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Abstract

The principle of dimensional homogeneity, which asserts that any
system of equations describing a physieal phenomenon should be consistent
with respect to physical dimensions, is shown to imply a kind of total
uniﬁodularity of the physically-dimensioned coefficient matrix of the
(linearized) system. This fact can be utilized in the structural
approach to systems analysis in a number of ways; for example, it is
useful in formulating some problems concerning dynamical systems in
matroid-theoretic terms as well as in reducing the computational

complexity needed to solve them by combinatorial algorithms.
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T, Inﬁroduction

The concept of physieal dimensiops would be counted among the most
fundamental in recognizing the nature of physical quantities in an
appropriate manner. The principle of'dimeﬁsional homogeneity claims that
any gquation describing a physical phenomenon, if it is to be qualified
as such, must be consistent with respect to physical dimensions. This
principle constitutes the basis of the method usually called dimensional
analysis, which has long been known to scientists and turned out @o be
fruitful in various fields [2], (7], [14], [16]. It is important here to
notice that we cannot talk of dimensional homogeneity until we recognize
the difference in the nature of quantities from the viewpoint of physical
dimensions.

In connection to structural analysis of large-scale
physical/engineering systems, on the other hand, another sort of
distinetion in the nature of numbers is made in [25]. It is pointed out
there that by classifying the nonvanishing numbers into two different
kinds according as they are "accurate! or "inaccurate" (in a certain
algebraic sense to be explained later), we can construct those
mathematical models which are fairly faithful to real situations and, at
the same time, simple enough to be amenable to subsequent mathematical
analysis. |

In this paper, we will show how we can make use of the concept of
physical dimensions in the structurai analysis of large-scale systems.
Suppose a physical system is described by é system of equations, which
may in turn be expressed by a matrix when linearized if necessary. With

each entry of the matrix is associated the physical dimensions in a



physically consistent manner.

It will be pointed out first that, by virtue of the principle of
dimensional homogeneity, the physically-dimensioned coefficient matrix
describing a physical system enjoys aikind.of total unimodularity in a
certain ring defined appropriately with reference to physical dimensions.
Several implications of this fact are discussed in connection to the
mathematical framework déveloped in [25] for the structural systéms
analysis under the assumption that the nonvanishing numbers are
distinguished intoc "accurate" and "inaccurate" numbers. To reflect the
dual viewpoint from structural analysis and dimensional analysis, the
notion of physieal ﬁatrix is intrqduced as a mathematical model of the
matrices that we encounter in real physical systems.

The concept of physical ﬁimensions can be utilized in the structural
analysis in a number of wafs. In particular, (1) the consistency among
physical dimensions associated with the entries of a matrix can be used
for detecting descriptive errors; (ii) the structural problems of
determining the solvability [20], [37], the controllability (18],

[31], and the dynamical degree [6] of a dynamical system described in
descriptor form [19], [20] can be formulated and solved with the

aid of matroid-theoretic concepts in the framework of [25] under a
physically plausible assumption concerning the physical dimensions of the
"accurate® numbers; (iii) the computational complexity in solving the
above problems by éombinatorial algorithms can be drastically reduced to

render the proposed methods applicable to real-world large-scale systems.



2. Physically-dimensioned matrices

A physical sysitem is usually described by a set of relations among
relevant physical quantities; to each of which is assigned the physical
dimensions. When a set of fundamental'&imenéions, or eguivalently, & set
of fundamental quantities, is chosen, the dimensions of the remaining
physical quantities can.be uniquely expressed by the so-called
dimensional formulas {2], {7], [14], [16]. For exsmple, a standard
choice of fundamental quantities i mechanics consists of length L, mass
M and time T, and the dimensional formula for force is then given by
[LMT-z] = [L]I:M][T]_2 or simply by LMT’Z. In general, the exponents of
dimensions, namely the powers in the dimensional formula, may take on
rational numbers other than integers.

In this paper we do not go into the philosophical arguments such as
those ‘on what the physical dimensions are and which set of physical
quantities are most fundamental. Instead we assume that the fundamental
quantities with the associated fundamental dimensions are given along
with the dimensional formulas for other quantities.

Le£ us consider a linear (or linearized) system represented by a
system of linear equations:

Ax=b, Co(2.1)
where we assume that the entries of the m by n matrix A=(aij), as well as
the components of x=(xj) and b=(bi), belong to some field F, an extension
of the field @ of rationals; namely,

3350 Xy b, €F (i=1,f..,m; J=13eee,yn) (2.2)
Not only the components of x and b but also the entries of A have
physical dimensions, expressed as [Z1]P1...[Zd]pd in terms of the chosen

set of fundamental quantities Z1, ey Zd.



From aigebraic point of view, we may regard Z1, ceey Zd as
indeterminates over F and consider the extension field E of F generated
over F by all the formal fractional powers of Z1, P Zd; l.edy

by Py
E=F({Z, "...2, " | p_ €@, k=1,...4}). (2.3)
1 d k .
Accordingly, (2.1) may be replaced by the following system of equations

in the extension field E:

E3=%6, (2.4)
where
d P -
_ ijk
d c.
%.=x, I 3 J¥ (2.6)
J J k=1 k
d T,
B. =b, I 2z ¥ (2.7)
i i =1 k

with the exponents p'jk’ cjk’ Tix of rational numbers representing the

i
physical dimensions.
The principle of dimensional honogeneity now demands that the

exponents should satisfy

Pijr = Fix ~ Cik (2.8)
for i=1,.veym; j=1,...,n; k=1,...,d. Based on this observation, we will

define the notion of dimensioned matrix as follows.

Definition 2.1. Let §=(§ij) be a matrix over E {ef. (2.3)) which is
expressed as in (2.5) with exponents Pijk € Q. We call X a dimensioned
matrix if (2.8) holds for some suitably chosen r., and ® i (e @). |Z]
The set of dimensioned matrices (of any order) with base field F and

fundamental quantities (i.e., indeterminates) Z1""’Zd will be denoted
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by D(F;Z1,...,Zd). The following is a restatement of the definition,

where
d r
D_ = diag( T 3, '5,..., H 7, Fokey (2.9)
=1 =1
d ¢ d c
D, = diag( I 7, ., T z, ™) (2.10)
k=1 k=1

WlthrkGQand CJ ‘:Q(l"" ,-o.,m, J~1,..-,n, k""’],-.-,d)

Proposition 2.1. A matrix X over E belongs to D(F;Z1,...,Zd) iff
it can be expressed as
X -1
= Dr A DC '

where A is a matrix over F, and Dr and D are diagonzl nonsingular
matrices of (2.9) and (2.10). |Z]

As an immediate consequence, any minor of a dimensioned matrix has a
simple form, & "monomial" in Zk's in the abuse of language, as stated

below, where A(I,J) denotes the submatrix of & corresponding to rows in I

and columns in J.

Proposition 2.2. Let X be a dimensioned matrix, i.e., i € D(F;Z1,...,Zd).

Then
- d Py
det K(I,7) = ¢ 12
k=1
for some ¢ € ¥ and p, € Q (k=1,...,d).

(Proof) Suppose X is expressed as in (2.5) with pijk given by (2.8). It

is easy to see that

" a
det K(I,T) = det A(L,3) + Tz %,
k=1
where p, = Zr,, - Lec, ..€Q. Q.E.D.
ko jer b yep K



3. Totel unimodularity of dimensioned matrices

Let R be an integral domain [34], i.e., a commutative ring without
zero divisors (and yith a unit element). A matrix over R is said to be
totally unimodular (ovef R) if every ﬁonvaﬁishing minor of it is an
invertible element of R. We will denote by U(R) the set of totally
unimodular matrices (of any order) over R. The significance of this
concept lies in the fact that, if a matrix is totally unimodular over R,
not oﬁly its inverse but also its pivotel transforms are matrices over [R.
In the canonical case of R being the ring of integers, the total
unimodularity of Incidence matrices of graphs play substantial roles in
combinatories [17].

Consider ﬁhe ring, %o be denoted as F<Z1,...,Zd>, generated over F
by all the formal fractional powers of Z1, “eey Zd: -

Py Py
F<ZyseeesB> = FL{Z, ".uuZy | P € Q k=1,...,d}]. (3.1)

It is easy to see that F<Z1,...,Zd> is an integral domain, whose quotient
field agrees with E defined in (2.3). An element of F<Z1,...,Zd> is
invertible i1ff it is of the form ¢ % ka

k=1
for k=1,...,d. Prop. 2.2, combined with this observation, implies that a

K vith a € F\{0} and B, € 0
dimensioned matrix is totally unimodular over F<Z1,...,Zd>.
Proposition 3.1. D(E;ZyeeesZy) € U(E<Z yeensBD). [2]
Moreéver, these two classes of matrices coincide with each other, as
stated in Theorem 3.2 below, which, coupled with Prop. 2.1, also provides

us with a concrete representation of a totally unimodular matrix over

<Ly yeensBgde



- Theorem 3.2. D(F;z1;...,z ) = U(F<Z1,...,Zd>).

d
(Proof) In view of Prop. 3.1, it suffices to show that every totally
unimodular matrix over F<Z1,...,Zd> is a dimensioned matrix.

Furthermors, the proof can be reduced “to the case of d=1 by induction on

d, and the present theorem follows from Prop. 3.3 below. Q.E.D.

Proposition 3.3. Let Z be an indeterminate over ¥ and K=(§ij) be an m by
n totally unimodular matrix over F<Z>, i.e., & € U(F<Z>). Then there

exist aij € F, r, € Q and cj € Q (i=1,...,m; j=1,...,n) such that

N T5-c;
aij = aij Z . (3.2)
(Proof) By definition, Eij can be expressed as
D -
~ - lJ
aij = aij y/ (aij € F, Pij € Q). ‘ (3.3)

Gonsideg the bipartite graph G(V,E) associated with A; the vertex set V
(|V|=m+n) is the union of the row and column sets of X, and the edge
set B = {(1,3)| aij #0}. As will be eviéent from the subsequent |
arguments, we may assume without essential loss of generality that G is
connecteq.

Fix a spanning tree T on G arbitrarily. Since T contains né eycles,
we can find rational numbers r, (i=1,44.,m) and cj (j=1,+..,0) associated
with the vertices of G suéh that

P.s ST, — C, (3.4)
for each edge (i,j) in T. If (3.4) holds true for every edge of G, (3.2)
follows from (3.3) and (3.4).
Suppose that
B = {(i,j)eE | P # ri—cj}
is nonempty. By the construction, we have

BnT=¢. (3-5)



For each edge (i,j) € B, we denote by C(i,j) the set of all the circuits
composed of that edge (i,j) and some other edges in E\B. Note here that
C(i,j) is nonempity for each (i,j)eB, since each edge in B is a cotree
edge by (3.5) and the corresponding fuhdamental circuit belongs to
C{i,j), again by (3.5). Therefore

¢ = u{c(s,i) | (1,5) e B}
is nonempty if B is nonempty.

From among the circuits in G, choose the one, say CO’ having minimél
number of edges. Let i1, j1, iz, 52’ ey is’ js(=jo) be the sequence of
vertices lying on C, and assume that (i1,j1) € B and that I={ij, ceny is}
and J=[j1, cony js} are subsets of the row-set and the column-set,
respectively.

The minimal eircuit G, has no chord, that is, (ip,jq)eE implies
p~q=0 or 1 (mod s), since otherwise we are led to a contradiction to its
minimality in either case where the chord belongs to B or to E\B. Hence

the determinant of the submatrix K(I,7) is equal, up to a sign, to

S 1 S +8
A= TE . + (10" 1ma, . =azF°+g02P,
1]
r=] “r'r r=1 "r‘r-1
wiere
s
a= [Ma #0 (e %),
r=1 "r‘r
4 8
B=(-1)°"Ta, . #0 (c®),
r=1 “rdr-1
8 )
p= Ir. - ZIec, (¢ @),
r=1 T r=1 Jr

§=p, . - (r, -c, .
Py~ Gy meg) 0 (€ 0)



This contradicts the total unimodularity of X since A is not invertible

in ¥<Z>. Therefore B is empty and the proposition is established. Q.E.D.

The following properties of totally uﬁimodular mafrices over

F<Z1,...,Zd> are mentioned as direct consequences of Theorem 3.2,

Proposition 3.4. Put U = U(F<Z1,...,Zd>) for short.

(1) If 4, BeT (and the product AB can be defined), then there exists 2
diagonal matrix D € U such that ADB e U.

(2) A square matrix A € U can be decomposed, with suitable permutations
of rows and columns, into LU factors, both belonging to U; that is, there
exist permutation matrices P}, Pc, and a lower itriangular watrix L € U,

and an upper triangular matrix U € U such that PI_APc = LU. E



4. YPhysical dimensions in structural analysis

This section is devoted to demonstrating how the concept of physical
dimensions and the total unimodularity of dimensioned matrices can be
incorporated in the structural analysis of iarge-scale
physical/engineering systems. We will first mention a rather obvious use
of dimensions in Section 4.1 and then show more sophisticated connections

with mixed matrices.

4.7+ Check for dimensional consistency

When we are given a system (2.1) of equations that is supposed to
represent a physical system, we can sometimes detect errors in its
deseription by verifying the condition (2.8) for dimensional homogeneity.
In case the dimensions Tiy and cjk as§ociated respectively witﬁ the rows
and the columns of the matrix are known along with pijk'g, the test for
(2.8) is stfaightforward. Even in the case where only pijkls are given
without information ab?ut Ty and cjk’ we can efficiently decide whether
(2.8) can be satisfied for some suitable I and.cjk: Just as in the

proof of Prop. 3.3, we consider a tree in the bipartite graph associated

with A, and setting rik and ¢., so that (2.8) way be satisfied for tree

jk

edges, we check (2.8) for cotree edges.

'4.2. Description of physical systems by mixed matrices

It is observed in [25] that two different kinds can be distinguished
among the nonvanishing numbers characterizing physical/engineering
systems, and a mathematical framework is provided there for dealing with
the two kinds of numbers in systems analysis. The method developed in

" [25] is summarized in this subsection.

- 10 -



The two kinds of numbers to be distinguished from each other are as
follows: (i) the numbers of one kind are accurate numbers such as
incidence coefficiepts in electric networks, stoichiomeftric coefficients
in chemicel reactions, and coefficients appéaring in some other
conservation laws, and (ii) the numbers of the other kind are inaccurate
and independent numbers such as resistances 1n electric networks and
ﬁelocity constants of éhemical reactions, so that they cannot be expected
to be subject to any exact mathematical relations among themselves. See
[25] for more detailed discussions on the distinction of numbers.

The physical consideration above is cast into a mathematical
formalism as follows. Besides the field F to which the entries of A of
(2.1) belong, we consider a subfield K:

QcKcl, (4.1)

and regard the numbers in K as being accurate and the others as being
inaccurate. Then the matrix A is decomﬁosed as

A =T, +Q, ' (4.2)
in such a way that the nonvanishing entries of TA are in F\K and QA is a
matrix over the subfield K. If, in addition, the collection of the
nonvanishing entries of T, is algebraically independent (34] over K, the
matrix A (together with the expression (4.2)) is called a mixed matrix
with respect to K.

In dealing with structural aspects of a physical system, the first
important step is to choose an appropriate mathematical description of
it. A description by a collection of elementary relations among
elementary variables is usuwally superior in this respect to.a compact

sophisticated representation. If a real-world system is expressed as in
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(2.1) using elementary variables, it is often justified, as cléimed in
[25], to assume that the entries of A not belonging to @ are mutually
algebraically independent transcendentals over Q. (This assumption is
labelled as M"GA2Y iﬁ £25].) Then the coefficient matrix A4 can be
expressed as a mixed matrix with respect to Q. Note that the generality
assunption GAZ refers to a mathematical expression of a physical system,
but not the sysfem itéélf.

The rank r{A) of a mixed maQrix A=TA+QA with respect to K is -
expressed in terms of two matroids, M(TA) and M(QA), both defined on the

union of the rows R and columns C of A as follows.

Definition 4.1. For a matrix G over a field with the row-set R and the
column-set C, M(G) denotes the matroid [35] defined on the set of
columns, identified with RUC, of the matrix [U[G] with respect to linear

dependence of column vectors, whers U is the unit matrix.

In the following, M(QA)* is the dual of-M(QA), and M(TAYVM(QA) the union
of M(TA) and M(QA) [35]; t(TA(I,J)) is the term-rank [26] of the
submatrix of TA corresponding to rows in I (cR) and columns in J (cC).
Note that M(QA)* agrees with the linear matroid defined on the set of

rows of the matrix (g Y.
A

Proposition 4.1 ([25, Theorems 5.1, 5.3). For a mixed matrix A=T,+Q,,

r{4)

mex{t(T, (R\I,3))+r(Q, (I,0\5)) | IcR,Jcc} (4.3)

rank(M(T,)V4(qQ,)) - [R| (4ed)

maximum size of a common independent set of M(TA) and M(QA)*.|E[

- 12 -



Based on this characterization and using the established algorithms

(31, [11]1, (32], we can determine the rank of & matrix A over F with
arithmetic operations in the subfield K, as well as with graph
manipulations, since M(QA)* is represented over the subfield K whereas
M(TA) is a transversal matroid [35] by virtue of the algebraic
independence of Fhe nonvanishing entries of Ty« BSee [25] for the
detailed description of the combinatorial algorithm for computing r(A) by

this characterization. ’

- 13 =



Example 4.1 (Electric network)

Consider the simple electric network shown in Fig. 4.1, which
consists of five elements; two resistors of conductances 8; (branch i)
(i=1,2), a voltage source (branch 3) éontrolled by the voltage across
branch 1, a current source (branch 4) controlled by the current in branch
2, and an independent voltage source of voltage e (branck 5). Then the
current Ei in and the voltage n; across branch i (i=1,...,5) aré to
satisfy the structural equations (Kirchhoff's laws) and the constitutive

ejquations, which altogether are expressed as

0 -1 1 (1] (o)
1 1 1 £? 0
-1 1 g3 0
_________ T a1 g4 0

1 1 -1 e |=1] 0 |. (4.5)

=1 g1 n1 0
-1 g€, Ny 0
0 v =1 n3 0
B =1 0 n4 0

0 -1 b n5‘ k e J

The upper five equations of (4.5) are the structural equations, while
the remaininé five the constitutive equations.

The values of the physical parameters 813 8o» @ and B are inaccurate
numbers which are only approximately equal to their nominal values on

account of various kinds of noises and errors. Therefore, we may
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consider them algebraically independent transcendentals in F =
Q(g1,g2,a,8) over §. Then the coefficient matrix A of (4.5) can be
expressed in an obvious way as a mixed matrix with respect to K= by
taking {g1,gé,a,8} for the nonvanishing entries of TA‘

The unique solvability of this network amounts to the nonsingularity
of A, which can be checked efficiently based on Prop. 4.1, as explained
above. (This is trivially equivalent to the well-established method in
electric network theory [91, [10]; [131, [27], [28], (291, [303, [32].)
If we calculate the determinant of A directly, we obtain

det A = -g, - (1-0)(14B)g,,
which 1s distinct from zerc by the algebraic independence of the physical
parameters, and hence this network is uniquely solvable under the

assumption on generality. |Z|

Time-invariant dynamical systems caﬁ also be treated by means of
mixed matrices. Consider a control system expressed in the "descriptor
form" [19], [20]; [37] (sometimes also called "intermediate standard
form™ (61, [15]): |

Fdx/dt = A x + B u, (4.6)
where x and u are the deseriptor-vector (standing for internal variables)
and the input-vector, respectively, and ¥, A and B are constant matrices.
In case F is nonsingular, (4.6} could be tranformed to Kalman's standard

form:

1 1

dx/dt = F 'A x + F"'B u, (4.7)
but (4.6) is more elementary and hence more suitable for the structural

analysis than (4.7) from the combinatorial point of view.
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Suppose that F, A and B of (4.6) are matrices over F (o @) and that
their entries which do not belong to § are collectively algébraically
indeéendent over (. This is equivalent to saying that the composite
matrix [FIA]ﬁ] is a mixed matrix with'}espeét to Q:

[Fla[B] = [T4]T,[Tg] + [QFlQAIQB]. (4.8}

If the system (4.6) is written in the Laplace transform, we have

[A-sF | B] (E) =0, (4.9)
where s is a symbol (or an indetefminate over F} standing for the
differentiation with respect to time. Then the coefficient matrix
| D = [A-sF | B], (4.10)
regarded as a madrix over F(s), is again a mixed matrix with respect to K
= Q{(s), since it is expressed as

D= TD + QD : (4.11)
with |

Ty = [T,-sTp | Tgl, Q= [Qu-sQp | Qgl, (4.12)
and the set of the nonvanishing entries of TD is algebraically
independent over §(s). The matrix

E=4A-sF (4.13)
can also be expressed as a mixed matrix with respgct toK =0Q(s) in a

similar manner.
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Example 4.2 (Mechanical system).
Consider the mechanical system in Fig. 4.2 consisting of two masses
m, and Y two springs k1 and kz, and a damper £3 u is the force
exerted from outside. We may choose x=(x1,x2,x3,x4,x5,x6) as the
and

descriptor-vector, where X, (xz) is the displacement of mass m, (m

1 2)
Xy (XA) is its veloeity, Xg is the force by the damper f, and x, is the
relative velocity of the two messes. Then the sysiem can be expressed in

the deseriptor form (4.6) with

1
1
F = m, ;
2
0
1 -1 0
(4.14)
0 1 0
0 1 0
A=k, 0 -1 y B = 1 .
-k, c 1 0
-1 ¥ 0
1 0

If we regard {m1,m k1,k2,f} as being algebraically independent, thg

2’
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matrices T and Qp of (4.12) are given by

7= (T5]T51 = | -k, -em o , (4.15)

-8 1 | o

O = [QpQ5) = 0 -1 1] . (4.16)

- 18 -



4.3. Physically-dimensioned mixed matrices

We have already introduced two concepts on matrices that we
encounter in the description of real systems, namely the dimensioned
matrix and the mixed matrix. Tﬁe former ié motivated by the dimensional
analysis while the latter_by the structural analysis. Now these two are
combined to yield some useful consequences in the analysis of dynamical
systems.l

As has been discussed in Section 2, when we describe a physical
system in the form of (2.1) with a matrix A over F, we usually know the
physical dimensions assoclated with its rows and columns. Then we can

determine the dimensioned matrix X over F<Z1,...,Z > that corresponds to

d
A by (2.5) and (2.8) (see (3.1) for the definition of IF<Z,],...,Zd ). We

call & determined in this wey the dimensioned matrix gorresponding to A
(with the implicit understanding of the given physical dimensions).

Conversely, we call A the numerical matrix corresvonding to K. By Prop.

2.1, this correspon&ence between numerical matrices over F and
dimensicned matrices over F<Z1,...,Zd> are givgn by
E=p_ & Dc_1, (4.17)

where D and D are the known diagonal matrices of (2.9) and (2.10)
representing the physical dimensions of the rows (equations) and the
columns (variables).

- When A is a mixed matrix of the.form (4.2): A = TA + QA with respect
to a subfield K of F, we can express the corresponding dimensioned matrix

E of (4.17) as

- 19 -



with

B 5 -1
Ty = TA =D_ T, D, (4.19)

QK = QA = Dr QA Dc-1' (4.20)
This shows that X is also a mixed matrix, but with respect to (the .
quotient field of) K<Z1""’Zd>' In particular, QA is a matrix over
K<Z1,...,Zd>. Npte alsc that the matrices Tﬁ and QK constituting the
mixed matrix X coincide with the dimensioned matrices TA and QA
corresponding to TA and QA of (4.2), respectively.

The.physical observation to be made here concerns with the physical
dimensions of the nonvanishing entries of QA' When we regard physical
parameters, such as {g1,g2,a,8} in Example 4.1 and {m1,m2,k1,k2,f} in
Example 4.2, as algebralcally independent transcendentals over @
(agsumiyg GA2), the matrix QA then represents various kinds of
cénservatioﬁ laws or structu;al equgtionéi and consists of incidence
coefficients such as those induc;d from“the underlying
topological/geometrical ineidence relétioné in electric networks and the
stolchiometric coefficients in chemical reactions. Thus it is natural to
expect that the non&anishing entries of QA (i.e., the accurate numbers)
are dimensionless. In fact, this is the case both with the coefficient
matrix (4.5) of Example 4.1 and with the matrices F, A and B of (4.14) of
Example 4.2.

The above physical observation can be stated in algebraic terms as
follows. Let A = TA+QA (QA=(qij)) be a mixed matrix with respect to
K and & be the corresponding dimensioned matrix expressed as (2.5)

with exponents pijk of dimensions. The condition that the

- 20 -



nonvanishing entries of QA are dimensionless is equivalent to:

qij#o implies pijk=o for k=1,...,4; (4.21)
or alternatively,
-1 _ : . T
D.Q B, =49 (4.22)

with reference to (4.20). The condition (4.21) or (4.22) does not
exclude dimensionless nonvanishing entries from TA; in Example 4.1, the
parameters @ and B in TA are dimensionless.

Now we are in the position to introduce the concept of physical
matrix as a mathematical model of the matrices that we encounter in real-
world systems. It reflects the dual viewpoint from structural analysis
and dimensional analysis. Suppose a matrix A over F is given along with
& pair (Dr’Dc) of diagonal matrices of the forms (2.9) and (2.10),

respectively.

Definition 4e2. We will say that A is a physical matrix with respect to

(K;Dr,Dc), where K c F, if
(1) A = Ty * Q is a mixed matrix with respect to K, and

-1 _

(ii) Dr QA Dc = QA.

When (Dr’Dc) is understood, we say simply that A is a physical matrix

with respect to K. A dimensioned matrix I that corresponds to a physical

matrix A by (4.17) will also be called a physical matrix.
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4.4 Physical matrices in dynamical systems

We will investigate the Laplace transforam (4.9) of a dynamical
system by means of the concept of physical matrix introduced above.
Consider the matrix D = [A-sF | B] of (4.10) and let (D_,D,) be the pair
of matrices of (2.9) and (2.10) representing the physical dimensions of
D, where we may assume.that time is chosen as one of the fundamental
dimensions, say Z1. Dc is decomposed in two parts as Dc = diag(Dx,Du)
with Dx accounting for the dimensions of x and Du for those of u. HNoting
that the symbol s should have the dimension of Z1‘1 (the inverse of time)
since 1t represents "d/dt" (the differentiation with respect to time), we

see that the dimensions associated with F, A and B are given by

-1
1

matrix D corresponding to D is given by

(Dr,Z Dx)’ (Dr’Dx) and (Dr,Du), respectively. Then the dimensioned

B=D_ [A-sF | B] D
: T c ‘
= [K—sz1‘1F | 8 (4.23)

in terms of the dimensioned matrices corresponding to F, A and B.

Suppose that F, A and B are physical matrices with respect to
(K;Dr,Z1"1Dx), (K;Dr,Dx) and (K;Dr,Du), respectively, expressged as in
Def. 4.2. Accordingly, D of (4.23) is expressed as

D=T5 * O

where

i

[TA-SZ1-‘1TF | TB]’
(8,-s2, "%, | 1. (4.24)

Since F, A and B are physical matrices, we see that QD of (4.24) is

Tﬁ=TD

It

Qﬁ = QD

simplified to
= -1
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which may be regarded as a dimensioned matrix over K(s)<ZT>.
Then it follows from the total unimodularity of QD (Theorem 3.2)
that every mincr of QD of (4.12) is a monomial in s over K, as shown

below.

Theorem 4.2. Let QD =N[QA-SQF [ QB] be defined by (4.11) and (4.12),
where F, A and B are physical matrices with respect to K, as above. Then

P with ¢ € K and P & nonnegative

each minor of QD is of the form o
integer. In particular, Q, € U(K<s>).

(Proof) By Theorem 3.2 (or by Prop.2.2), each minor of QD of (4.25) is
of the form A=BZ1_P with B € K{(s) and p € §. Since each entry of QD is
either of the form o (&€ K} or of the form GSZ1_1 (¢ € K), we immediately

see that p is a nénnegative integer and that B = as® for some o ¢ K.

That is,"A=asPZ1_p. Noting that QD is cbtained from GD by setting Z1=1
(ef. (4.12) and (4.25)), we see that the corresponding minor of Q is

equal to as®. . Q.E.D.

In view of Prop. 4.3 below, this théorem has a significant
implication in actual applications in that it means a considerable
reduction in the computational complexity of finding the rank of the
mixed matrix D of (4.11) (or E of (4.13)) by way of the combinatorial

characterization given in Prop. 4.1. See Section 5 for details.
Proposition 4.3. Let Q be a matrix over K[s] (the polynomial ring in s

over a field K) and M(Q) be the associated matroid (cf. Def. 4.1) when Q

is regarded as a matrix over K(s). If each minor of Q is a monomial in s
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over K, M(Q) is representable over K. Specifically, on expressing as Q =

Bii . 5 _
(aijs 3y with aijeK and pijez , we have M(Q)=M(QO), where QO=(aij). |=]

Example 4.2 {continued).
The physical dimensions associated with D = TD+QD consisting of

(4.15) and (4.16) are expressed by the pair (Dr,Dc) given by

2

D_=diag(T”'L,T"'L,T7mM, 721K, T21M, 17 L) , (4.26)

D, =diag(L,L,T7'L,T7 L, T7°L%, 77 'L, M), (4.27)
where T=Z1=time, L=Zz=length and M=23=mass. In this example, any minor

of Q, of (4.16) can easily be identified as a monomial in s over Q. |Z|
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5. Structural analysis of dynamical systems

In this section, we deal with some fundamental problems on the
dynamical system in the descriptor form (4.6): Fdx/dt = Ax + Bu. As
discussed in Section 4, we may assume that éhe nonvaﬁishing entries of F,
A and B which do not belong to Q are collectively algebraically
independent over @, so that the matrix D =[A-sF | B] of (4.10) can be
written as (£.11): D = TD + QD’ which is a mixed matrix with respect to
Q(s). Furthermore, we may assume that F, A and B are physical matrices
with respect to Q; then, by Theorem 4.2, each minor of QD = [QA—SQF | QB]
of (4.12) is a monomial in s over Q.

Thus, we will assume throughout this section that, D of (4.10) is
written as D = TD + QD’ where

(i) the collection T of the nonvanishing entries of TD are

algebraically independent over Q(s)? (5.1)

and )

(ii) every minor of Q = [QA—SQF | QB] is a monomial in s over §. (5.2)

5.1. Solvability of a descriptor systenm

The problem of determining whether the pencil [5] E = A-sF is
regular or not, i.e., whether det{A-sF)=0 or not, is of fundamental
importance in connection with the unigue solvablility ({331, [371 tor
consistency [6]) of the dynamical system (4.6) or of its discrete
counterpart [20].

By (5.1), E is a mixed matrix with respect to §(s), as noted in
(4.13), i.e.,

E = (TA-STF) + (Qy-sQg) . (5.3)
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The rank of E is then characterized by Prop. 4.1 in terms of a
transversal matroid M(TA—STF) = M(TA—TF) and a linear matroid M(QA—SQF)
over Q(s). It is noteworthy that the latter is representable over §, by
(5.2} and Prop. 4.3, as _

M(Q,-sQy) = M(Q,-Qp), (5.4)
so that the rank of E can be found using the combinatorial algorithm, to
be explained in Section 5.3 in some detail, with arithmetic operations in
Q without involving the indeterminate s. In this way, r{E} is computed
with O(nA) arithmetic operations ih Q, where n.is the size of E. Note
that Theorem 4.2 plays a crucial role in reducing the computational
complexity to such a extent that regularity of E can be determined with

practicable amount of computation.

”
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5.2. Controllabiiity of a descriptor system

The initiating work [18] on structural controllability has
motivated many subsequent refinements (see, e.g., [1], [21], [22],

(231, [24]1, {31] and the references tﬂérein). This subsection is a brief
sumnary of the results obtained in [R22], [23], giving a combinatorial
characterization -of the controllability under the present setting of
(5.1) and (5.2). -

In the following, we assume that F, A and B of (4.6) are real
matrices satisfying (5.1) and (5.2), and that F is a nonsingular n by n
matrix. ;In this case, (4.6) can be reduced to the standard form (4.8)
and the controllability of (4.6) may be defined for the reduced system in
the ordinary sense. Note also that det{A-sF)#0, where s is regarded as
an indeterminate. It is well known that the system (4.6) is controllable
iff

rank([A-AF | B]} = n | (5.5)
for any complex number A € C.
By (5.1) and (5.2), we see [22] that any nonzero eigenmode is a

transcendental over @, as stated below.

Proposition 5.1. Assume (5.1) and (5.2), and that F is nomsingular.

If det({A-AF)=0, then either A=0 or A is transcendental over (.

(Proof} Suppose A0 and A i1s algebraic. -Then det(A-AF) cannot vanish
since it is a nontrivial polynomial (due to nonsingularity of ¥) in the

transcendental numbers in T of (5.1) with algebrazic coefficients. Q.E.D.

Based on Prop. 5.1, it can be shown [22], [23] by using the exchange
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property concerning algebraic independence that (5.5) is equifalent to

the conditions:
rank([A | B]) = n (5.6)

and
rank(Dj) =n for j=1,...,n, (5.7)

where Dj is the gubmatrix of D of (4.10) which is obtained from D

by deleting fhe j-th column. Note that, for j=1,...,n,
pd = [adespd | B - (5.8)

is a matrix over Q(s), where Aj and Fj are submatrices of A and F,

respectively, defined in a similar way.

By Prop. 4.1, the first condition (5.6) is equivalent to

rank(M([T, [T 1)VM((Q, Q1)) = 2n. (5.9)

The second condition (5.7) can also be put in a more convenient form

as follows. First note that, for a matrix G in general, we have
M(GI) = M(e\(i}, | (5.10)

where the left-hand side is the matroid determined by Def. 4.1 by the

submatrix of G with the j-th column deleted, and the right-hand side is

the matroid minor of M(G) obtained from it by deleting the element j

(corresponding to the j-th column). By Prop. 4.1, (5.1Q) and the fact

. that the operations of union and deletiﬁn commute, we have for j=1,...,n:

(DY)

rank( M(TDj)VM(QDj) ) - n
rank( (MG MQNIY) ) - n

rank( (M(TDNIM(QD))\{j} ) - n

n

rank( (M([T,-sTp[ToINM([Q,-sQp[Qp1)NG} ) - no (5.11)
Furthermore, it follows from (5.2) (ef. (5.4)) that

r(D9) = rank( (M([T,-Tp|T,IVH([Q,~0p] Q1N 3) ) - n (5.12)
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for j=1,...,n. On substituting (5.12) intoc (5.7), we have a
combinatorial restatement of (5.7):
rank( (M({T,-Tp|ToVM([Q,-QpIQp1)\{j} ) = 2n
for j=1,.v4,n, (5.13)
which says that none of the columns corresponding to the desecriptor
variables x is a coloop (35] in the union matroid.

The controllability condition is now given.

Theorem 5.2. Assume (5.1) and (5.2), and that F is nonsingular. Then,
the deseriptor system (4.6) is controllable iff

(5.9): rank(M(IT, |T1IVM([Q,[Qz])) = 2n

and

(5.13): rank((M([T,~Tp|To1VM([Q,-Qg[95))\§}) = 20 for j=1,...,n. |3|

The first condition (5.9), as well as the nonsingularity of F, can
be verified with O(nA) afithmetic operations in Q by a combinatorial
algorithm based on Prop; 4L.1. If the second condition (5.13) is checked
for each ] separately, it can be done with O(nA(n+r)) arithmetic
operations in @, where r is the nuﬁber of inputs, i.e., the number of
columns of B. It has been pointed out, however [22, Theorem 25.2],

[23, Theorem 3], that (5.13) can be'rephrased into a condition with
reference to the principal partition [9], [11] with respect to the pair

of matroids sc that it can be verified with O(na(n+r)) operations in @.

- 29 -



" 5.3. Dynamical degree of a descriptor system

Suppose that the descriptor system (4.6) is solvable (ef. Section
5.1}, i.e.,

det (A-sF) # O. ' . (5.14)

The degree of det(A-sF), to be denoted as &(det(A-sF)), is one of the
fundamental characteristics to the dynamical behavior of the system,
since it represents the number of independent state-variables, or the
dynamical degrees of freedom [6], [33]. Following [6], we call it

the dynamical degree of (4.6) and denote it by 4d(F,4), i.e.,

dd(F,A) = 8(det(A-sF)). (5.15)
The obviocus relation

dd(F,A) Srank F £ n (5.16)
may be noted, where n is the size of F. We are mainly interested in a
singular F, since otherwise dd(F,A) is trivially equal to n.

In the special, buit important, case of electric networks, the
dynamical degree of (5.15) agrees with what is known as the order of
complexity in network theory [6], (101, (131, [27], [28], [29].

The problem of determinimg the order of complexity has been settled (10],
{12], [13] for its most general form with mutual couplings, under the
generality assumption that the element characteristies are inaccurate
numbers which are algebraically independent; 1t is formulated as a
.combinatorial optimization problem of independent assignment, and a
practical matroid-theoretic algorithm for it is known.

This subsection formulates the problem of determining the dynamical
degree dd(F,A) by means of the independent-linkage problem [4], [8],

(11], which is a generalization of the independent-assignment problem.
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The present assumption (5.2) on the accurate numbers are trivially met by
the standard descriptions (with voltages and currents as variables) of
the electric networks treated in e.g. [10], [12], [13], [27], [28], {29],
[30], since QD represents the structural equations (Kirchhoff's laws)
being free from the symbol s (ef. (4.5) of Example 4.1). Thus the
subsequent result may be regarded as a direct extension of the previously
known results on the order of complexity of networks.

First notice the following, .where the assumption (5.2) is not needed.

Proposition 5.3. Let [F|A] = [TF|TA] + [QFIQA] be a mixed matrix (with

respect to a field K), and put E=A-sF, T5=T,-sTp and Q;=Q,-sQp. Then
§(det(E)) = max{8(det(Ty(R\I,3)))+6(det(Qy(I,C\0))) | IcR,Jec}, (5.17)

where 6(*) is the degree of a polynomial in s and 6(0)=-=,

(Pfoof) As noted in (4.13) (cf. alsq (5.3)), E ; TE‘+ QE is a mixed

matrix with respect to K(s). Then (5.17) is easy to establish from the

: pfoof (ef. [25]) of Prop. 4.1. Q.E.D.

Next we will mold Prop. 5.3 into a more iractable combinatorial form

using (5.2). The first term of (5.17)

6T(I,J) = d(det(TE(R\I,J))) (5.18)
can be formulated in terms of the assignment problem or the
weighted matching problem [17] defined as follows. Consider the
bipartite graph GT associated with the matrix TE=TA-STF; GT has vertices
corresponding to the rows R and the columns C of TE’ and edges
corresponding to the nonvanishing entries of TE' By the algebraic

independence of the nonvanishing entries, TE(R\I,J) is nonsingular iff
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there exists a complete matching (of size equal to [R\I[=|J|) on -

¢ induced by the vertices of (R\I)uJ; it

should also be noted that TE(R\I,J) is nonsingular iff IUJ is a base of

GT|((R\I)UJ), the subgraph of G

M(TE). We will assign to each edge ti,j)-(ieR, jeC) of Gp a weight Vi

defined by

W, (5.19)
1 0 otherwise.

{1 i (TF)]._j £0

Then we see that

6T(I,J) = maximum weight of a complete matching on GTI((R\I)UJ). (5.20)

To handle the second term of (5.17):
GQ(I,J) = G(det(QE(I,C\J))), (5.21)
the property {(5.2) is esséntial, which_implies that QE e U(0<s>) (ef.

Theoren 4.2). Then, by Prop. 3.3, there exist such integers Ty

(i=1,y...,n) and ey (j=1,...4n) associated with the rows and columns of Qg

that
Ty,
(Qglyy = Quglyy s (5.22)
for i,j=1,+..,n, where
Q'AF = QA - QF- (5-23)
Then, GQ(I,J) is expressed as

6. (I,7) = £ r, - % e, (5.24)
L jeI * jec\J !

so long as thes submairix QAF(I’C\J) is nonsingular. In other words,

6Q(I,J) = Z r,+ L c, -c (5.25)

iel * jer 0
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if ITuJ is a base of M(QA—QF)*, and <SQ(I,J).—.-oo if not, where
¢y = I c.. _ (5.26)

jec
Note that the integers r,'s and cj‘s of (5.22) can easily be found with
0(n) integer operations (additions and subtractions), as mentioned in
Section 4.1 (see also the proof of Prop. 3.3).

With the observation above, dd(F,A) can be found by solving a
welghted independent-linkage problem defined as follows. Let RT and RQ
(CT and CQ) be disjoint copies of thelrow-set R (the column-set C} of the
matrix E. For each i € R, the corresponding elements in RT and RQ are
denoted by iT (e RT) and iQ (e RQ), respectively. This convention will
apply to column indices j € C, as well as to subsets of R and C; e.g.,

for IR, I = {iT | 11} < Rp+ Thesunderlying graph G has the vertex-set

R,UCLUR.UC, and the arc-set A, UA UAC, where

T T Qo Q- TR
by = {lig,dy) | 1€, jeo, (15), 40}, (5.27)
Ap = {(iT,iQ) | ieR}, (5.28)
by = {(jT,jQ) | jecl, - (5.29)

The weight w(a) of an arc a is defined as
r ol =4 3
1 if aEAT, a (lT,JT), (TF)ij#O,

0, (5.30)

w(a) =-1 0 if aeAn, a=(iT,jT), (TF)ij=

r, if ach, a=(1T,1Q),

Lcj if aed., a=(jT,jQ).

Note that the weights for ach., are consistent with (5.19).

T

The set RQUCQ is regarded as being endowed with the matroid

structure M(QA—QF)* with the obvious correspondence of the ground set.

We also attach the free matroid to the set RT. An independent linkage on
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G with the entrance RT and the exit RQUCQ will mean in this paper a set

of vertex-disjoint directed paths from vertices of R, to vertices of

T

RQUCQ such that the initial (terminal) vertices of its paths form an
independent set of the matroid attached to the entrance (exit) set.
Here the matroidal constraint on the entrance set Ry is virtually void,
since the free matroid is attached to it. By the size of an indepéndent
linkage is meant the number of paths in it, or equivalently, the number
of the initial vertices. The weight w(L) of an independent linkage L is
the sum of the weights (defined by (5.30)) of the arcs contained in the
paths in L.

The observation made in {22}, (25] is that

r(E} = maximum size of an independent linkage on G, (5.31)

which is a restatement of Prop. 4.1. Thus, the nonsiﬁgularity (5.14) of
E is expressed as: '

there exists an independent linkage of size n. (5.32)

The main result of the present subsection is given below.

Theorem 5.4. Assume (5.1), (5.2) and det{A-sF)#0. Let the graph G be
defined as above with the weight (5.30) and the matroids on the entrance
and the exit. Then

dd(F,A)=max{w(L)| L: independent linkage on G of size n}—co, (5.33)
whers ¢, is defined by (5.26).
(Proof) First note that (5.52) guarantees the existence of such an L.
The identity (5.33) follows from Prop. 5.3, (5.20) and (5.25), as well as
from the fact that both TE(R\I,J) and QE(I,C\J) are nonsingular iff IUuJ

is a common base of M(TA_TF) and M(QA-QF)*. Q.E.D.
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This characterization of the dynamical dggree enables us to
determine it by the efficient combinatorial algorithms [4], [8] for the
optimal independent-linkage problem. Since M(QA_QF)* is represented over
Q, the amount of érithmetic computations in @ and graph manipulations is
bounded by O(nAJ.

By finding a minimum-weight independent linkage on G, we can also

determine the lowest degree of the nonvanishing term in det(A-sF).

Example 5.1.

Recall the mechanical system of Example 4.2, which is deseribed by
the matrices (4.15) and (4.16)}. From (4.16) we may choose r1=r2=r6=1,
r3=r4=r5=2, and ¢ =c,=0, 03=c4=c6=1, cs=2, to satisfy (5.22); in fact
these values are the dimensions of the inverse of time given by (4L.26)
and (4.27). Fig. 5.7 shows the graph G for this problem, in which the
row indices are given with asterisks and the weights of arcs are in
parentheses. The maximum-weight indefendent linksge L, indicated by bold
lines, has. the weight w(L)=9, from which we obtain by Theorem 5.4:
dd(F,A)=w(L)-cO=9-5=4. The existence of an independent linkage of size
£=6 also implies that det(A-sF)#0. The terminal vertices of L reveal

that I=[1*,2*,5*,6*} and J={3,4} attain the maximum in (5.17). [Z|

6. Conclusion

It has been demonstrated that the concept of physical dimensions can
play useful roles in the structural analysis of systems. The notion of
Tcolumn structured matrix" introduced in [36] seems to have a close
connection with the approach developed in this paper.

The author expresses his hearty thanks to Professor Masao Iri of the
University of Tokyo for his constructive suggestions and enéouraging

comments.
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¥Fig. 4.1. An electric network of Example 4.1
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Fig. 4.2. A mechanical system of Example 4.2
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Fig. 5.1. Weighted independent-linkage problem for determining the
dynamical degree of Example 4.2
(The weights are given in parentheses and the maximum-weight
independent linkage is indicated by bold lines.
j and

TuJ={1%,2%,5% 6*¥}u{3,4)} is a common base of M(TA_TF

M(Q,-Qp) )
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