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Abstract

Recently, E. Tardos has given a strongly polynomial algorithm for the
minimum-cost circulation problem and solved the open problem posed in 1972
by J. Edmonds and R. M. Karp. Her algorithm runs in O(sz(m,n)log m) time,
where m is the number of arcs, n is the number of vertices and T(m,n)
is the time required for solving a maxiﬁum flow problem in a network with
m arcs and n vertices. In the present paper, taking an approach which
is a dual of Tardos's, we also give a strongly polynomial algorithm for the
minimum-cost eirculation problem. Our algorithm runs in 0(m(n+m0)2log m)
time and reduces the computational complexity, where m_. is the number of

0

arcs with both finite lower and upper capacities.



1. Introduction

Recently, . Tardos [9] has given an algorithﬁ which solves the
minimum-cost circulation problem in .strongly polynomial time. That is,
assuming that each of the fundamental arithmetic operations (addition,
multiplication and division) requires unit time, the running time of her
algorithm is a’polynémial in the number of ares and that of vertices of the
underlying graph, and the size of any number encountered during the
execution of the algoerithm is polynomially bounded in the total size of thé
input numbers. The problem of finding a strongly polynomial slgorithm for
the minimum-cost circulation problem was posed by J. Edmonds and R. M. Karp
[4] in 1972 and had long been open.

In the present paper, we shall also propose a strongly polynomial
algorithm for the minimum-cost circulation problem, which is, in a sense, a
dual of the Tardos algoritha [9].

' Consider a flow network with m ares and n vertices. The Tardos
algorithm solves at most ﬁ gsubproblems, each of which is a minimum-cost
eirculation probleﬁ obtained by rounding the cost coefficients to values
from among 2nVm equi-spaced quantized values and is solved by H. ROck's
algorithm [é] with the scaling technique. The total running time is
O(sz(m,n)log m), where T(m,n) is the time required for solving a maximum
flow problem in a network with m arecs and n vertices. On the other
hand, our algorithm solves at most m subproblems, each of which is a

ninimum-cost circulation problem obtained by rounding the capacities to



values from ameng 2m2 equi-spaced quantized %alues. Each subproblen is
solved by the out-of-kilter method with the scaling technique given by E.
L. Lawler [6]. The total running time is O(m3 log m) and reduces the
computational complexity. A precise estimation of the complexity will be
given in Section 3.

Very recently, J. B. Orlin [7] has claimed that the minimum-cost
circulation proﬁiem c;n be solved in O(ma(log m)2) time. (Note that Orlin
considers a network with lower capacities alone, so that in his model the
- number of vertices may be proportional to that of ares after transforming
a given network with both lower and upper capacities for each arc.) Our
algorithm shows slightly better computational complexity than Orlin's, and

the two approaches are different.

2. Definitions and Prelimiaries

We denote the set of real numbers by R. Except for R, any set
appearing in this paper is a finite set.

Let N = (G=(V,A),c,c,y) be a network, where G is the underlying
connected graph with the vertex set V and the arc set A, C, c: A +RY
{*w,-w} are, respectively, lower and upper capacity functions, and vy: A +
R 1is the cost function. For each arc a ¢ A, 3+a and 3 a are,

respectively, the initial and the terminal vertices of a. For each vertex




v ¢V, we define &v = fa |2 €4, o'a = v} and Sv={a |a ch, Ja-=
v}. A function f: A +R is called a circulation in N if
F(v) 2} fla) - § fla) =0 (v gV). (2.1)

4 -
agd v acdv

Moreover, a cireulation f in N 1is called feasible if

cla) ¢ £(a) < 3(a)  (a A). (2.2)

| 7o\

The cost Y(f) of a feasible circulation f is defined by

Y£) = ] va)f(a). | o (2.3)
agl

The minimum-cost circulation problem is to find a minimum-cost ecirculation,

i.e., a feasible circulation of the minimum cost, in N.

The existence of a feasible circulation in ¥ can be checked by
solviﬁg & maximum flow problem, and when a feasible circulation exists, the
dual feasibility, i.e., the existence of a minimum-cost circulgtion,f;an be
checked by soiving a shortest path problem. Therefore,_throughoﬁt this
paper, we assume that there is a minimum-cost ¢irculation in ¥ and thus,
without loss of generaliiy, we élsﬁ assume that for each arc aAs A

c(a) ¢ 0 ¢ cfa), (2.4)
i.e., the zero function is a feasible flow. Furthermore, we assume, only
for the sake of simplicity, that for each arc a g A we have c(a) = -wor
c(a) = +o, (If there is an arc a with both finite lower and upper
capacities c(a) and c(a), then we may replace a by series arcs a' and
a' with capacities c(a') = c(a), c(a') = +=, c(am) = -m, cfa") = c(a).)

For lower and upper capacity functions c¢ and c, we define

U

A (c,8) ={a ] ach, cla) =, 3(a) = +x}, | (2.5)

8,(8) ={a | a e &, 3(a) < +«}, - (2.6)



A (E) ={a | aeA, E(a) > =0}, (2.7)

Note that, by the assumption, these three sets are disjoint and 4 =
-U —
A (e,e) VA (2)VA (o).
A path Q 1s a sequence
Q = (vo, B1s Vis eesy Vi_qs 35 vk) (2.8)

of vertices v, (0 <1<k} and ares a; (1 < i< k) such

that
+ - . .
{3 a;5d ai} = {vi_1,vi} (1 <1<k _ (2.9)
it 3+ai = V54 and a—ai =V then we say that arc a; is positively

o )
riented in and if a, = v, and a, = V., arc a. is
oriented in Q, 9 i i 9 i i-1? i

negatively oriented in Q. If v, = Vi and k > 1 in (2.8), Q is called

9]
a closed path.

Define a function EQ: A+ {0,271} associated with a path Q by

1 if a lies on @ and is positively oriented in Q,
gQ(a) =4 =1 if a lies on Q@ and is negatively oriented in Q,
0 otherwise (2.10)

for a e A. The length of the path Q relative to vy is defined by
Q) = ] eqla)yla). (2.11)

Given a fzzgible circulation £ in N = (G=(V,A),c,c,y), a closed
path Q in G 1is said to be admissible with respect to f and N if for
each arc a 1lying on Q the following (i) and (ii) hold:

(i) If "a is positively oriented in @, then f£(a) < c{a).

(ii) If a is negatively oriented in Q, then c(a) < f{a).

A base T of a not necessarily connected graph H = (V,B) is a



maximal set (maximal with respect Lo set inclusion) of arcs which does not

contain any set of arcs forming a closed path in H. A basic circulation

]

associated with a base T of G = (V,A) and the network N = (G,c,3,y) is
a circulation f: A - R in N such that
f(a) = c(a) (a € 4 (c) - 1), (2.12)
fla) = ;(a) . {aea(e) -T). (2.13)

Such a basic ecirculation is not unique if Am(E’E) - T # Q.

For two functions g, h: A +R, we say that g is h-equisignum if

for each a g4 (1) g(a) >0 implies h(a) > 0 and (2) gla) <O
impiies h(a) < 0.

For any real number x, fx1 denotes the minimum integer not less
than x and (x| denotes the maximum integer not greater than X. For
any set S, we denote the cardinality of S by |S]. ‘

The following two lemmas are well known (see, e.g., [5],[6]).

Lemma 1: Let f be a minimum-cost circulation in N = (G=(V,4),¢,c,v).
Then each closed path admissible with respect to f and N has a

nonnegative length relative to . E O

Lemma 2: There exists a function p: V + R such that for any

zinimum-cost circulation f in N and for any arc a g A we have

v(a) + p(3'a) - p(372) > 0 ===> £(a) = c(a), (2.14)
v(a) + p(2'a) - p(37a) <0 ==> f(a) = &(a). (2.15)
O



A real-valued function on V is called a potentisl in N. The

function p in Lemma 2 is called an ootimal potentiszl in N. We

define

fp(a) = y(a) + p(3'2) - p(37a). (2.16)
Now, Lemma 1 leads us to the following lemma.

Lemma 3: Let £ be a feasible circulation in N. Then there exist a
ninimum-cost circulation f£%*, closed paths Qi (i € I) admissible with
respect to f and N, and positive reals d, (i £ I) such that the

following (i) ~ (iii) hold:

(1) We have
f*= - f= Yd.e, , (2.17)
1el T %
where £ for each 1 ¢ I 1is defined by (2.10) with Q replaced
. i
by Qi.
(ii) TFor each i g I, £q is (£#*-f)-equisignum.
. i
(iii) For each i ¢ I, the length of Q; relative to y is
negative.
(Proof) Let f be a minimum-cost cireulation in N. Then, there
exist closed paths Q; (i ¢ I) admissible with respect to f and
N and positive reals di (i £ I) such that the following (i') and
(ii') hold:
{(i')} We have
f-f= Zﬁdng.. (2.18)
. i
iel

M ~
(ii') For each i g I, £q is (f-f)-equisignum.
i



Since each closed path obtained by reversing the orientation of Q; (i€ f)
is admissible with respect to E,' it follows from Lemma 1 that
(iii!') For each i g f, the length of Qi (i e f) relative
to vy 1is nonpositive. -
Define
I={i]ice f, the length of Q, is negativel, (2.19)
and also defin;

f* = £+ ] dse (2.20)

ie1 + %
“From (i') ~ (iii'), (2.19) and (2.20), f£* is a feasible eireulation in
N and

v(£%) = y(£). (2.21)
Therefore, we have a minimum-cost circulation f#*, closed paths Qi (i e

I) admissible with respect to f and N, and positive reals d; (ieI)

which satisfy (i) ~ (iii) in the lemma. . O
By the use of Lemmas 2 and 3, we can show the following lemma.

Lemma 4: Suppose that new lower and upper capacity functions ¢! and

c' with A (c',e') =& (c,c) satisfy

ef(a) =1 <ela) < c'(a) (a e A (e)), (2.22)
ci(a) < S(a) < T'(a) + 1 (a € 4,(3)) | (2.23)
and thet N' = (G=(V,A),c',c',y) has a feasible circulation. Let £’

be a minimum-cost circulation in N', and define

D=A-{a|aci, cla)=c'(a), c(a) = c'(a)}. (2.24)



Then, there exists a2 minimum-cost circulation f in N such that
(I) for any arc a e A _(c) satisfying
fi{a) - c'(a) 2 |D], (2.25)
we have c(a) < f(a) and

- (II) for any arc a ¢ A+(E) satisfying

ct{a) - f£'(a) 2 |D], (2.26)
we have f(a) < 3(a).

(Proof} From Lemma 3, there exists a minimum-cost circulation £ in N =
(G=(V,4),¢,¢,Y), closed paths Q (i e I) admissible with respect

to f' and N, and positive reals di (i £ I) such that

(1) f£-f'= §d.¢

(2.27)
il * Qi,

(ii) for each i g I, £q ig (f-f')-equisignunm,
i
(iii) the length of each Qi (i € I) relative to <y is negative.
From Lemma 2, we have for an opitimel potential p! in N?
+ -
Yb,(a) = y(a) + p'(2'2) - p'(372) > 0 ===> f'(a) = ¢'(a), (2.28)

gi(a). (2.29)

vi(a) = y(a) + p'(3%2) - p1(372) <O ==> £i(a)
Since the length of a closed path relative to <y and the one relative to
Ypr are the same, it follows from the above (iii) that each 9 (i¢gI)
must contain an are a £ A with Yp,(a) > 0 which is negatively oriented
in Q oranarc aceA with Yp,(a) < 0 which is positively oriented in
Q;- Therefors, from the above (i), (ii), (2.22), (2.23), (2.28) and
(2.29), we have for any a e A

|£(a) - £Y(a)| ¢ T 4
iel

< He'(a) - cla) | a e 4, Yp,(a) > 0}



+ }{c(a) -¢c'(a) | a e 4, Ypr(a) < 0}

< |D

. | (2.30)

This shows that f satisfies (I) and (II) in the lemma. O

3. A Strongly Polynomial Algorithm

We show a strongly polynomial algorithm, based on Lemma 4 in the

preceding section.

Algorithm

Step 0r Put ¢! +¢, ¢t «c, f + 0 (the zero function on A4).

lFind a potential p": V + R such that

*{p“(a) 20 fae 4 (e)), (3.1)
Ton(a) $0 (ae A.+('c')'), (3.2)
an(a) =0 (a € Am(E!E))' : (3.3)

Step 1: While 4 (ct,c') does not contain any base of G, do

the following (a) ~ (c):

{2) Find a base T of G and a feasible circulation f' in N! =
(Gye'yc'yy) such that T contains a base of the subgraph G! =
(V,Am(g',E')) and f' is a basic circulation, with f!{a) = 0 for each
agAh (e',e') - T, associated with T and X',

Put

- 10 =



f«f+ £ el «c' - f', ct<ct -1, (3.4)
(b) Define

M = max{max{c'(a} | a ¢ A+(E')r\T},max{-g'(a) | 2 € A {(c')AT}}. (3.5)
If M =0, then go to Step 3.

Otherwise, put

_ let(a)(|V]-1)|a|/m] (2 £ A (c"))

c{a) « < - " _ (3.6)
+oo (2 ¢ & - A (ch)),
Fet(a) (|V]-1) [A]/M] (a g & _(c"))

ct(a) < (3.7)
-00 (aEA"A_(S'))O

(¢) Find a minimum-cost circulation f£" and an optimal potential, to be

denoted by p" again, in N" = (G,c",c",Y) by using the current potential
P"'

For each.a & A+(E“) with ¢"(a) - f£"(a)

v

|¥] =1, put e'(a) « +=,

For each a2 € A_(c"} with f£"(a) - c¢"(a) > |

-1, put c'{a) + =,

Step 2: Let T be a base of the subgraph G' = (V,4 (c’,c')), let f£!

be a basic (feasible) circulation, with f'{a) = 0 for each a € A (ctyer)
- T, associated with T and N' = (G=(V,A),g',€',¥), and put

£+ £+ £, e'«cl-f, T'+g oS, (3.8)
Step 3: Define

B=1{a]|ach4, an(a) =0}. (3.9)
Find a feasible circulation fO in N, = (GO=(V,B),(S—f)B,(E-f)B), where
(E'f)B and (E-f)B are lower and upper capacity functions given by
restricting c¢-f and c¢-f on B.

Then, defining f£.°: A + R as fOA(a) = fy(a) (a € B) and fOA(a) =0 (ac

0

A-B), £+ foA is a minimun-cost circulation in ¥ = (G=(V,A),c,c,Y)

- 11 =



and the algorithm termirates.

(End)

Let us estimate the computational complexiiy of the algorithm. The
validity of the aslgorithm will be discussed in the next section. It will
be shown in the next gection that, in Step 1, the cycle of (a) ~ (c) is
repeated at moét [V] = 1 times. We use this fact in this section to
estimate the complexity.

4 potential p" satisfying (3.1) A (3.3) can be obtained in O(]V]B)
time by solving a shortest péth problem, since the original network N has
a minimum-cest circulation, i.e., N is dual feasible.

It should be noted that the zero circulation f' =0 is feasible in
N' =(G,¢',e',y) in each (a) of Step 1. Therefore, each (a) of Sﬁep 1 can
be c;rriedléut in O(|V]|A]) time. (At the second and later encounters with
(a) of Step 1, if we modify the current base T and basic feasible
circulation f' obtained at the preceding (a) of Step 1 for finding a new
base and a new basic feasigle eirculation, the overall running time

required in repeated (a) of Step 1 can be O(|V||4]).)

In (b) of Step 1, taking the integer part of each scaled capacity in
(3.6) and (3.7) requires 0(log|A|) comparisons.

Note that c¢"(a) < 0 < €"(a) (a £ A) and that, from (3.4) ~ (3.7),
capacities ¢"(a), ¢"(a) (a £ A) can take on finite nonzero values only
for arcs a in T. Therefore, in {(c¢) of Step 1, a minimum-cost

circulation and an optimal potential in N" = (G,c",c",y) can be found by

- 12 -



the out-of-kilter method with the scaling technique (see [6]) in
O(|V|[A|log!4|), wusing the current potential p". Here, note that the

current potential p" satisfies

an(a) 20 (a ¢ A_(E")), (3.10)
Ypnle) €0 (a ea,(cm), (3.11)
Ypn(a) =0 (& e A (e"sem). (3.12)

Also, note that A_(gﬁ) =4 (c'}), A+(E“) = A (c') and Am(g",E") =

A _(c',e'). After finishing (c) of Step 1 by the out-of-kilter method, we
obtain an optimal potential p" in W™ = (G,c",c",y) which satisfies
(3.10) ~ (3.12) at the next (c) of Step 1, since finite c'(a) becomes +w
only if f"(a) < ¢"(a), i.e., Yb"(a) = 0, and since finite c'(a) becones
-e only if c¢"(a) < £"(a), i.e., Yb"(a) = 0, from Lemma 2.

Consequently, the overall running time required for finishing Step 1
is O(IV[2|A|log[A]), since the cycle of (a) ~ (c) is repeated at most [V|
- 1 tinmes. |

The most time-consuming part of Steps 2 and 3 is finding a feasible
circulation in NO in Step.B, which requires 0([V|2|A|) time by using the
Dinic algorithm [2]. (This can be further reduced by using existing more |
sophisticated maximum flow algorithms but is already less than the time
required for Step 1.)

The overall time required for the algorithm is thus O(IV[2|AlloglAl).
Throughout the algorithm we do not carry out multiplications and/or
divisions repeatedly, so that the algorithm is strongly pol&nomial.

Recall that we have assumed that there is no arc with both finite

-13 -



upper and lower capacities. OSuppose that we are given 2 network with m
arcs and n vertices and that the number of arcs with both finite upper and
lower capacities is equal to Ly e Then after modifying the given network

to a network which satisfies the assumption, the new network has n + I
vertices. Consequently, the complexity of the algorithm is

O(m(n+mo)2log m) . Iq m, = m, it becomes O(m3 log m). If m, = 0 (e.g.,
in the case of’the Hitchcock transportation problem (see [51)), the

complexity is O(mnzlog m).

4e The Validity of the Algorithm

In this section we show the validity of the algorithkm proposed in the
preceding‘section.

Becéuse of the way of choosing a base T of G in (a) of Step 1, if
there is an arc a* ¢ Am(g;,a') - T, then for any arc a lying on the
closed path formed by arcs in TU({a*}, we must have a ¢ Aw(E',E’).
Therefore, we can put f£'(a*) = 0 in (a) of Step 1. Moreover, we have

(8,(3NVE (¢ AT # 4, (4.1)
and M defined by (3.5) is nonnegative. If M = 0, then the zero
circulation f' = 0 1is a minimum-cost circulation in N' =
(G=(V,A),ct,ct,y), since N! has a minimum-cost circulation. If M # 0

in (b) of Step 1, let us define

- 14 -



5, (a)

ct(a)([V|-1) |a|/m (a € 4), | (4.2)
c'{a)([V]-1) [a|/M (a g 4). (4.3)

t
c.'(2)
Let 4 be an arc which attains the maximum of (3.5). The arc set T - (£}

forms two connected subgraphs of G and let U, and U2 be the vertex

1
sets of the two subgraphs. Define K g A and n: & + {0,#1} by

K=1{a |ach, either a+a eU,and 32 U

1 27
or 3a U2 and 3 2 g U1}, (4ed)
and for a £ 4
1 (32 U, 92 g0,),
na) ={ -1 (3ael, dacl), (4.5)
0 (otherwise).

Because of the way of choosing T, we have
JEna(e'8) = 6. | (4.6)
Moreo%er, for a minimum-cost circulation £" in N" obtained in the
succeeding (c) of Step 1, we have from (4.6) |
C Tin(a)(e™(a) - £"(a)) | a e & (c")nK}
+ In(@)(E(a) - £(a)) | a g 4, (G AK)
n(&)em (&) if & ¢ A (eM),
=-{ - -- (4.7)
n(&)en () if & ¢ A+(c"). ‘
Here, use is made of the fact that J{n(a)f"(a) | a € X} = 0 and that
c¢™a) =0 for 2e A (c")AK and c"(a) =0 for ac A+(E“)f\K, except
for &. From (3.5) ~ (3.7) and the fact that the absolute value of (4.7)
is equal to (|V]|-1)}4], there exists at least one arc a ¢ KS A (emV
A+(E") for which
a €A (c"), f"a) -c"(a) > |V] -1 : (4.8)

or

- 15 -



a¢h (cm), c'(a) - £(2) 2 |V] - 1. (4.9)
Since |T| = |V| - 1 and for each a € & - T we have ch(a) = ES'(a) and
c(a) = ES'(a), it follows from (4.8), (4.9) and Lemza 4 with ¢, ¢, c',
¢! replaced by Esl’ ES', E", E", respectively, that thers is a
minimum-cost eirculation £' in N' = (G,ct,c',y) suck that

(1) for a g A _(c") with £"(a) - ¢"(a) > V| - 1,
we have g‘(a)'< fiia),
(i) for a e A (") with c"(a) - £"(a) > |V| - 1,

we have f'(a) < c'(a).
Therefore, in case of (i) (or (ii)), if we put c'(a) + -» (or c'(a) +
+w), f' remains to be a minimum-cost circulation in the new network N! =
(Gye'ye',y)s This is a crucial point. Moreover, from (4.8), (4.9) and
Lemma 4, at least one arc a e K C A (c")VA (C") satisfies the
éequirement of the above (i) or (ii). Hence, the cardinalify of & base of
G* = (V,A_(c',c')) increases at least by 1. Therefore, we repeat the
" eyele of (a) ~ (c) of Step 1 at most |V| - 1 times. At the beginning of
Step 3, we get a network N' = (G,c',c',y} and a circulation f in N =
(Gyc,C,Y)e We see that the zero circulation f' =0 is a minimnum-cost
circulation in ¥N'. Denote the polyhedra of all the minimum-cost
circulations in N' and N by P(N') and P(N), respectively. Then, due
to the above arguments, we have

P(N) CP(N') + {f} = {£* + £ | £' ¢ P(N")}. (4.10)
From {4.10)}, any eirculation in P(N!') + {f} which is feasible in the

original N is a minimum-cost circulation in N. Such a feasible

circulation in N is found in Step 3.

- 16 -



5. Concluding Remarks

We have shown an O{m(n+m 2log @) algorithm for the minimum-cost

o)
circulation problem for a network wiﬁh m arcs, n vertices, and m
arcs with both finite lower and upper capacities, by means of capacity
rounding. This algorithm is motivated by the modification of the Tardos
algorithm with cost rounding, described as follows.

Tardos [9] introduced the projection of the cost vector into the
circulation space (which, physically to be more precise, should be regarded
as the projection of the cost vector into the orthogonal complement of the
tension space). Instead of introdueing such a projection, let us find a
base (sPanning tree) of G with a root v, and let pl{v) (v £ V) be the
length of the unique path in T from the rooct Y5 to v relative to v.
Then ﬁransform Y into Yb nodified by the potential p and define

ME = max{[yﬁ(a)] | a e A - T} . (5.1)
If M* =0, we are finished. Otherwise, suppose & is an arc which
attains the maximum in (5.1). Define

') = v (@) [V (aen). | (5.2)
Let Q be the closed path formed by ares in TV{4}. Then, from (5.2),
the length of Q relative to Yp{ is i]V]2 and its value is invariant
under any wmodifications of Ypr by potentials. Therefore, for any
potential p': V + R, we have
] £g(a)(y,'(a) + p'(37a) - pr(a7a)) = £[v]?, (5.3)

ach
where £q is defined by (2.10). From (5.3), for at least one arc a

- 17 -



lying on Q@ we must have

v, (@) + p'(3%a) ~ p'(37a)| 3 |V]. (5.4)
Consequently, the Tardos algorithm modified as above works. This modified
algorithm runs in O(sz(m,n)log n) time, which is essentially the same as
the compiexity of Tardos's. But this modified version is simpler and can
more easily be adapted to the submodular flow problem (cf. [1], [31).

The algorithm pfoposed in the present paper is a dual of this modified

version of the Tardos algorithm. The dual approach has effectively reduced

the computational complexity.
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