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ABSTRACT

A model of firms' spatial allocation and location in a city is
developed by explicit incorporation of urban agglomeration benefits using
accessibility measure. In a linear and one-activity city, every firm is
assumed to interact each other for face-to-face transactions, and the unit
construction cost of office building is considered to be proportional to
firm density. It is shown that the market equilibrium distribution is
more dispersed than the optimum distribution, and that the equilibrium
rent function is concave near the city. center and convex near the
boundaries.
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1. INTRODUCTION

Urban agglomeration is the ﬁost important reason for the existence of
cities, With the rapid growth in the service sector, the urban
agglomeration economies are‘essentially attributed to the concentration of
office firms in central business districts (CBD). The locational decision
of one activity would in general endogenously be determined, ceteris
paribus, by accessibility or proximity to other activities. Since most of
the literature on macro urban agglomeration [e.g., Moomaw (1983)] often
regard a city as a spaceless point, urban agglomeration economies are
usually measured by summary statistics of a city like city size. However,
if a city were spaceless, transportation costs within a city would become
zero while transportation costs between cities would not. In this
instance, there is no reason to decentralize economic activities, in the
sense that every firm will be concentrated in one point city to realize
the maximum agglomeration economies,

If space concept is explicitly taken into account, it is natural to
introduce congestion costs as agglomeration diseconomies. Overcongestion
of firms would require high construction costs of building, oblige
laborers to commute long distance in a crowded train, and presumably raise
land rent. Suppose these costs be paid directly or indirectly by firms,
then the agglomeration diseconomies might be expressed as a function of a
density measure. The location of activities would thus be determined by
balancing two kinds of "forces": the force of diversification and the
force of unification by Zipf's (1949) terminology.

In the context of the above, a pioneering work is Vaughan (1975)



which explictly introduced the notion of continuous spatial interaction
between every possible pair of activities. To obtain socially optimum
distribution of activities in a linear city, Vaughan minimized a total
rent measured by a power function of activity density (the force of
diversification) plus a total travel cost between every activity (the
force of unification) subject to fixed number of total activities. The
functional form of the analytical solution is so complex thét Vaughan used
empirical values of the power parameters in London and in Sydney for 1966
and found that the density distribution of the activity (populatioh) is
inverse 5 shaped, i.e., concave near the CBD and convex elsewhere, which
seems to fit observed distributions in thoée cities well.

In the past literature, the force of diversification is normally
regarded as a function of a commuting cost or density. The commuting cost
[Fujita and Ogawa (1982), and Imai (1982)] is out of consideration here
due to the assumptian of one-activity city as will be mentioned later.

The density is therefore the only source of the force of diversification
although there are several variations of its inﬁerpretations. Beckmann
(1976), Odland (1976), and Tabuchi (1982) considered population density as
a disutility of residents while Borukhov and Hochman (1977), O'Hara
(1977), and Tauchen and Witte (1984) considered firm densitf to be related
to a construction cost of building. Applying the bid rent approach, on
the other hand, Fujita and Ogawa (1982) regarded rent as a disutility for
households and as a cost for business firms.kl

The force of unification is due to urban agglomeration economies
which is regarded as face-to-face contacts and is usually measured by an

average travel cost proportional to distance between all activities with
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equal probability [Beckmann (1976), Borukhov and Hochman (1977), O'Hara
(1977), and Tauchen and Witte (1984)]. On the other side, Tabuchi (1982)
and Fujita and Ogawa (1982) considered agglomeration economies as a
benefit measured by accessibility to all activities. However, it is quite
unlikely for firms to transact or travel to all activities with equal
probability. It is well known in the regional science literature that the
probability of trip is a distance decay function, which may suggests the
introduction of accessibility measure in formulating the urban
agglomeration economies.

Following Vaughan (1975), this paper attempts to examine the social’
optimum and market equilibrium distribution of firm density in a central
business district based on the accessibility benefit as urban
agglomeration economies and the density cost as a building construction
cost., Although this paper is confined to the analysis of office firms,
similar discussion on population density distribution would of course be
possible assuming a certain suitable utility function of household. For
analytical purposes, two simplifications will be made here: a linear
rather than two-dimensional city; 4dnd one activity (i.e., office firm)
rather than two activities.

The linear city assumption permits an analytical solution. ZExcept a
square city model with rectilinear distance [0'Hara (1977), Tauchen and
Witte (1984)], Borukhov and Hochman (1977) would be the only paper which
derived the optimal and market density distributions in a two-dimensional
circular city using polar coordinates. Unfortunately, the average travel
cost in their model is not weighted by the density distribution which may

be a theoretical flaw in solving endogenous distribution of business



firms. Note that Tabuchi (1982) also obtained the optimal density
distribution in a two-dimensional plane using quadratic programming, but
only in a discrete case.

In regard to the one activity city, one may conceive that neither a
multicentric pattern nor a catastrophic structural transition is possible
as has taken place in Fujita and Ogawa's (1982) equilibrium model under a
fixed lot-size assumption. Since the concern here is office firms, the
word, 'city' may be interpreted as CBD throughout this paper. Notice that
the distribution of firms would presumably be more decentralized if
commuting cost between two activities (firm and residence) were
incorpeorated.

In the next section, the optimal distribution of firms will be solved
using thé calculus of variations, and the same will be compared with two
kinds of market equilibrium solutions obtained in the third section. The

final section summarizes the concluding remarks.



2. OPTIMAL DISTRIBUTION OF FIRMS

For the sake of analytical transparency, imagine a linear city
locating a fixed number of identical firms N. Firms are infinitesimally
divisible and their type of industry is the same. The existence of
households and hence their commuting costs are not incorporated here.L2
Mathematically, one may formulate the firm's net profit {(x)

consisting of the accessibility benefits to all other firms and the unit

construction cost of office building at its location x as

e = 1 el yeeyar - gy )
-a

where x and t are the Tocation points at the city, y(x) is the firm

density at x, a is the city length divided by 2, o is the "distance

friction" or "éccessibility" parameter, and B is the "firm density" or

"construction cost" parameter.

The first term on the righf hand side of (1) is a negative
exponential-type accessibility function rather than an inverse power
function ( fa|x—t1_ay(t)dt, a>0 ) utilized in Tabuchi (1982) since this
power functgzn is not defined at x=t which gives rise to mathematical
difficulties in such a continuous model. Thus, one may infer in this case
that it would be optimal to concentrate every firm in a single point
because the power function gets infinity.

The second term on the right hand side of (1) shows that the unit
construction cost at location x is proportional to firm density there.L3

If there is a nonlinear relationship between the unit construction cost



and the firm density, one should add another parameter to y(x) (e.g.,
—B[y(x)]Y), which is however not conducted here to gain analytical
advantages.

Now suppose a city government plans to maximize the net social
benefit of all firms (&) by summing up the net benefit of individual firms
locating at x (P(x)) undér the comstraint of a fixed total size of firms.

Mathematically, the problem is to:

a
maximize ® =) G(x)y(x)dx

a
a2 — | x~t| a 2
=f J e y(t)y(x)dtdx - Bf {y(x)}“dx (2)
-a -a -a
a : '
subject to [ y(x)dx = N, and y(x) z 0, (2")
' -a

where N is the total number of firms; The first term in (2) is the
aggregate accessibility benefits and the second term is the aggregate
construction costs. Equation (é') simply states that the total number of
firms is fixed in the linear city.

Utilizing the method of Lagrange multiplier, the maximization problem
of (2) and (2') are to be rewritten as
}2

a —x X ot ox a -t
o = J [y(x)e™®*r e y(t)dt + y(x)e™ S e ry(t)dt - B{y(x)
—-a -a X

+ Ay(x)]dx - AN,
(3)

where A is the Lagrange multiplier.

Equation (3) is ascribed to the problem of the standard calculus of



variations with respect to z{x)}. By use of the Euler's equation

Fy_ %; Fy' = 0, where F is the functional, the first-order condition for

maximum is given by

2;8 ool %t y(t)dt - 28y(x) + A = O. (4)
-a
This shows that the acéessibility is proportional to density in optimum,
assuming existence of an interidr solution. More generally, if the unit
construction cost is a power function of firm density —B[y(x)]Y and v > 1,
then one can say that the accessibility is positively related to density.
To solve this integral equation with respect to y(x), first of all,

differentiate (4) with respect to x,

X '—Q‘,IX—-tl a —a]x—t| 1 1
-20f e y(t)dt + 2af e y(t)dt- 28y'(x) = 0 . (4")
-a X

Again differentiate (4') with respect to x,

2 2 -afx-t|
20°T e y{t)dt - day(x) - 2Ry"(x) =0 . (&™)

-a
Eliminating the integral part in (4) and (4"), one can obtain

2
By"(x) + (2a—a23)y(x) = - 9‘-21 (5)

Solving the differential equation (5), the optimal distribution of the

firm density is then obtained as



A A
y(x) = Cle/a -2/ x Cf#a -20/B x Ag, )

+—
2(aR-2) .
Now, to eliminate three undetermined constants Cl’ C2 and ), we need

three equations. Firstly, as we are considering a linear city symmetrical

about the midpoint x=0, the optimal solution should have the property,
y(x) = y(-x), for all x. (7)

Secondly, if the city length were allowed to varyrso that the density at
both of the city edges is equal to that of outside the city, i.e., zero,

then,
y(#a) = 0 . (8)

Note that y(+a) > O is possible if the city length 2a is fixed due to
institutional constraints like zoning or geographical constraints such as
mountéins and seas. To reduce éhe number of parameters, however, it is
set zero. Finally, the total number of firms is fixed which is eguation
(2").

Thus, by use of (2'), (7) and (8), the firm density y(x) can be

expressed by N, a, ¢, B, and x as

N (e/dz—Eu/B a, é—/ﬁz-Za/B ay _ (e/h2—2a/8 X, e-sz—Zu/B Xy

y(x} = —— p— — —
2a (e/uz—Qa/B a e-/az-Za/B ay _ (ex/az—Zoa/B a _ e—/cxz—Za/B ay

de—Za/B a
(9)



In accordance with the value of the square root th—Za/B, equation

(9) is then classified into the following five cases:

i) o =0
y(x) = o (%)
ii) B=20

concentration on one point
iii) 0 < aB < 2

_H_cos(/Za/B—uz x)/cos(/Za/B—a2 a) - 1

y(x) = 2a — — for /QQ/Bwuz as=T
tan(vV2a/B-0" a)/(V20/B-a" a) - 1
(9b)
iv) of = 2
N3 3,x. 2
y(x) = 505 - 5(7) | (9¢)
v) 2 < aR
(x) = _ﬂ_cosh(/d2-2a/6 x)/cosh(%dz—Za/B a) - 1
YAX) =92 — (9d)

tanh(va-20/8 a)/(Va*-2a/8 a) - 1
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Notice that the inequality in (iii) is necessary to ensure the smoothness
of y(x) for -a = x £ a.

(9a) is constant density, (9b) is a cosine curve, (9¢) is a quadratic
curve, and (9d) is a cosine hyperbolic curve or sum of positive and
negative exponential curves. For illustrative purposes, they are drawn
together in Figure 1 by setting N = 100, a = 4, B = 2, and several values
of o One can observe that the density distribution becomes flatter as o
increases for 0.5 2 a. For 0 < o < 0.5, however, the density distribution
becomes sharper as o increases. It thus follows that the degree of firm
concentration is not a monotonic function of @, To see this, define the

second-order moment of x as the degree of firm decentralization:

&2
m=J x"y(x)/N dx , : _ : (10)
-a
where the division by N is just to standardize the density function y(x).
Needless to say, smaller the m, the more concentrated to the center of the

linear city. Substituting y(x) of (9) into (10),

a3+ 280 ¢ D) - (L 20t - ey

5 _ (A - oM | , (10")

m
(eA + e
where A = Vﬁz-Za/B a. Equation (10') is valid whether A is real or
imaginary.

Figure 2 describes a contour map of the moment value (10') on the

two—dimensional plane of (&,B) for a = 4, The value of m is smaller than
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‘a2/5 [= 3.2] if O < aR < 2 {(cosine curves), equal to a2/5 ifad =2 (a

quadratic curve), and greater than a2/5 if 2 < af (cosh curves). The
hatched area (/2&/8—&2 a > m, which is the opposite to (9b)) does not
yield a smooth curve at optimum in the range of -a £ x £ a because
Jacobi's necessary condition does not hold there [Gelfand and Fomin
(1963)]}. The optimal solution in fhat hatched area would look like Figure

3, in which y(x) = 0 for -a* s [x| s a%. The switching points +a* should

“be calculated by optimal control theory.

Observing Figure 2, one would find that the moment function is an
increasing function of B in most of the cases. In other words, firms tend
to concentrate as the unit construction cost rate B becomes relatively
cheaper.

As expected from Figure 1, the optimal density y(x) is a non-

increasing functien of |x|, viz.,

where the equality holds when af = O or when x = 0. The proof is obvious
due to the functional characteristics of the cosine curve and the cosine
hyperbolic curve. The former (aB = 0) is trivial because the optimal

density is flat everywhere. The latter (x = 0) implies that the optimal

density is always smooth at the center of the city irrespective of the

parameter values of o and B. This is the inherent consequence of the

calculus of variations where optimal solutions are necessarily continuous
and smooth., This finding is in striking contrast to the classical urban

economics models where the spatial interaction is limited to access to the



12,
exogenous CBD.

The convexity or concavity can be ascertained by computing the second
derivative of y(x) with respect to |x|. As can be inferred from Figure 1,
the optimal density is concave when oBf 2z 2. When 0 5 o8 < 2, on the other
hand, there is a possibility that two inflection points exist. After some

manipulation, one gets

2
dy__ —2C"cos(/?a/3-32|xl)-
a2 1

Thus, if 7 > /2&/8—&2 a z m/2, there exist inflection points at

X =li;ﬂ/2¢?a/8—a2. That is, the optimal density distribution is concave
near the CBD and convex apart from the CBD, whose result is similar to
Vaughan (1975). On the other hand, if /?u/B—az a < /2, the above second
derivative becomes non-positive for all x, which means that the optimal
density is concave everywhere, It thus follows that in most of cases the
optimal distribution of firm density is concave whereas the classical CBD
model often yields a convex deﬂsity function, such as negative

exponential.
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3. EQUILIBRIUM DISTRIBUTION OF FIRMS

Provided that each firm be free to move its location without any
relocation costs in accordance with its profit maximization principle, the

firm's net profit may be written:

b = @ty - By - sy, (11)
-a

where r(x) is the land rent at location x. Since there are y(x) firms,
one firm has to pay r(x)/y(x) for land in addition to the unit
construction cost of office building By(x). If the third term on the
right hand side of (11) is omitted, (11) reduces to (1).

Suppose now that the firm chooses density so as to maximize its
profit. The condition for profit maximization is obtained from the

following first-order condition by differentiating (11) with respect to

y(x),
2
- B+ r(x)/[y(x)1° = 0. (12)
The sufficient condition for the maximum is easily confirmed by the
negativity of the second-order differentiation of the left hand side of

(12). Putting (12) into (11),

o -1 Ol goae - 28y, (13)
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equilibrium (and hence, (x) is dropped on the left hand side), otherwise
there will exist an incentive for firms to move.

Differentiating (13) twice with respect to x, and eliminating the

integral part, one can get

BY"(x) + (aB)y(x) =% /2 . (14)

Solving the différential equation (l4), the equilibrium distribution of
the firm density is then given by
Val-a/g x S af8 x .

y(x) = C3e + C4e + C5 , (15)
where the constants C3, C4 and CS are to be determined by the boundary
conditions and the constraint of total number of firms (2') as before.

The crucial difference between the optimum solution (6) and
equilibrium solution (153) is the values of the exponents: i{hz—u/B x in
equilibrium while j{b2—2&/8 x in optimum. One can say that by comparing
with the optimum city, the equilibrium city tends to be too dispersed
since the weight of the construction cost B in equilibrium affects the
value of the exponent twice as much as that in optimum. Recall that the
degree of the firm decentralization measured by m (equation (11) in the
previous section) is an increasing function of B in most cases. This
conclusion is in agreement with Borukhov and Hochman (1977) and Imai
(1982) although their model assumptions differ.

In this situation, government intervention is indispensable; for

instance, a locational subsidy in accordance with firm density, or
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possibly a proper zoning ordinance to prevent from decentralization. The
conclusion obtained here is opposed to the decentralization policy which
many city governments adopt. However, if costs of commuting from outside
the city is taken into account, or if air pollution as a negative
externality is caused owing to commuting congestion, then it would be
desirable to decentralize firms compared to the optimal distribution.

It should be noted that (13) can be obtained by the Alonso's (1964)
bid rent approach in residential location. Namely, rearranging (11) and
maximizing r(x) with respect to y(x), one arrives at the same condition as
(13). If, on the other hand, the aggregate land rent of the city be
maximized holding the net profit of the‘firm we(x) constant at every
location with given N, then one arrives at the optimum condition (4) in
Section 2.

Next, consider the characteristics of the equilibrium rent functicn.
Equation (12) indicates that the unit construction cost of office building
By(x) is equal fo the unit land rent r(x)/y(x) throughout the city. The
rent functicn itself is in proﬁortion to the square of the firm density in
market equilibrium. Hence, from the characteristics of the firms' density
function as examined in the previous section, one is able to draw the

several relationships as feollows:

r(+a) = 0, (16)
grxx £ 0, in which the equality holds when x=+a or O, a7

2
47r(x) < 0, near the midpoint, and (18a)

d]x|?
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2
Q—ELEL z 0, elsewhere. (18b)

alx[>

The rent function is therefore '"bell-shaped" regardless of positive values

of o and B. That is to say: from (16), the rent function becomes zero at

the city boundaries; from (17), the rent gradient is zero at the city

center and boundaries, and the rent decreases with distance from the city

center; and from (18a) and (18b), the rent function is concave near the

center and convex near the boundaries. In other words, the rent function

always has two inflection points between the center and two boundaries for

any o, B > 0.
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4. CONCLUSION

This paper has investigated the implications of the accessibility
benefits as urban agglomeration economies in a linear city of fixed
length. It is assumed that each firm chooses locations to maximize net
profit comprizing the accessibility benefits to all other firms and the
office construction cost measured by firm density.

Applying the calculus of variations, it is derived that the optimal
distribution of firms' density is a constant, cosine, quadratic, or cosine
hyperholic curve dependent upon the paramefer range as illustrated in
Figure 1., It is found that in the greater part of the parameter range,
both the rate of the distance friction costs (a) and the rate of the
construction cost (B) are negatively related to the degree of firm
concentration as depicted in Figure 2. It is also found that the optimal
density is always smooth at the center of the city irrespective of the
parameter values, which is in contrast to the classical urban economics
models. The concavity of the oﬁtimal density function is shown to hold in
most of the cases, which is contrary to the well-known negative
exponential density function.

The market equilibrium distribution of firm density is also obtained
supposing the net benefits are identical at every location under the same
constraints. It is revealed that the optimal distribution of firm density
is more concentrated than the market distribution, which is exhibited by
the differences in the parameter values of the exponents in equations (6)
and (15). 1In this instance, the city is in need of a pertinent government

intervention, such as a locational subsidy or zoning restriction, in order
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to prevent from dispersion. The equilibrium rent function is shown.to be

concave near the city center and convex near the city borders.
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FOOTNOTES
= The author has benefited from useful comments by Noboru Sakashita,

Yoshitsugu Kanemoto, Katsumi Nishina, and Muttur R. Narayana.

1. Also the force of repelling between firms like Hotelling's spatial

competition is not taken into consideration in this paper.

2. If households are incorporated in this model, one would conceive that
due to the effect of commuting costs, the firm distribution is more
decentralized as demonstrated by Fujita and Ogawa(1982) in their market
equilibrium model. However, such a discussion is beyond the scope of this
paper because the major objective of this paper is to explore urban

agglomeration economies of firms' interaction.

3. See Tabuchi (1982) for justification of this assumption of

proportionality.
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Figure 1. Optimal distributions of firm density for a=0.5 (I),
a=0.75 or 0.25 (II), a=1 (III), a=1.5 (IV), a=2.5 (V),

where B=2 (fixed)
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