifies that

the inclusion in Theorem 5.4(2) is proper in general.

Example 5.4. TFor the following matrix

1 .2
g & n, o,
]
]
A= |- -, (5.17)
-1 V11 O
=1 Vo Vo

the combinatorial canonical form based on L(pY) decomposes
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{51,62,n1,n2} into 4 singletons with the partial order:
1 2
{ﬂz} < {n1} < {&g'}, {nz} < {g%}.

The decomposition of [12], [14] based on the minimum covers of ¥,

on the other hand, gives the partition into two blocks as

2 1
{g ’”2} < {& ,n1}.
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6. Extensions and Remarks

It has been mentioned in 85.1 that the principal partition of
M(Q)*AM(T), which corresponds to the transformation (5.1}, should be
considered in a wider class of mafrices than LM(F/K). Let Fy be an

intermediate field of F/K: K c FO c F, and consider a matrix A€M(F;m,n)
Q
A= [_] , (6.1)

such that (i) Q € M(X;m.,n), (ii) T=Q,T, € g(F;mT,n) where

Q"

Q, G’E(FO;mT’n) and T, is a diagonal matrix of order my with its
diagonal entries being algebraically independent numbers in F over FO.
The class of such matrices A will be denoted by';Q(F/FO/K;mQ,mT,n).

It should be noted that A € ;ﬁ(F/K;mq,mT,n) belongs to
;g(F/FO/K;mQ,mT,n) for some F,, but not conversely.

It is known that the identity given in Theofem 3«1 still holds
for A € ;g(F/FO/K) with ¢ and T being the rank functions of M{Q) and
M(T) for the submatrices in (6.1). Therefore, the partition of the
column-set C based on L(pT), followed by appropriate row
transformations, brings about a block-triangular form with the
properties (1) to (5) of Theorem 4.4. Note that the block-triangular
form is obtained from A by means of the transformation (5.1}, where we
may assume without loss of generality that Sy € GL(mT,FO), and hence
the transformed matrix remains in LQ(F/FO/K).

The considerations above naturally suggest an extension to

multi-layered matrices of the form

- 39 -



A o= (6.2)

such that

AO € ﬁ(K;mO,n),

Ay = QT € g(Fi;mi,n) (i=1,40.,k),
where

K c FO € vus C Fk (6.3)
is a sequence of field extensions, Qi € E(Fi_1;mi,n), and
T, € E(Fi;mi,mi) is a diagonal matrix with its diagonal entries being
algebraically independent over F, . (i=1,.+4,k). Then, by
Theorem 3.1, the rank of A is expressed in terms of the rank functions
0, of the associated matroids M(Ai) (i=0,1,.44,k} as

rark A = min{ p(X) | X < C } + n, (6.4)

where

. (6.5)

Based on L{p), we can obtain a block-triangular canonical form with

p(X) = (%) + P (X) + «uv + p (X) - [X

the properties (1) to (5) of Theorem 4.4 under the transformation

3 r

P P, (6.6)

\ ka

where 8, € GL(mO,K); 8, € GL(mi’Fi- ) (i=1,...,k); and P_and P are

1
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peroutation matrices.

The cancnical form for multi-layered matrix introdpced atove
seems to have a natural meaning for electrical networks invelving
" multi-ports, which have been investigated in [29], [301, [31]. To be
. specific, consider an electrical network consisting of k multi-ports,
each of which is described by a set of equafions with ceefficient

matrix Ai (i=1,+44,k). Let A, denote the matrix (over Q) for

0
Kirchhoff's laws, Then the ccefficlent matrix for the whole system is
written as (6.2) (cf. Example 3.1), and the permissible transformation
‘(6.6) reflects the locality in the sense that we can choose
appropriate descriptions for each devices. Furthermore, the
assumption of the algebraic independence among déifferent devices would
be feirly realistic.

Without the hierarchy of fields (6.3), we may likewise consider
the block-triangularization based on p of (6.5) for a matrix of (6.2).
That is, we may define a_canonical form for a matrix A of (6.2) with
A € Q(F;mi,n) (i=0,1y...,k) under the transformation (6.6) with
8, € GL(mi,F) (i=0y14444,k). In this case, however, the diagonal
ﬁlocks a?e no longer guarantesed to be nonsingular. Two special cases
may be worth mentioning. The one is the case where k=1 and AO=A1.
Then the transformation (6.6), in which we may assume Sp=8,, yields
the combinatorial canonical form of a matrix with respect to its
pivotal transforms introduced by [10]. The other is where A is

nonsingular. Then it has no tails and the square blocks must

necessarily be nonsingular.
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The finest block-triangularization of a mixed matrix A = QA + TA

€ MM(F/K;m,n) of {3.2) under the transformation

$ & =5 (Q+,), 8¢ GL(n,K) (6.7}
is obtained from the combinatorial canonical form of the corresponding
layered mixed matrix K e IM(F/K;m,m,m+n) of (3.9). The partition of
the column—sét of A is induced from the partition of the column-set of
X, which is identified with the union of the column- and the row-set '
of A, produced by the combinatorial canonical form of X. Note,
however, that the transformed matrix (6.7) may not belong to
MM(F/K;m,n).

The combinatorial canonical form introduced ir; this paper should
prove to:bé a useful tool in the structural analysis of systems. For
example, it is reported in.[18] that it plays a central role in
deriving a necessary ﬁnd sufficient combinatorial condition for the
structural controllability of a dynamical system described in the
so-called "descriptor fofm": Fdx/dt = Ax+Bu, where the entries of F, A
and B are assumed to be classified into accurate and inaccurate

numbers in the sense of [20].
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A simple electrical network of Example 3.1 (from [22])

Fig.3.1.
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-Fig.4.1. Independent-flow problem for Example 4.1
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Fig.4.2. Auxiliary graph associated with = maximal independent flow

for Example 4.1
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