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1. Introduction

The present short note is concerned with sparsity preserving methods
.. for the numerical evaluation of the determinants of large sparse
matrices. A standard method for computing the determinant of a matrix
would be to decompose the matrix into LU factors and to compute the
product of the diagonals of those factors. It seems difficult, however,
to take full advantage of the sparsity if we stick to such direct
methods. Here we will propose a method that is suitable for
computing determinants of sparse matrices by means of parallel
computation.

Let M=(mij) be a square mairix of order n and suppose that M is

partiticned as

A B .
M= ( } ’ (1)
C D .

where A and D are square matrices. Recall the following well-known

results.



1 gy, (2)

Lemma 1. det(M) = det(4) det(D-C A~
if A is nonsingular.
Lemma 2 ([1]). Assume M is nonsingular and M is partitioned in
accordance with (1) as
-1 E F
M = . (3)
A\G H

If A is neonsingular, so is H and

det(M) = det(A) / det(H). (4)

To avoid the complication concerning pivoting, we will assume that M
is symmetric positive definite, though the following ideas can easily be
adapted to general matrices with appropriate pivoting schemes. The
leading principal submatrix of order r of M is denoted by Mr (eegey Mn=M,

M1=m11), which is nonsingular if M is positive definite.

2. The Proposed Method

The direct method (the Gaussian elimination) may be regarded as
choosing A=m,, (2 single nonvanishing element of M) in (2) to recursively
compute the second factor on the right hand side of (2) by this formula.
On the other hand, the method proposed here takes Mn—1 as the A in
(2) and recursively computes the first factor on the right hand side of

(2). More specifically, putting b, = {m )! and e, =

1r’m2r"°"mr-1,r

(mrT’mr2’°"’mr r 1) (br=cr' if M is symmetric), we compute det(M)
, T

according to the formula

(m_—e M1 b), (5)

_ n
det(M) = r=2 ‘‘rr rr-1r

mq I

in which xr=M;11br is evaluated by solving the linear equation

—2-



M__,x.=b_. (6)
It should be noted here that
(i) if M is sparse, so are M, (r=1,...,n-1) and the equation (6) can
possibly be solved to any desired accuracy by some iterative method
preserving sparsity,

and that

(1i) each term of (5) can be computed independently in parallel.

In this connection, PCG (=Preconditioned Conjugate Gradient) method
or ICCG (=Incomplete Cholesky - Conjugate Gradient) method [2] seems
quite useful. Suppose M is decomposed approximately into square-free
Chelesky factors as

M=LDL! {7)
preserving sparsity. Then the leading principal submatrices of L and D,
respectively denoted as Lr and.Dr, gerve also as the approximate
| Cholesky factors for Mr:

M =L D L' (r=1,2,...,n0). . (8)
Thus, we can use the decomposition (7) to solve (6) for r=2,...,n
by ICCG.

The decomposition (8) could also be used to obtain rough estimates
of det(M) before solving (6) for all r. Similarly to (5), we can derive

det(M) = aet(M) M . (n_—c ' b ), (9)
in which det(Mk) may be replaced by det(LkaLk') = det(Dk) (det(Lk))2 and
the second factor is compuited by solving (6) for r=k+1,...,n.

A variant of the method based on Lemma 2 is suggestea below. Let e,

be the r-th column vector of the identity matrix of order r, i.e., e, =

(Oy0.0,0,1)0,



If we choose AiMn_1 in Lemma 2, we have

det(M) = det(Mn_1) / h o, (10)
where hn is the n-th component of yn=M“1en. By recursive application of
(4) to (10}, we obtain

det (M)

1/ I_, b ‘ (11)

or

det (M)

det(M )/ T, 4 bs (12)

where hr is the r-th component of Yy which is determined by solving

My, = e (13)
4s is easily seen, Ve (r=1,...,n) represent the column vectors of the
inverse of the U-factor in the LU-decomposition M=LU with L being a unit
lower triangular matrix. Note that the L-factor is not computed here.
If we solve (13) by partitioning M_ as in (1) with A=M_

17 B=br,

C=c_ , D=m__, then we have
r rr

_ -1 .
1/hr = Bpr % Mf-1br’ (14)
which reveals that (5) and (11) are algebraically equivalent. Thus we

=1 =m _-c X or work with

may either solve (6) to compute m,.-C, Mr—1br =m_-c,

(13) to obtain h directly.

The author thanks Dr. Maseaki Sugihara for valuable comments.
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