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Abstract

A kind of greedy algorithm, called the greedy elimination, works for
finding an optimal base of a certain class of structures defined in terms
of closure functions. Such systems are characterized by the "elimination
property", which turns out to be a relaxation of Steinitz's exhange axiom

for matroids. The closure function of a preordered matroid is an example.
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1. Greedy-type algorithms for closure systems
Let E be & finite set. A function o: 2E—-—>2E is called a closure

funetion on E iff

(C1) X c o{X) for XcE,

(CQ) XcY ==> o(X) co(Y) for X,IcE,

(63) o(X) = o(c(X)) for XcE.
The set of all the closure functions on E will be denoted by C(E). From
(61), (C2) and (C3) follows that

(C4) X co(Y) == o(XY) =o0o(Y) for X,YcE,

By a closure system we mean an ordered pair (E,c0) with 0eC(E}, in

which the following concepts can be introduced.
(i) e (€E) is said to be dependent on X (cE) iff e e o(X),
(ii) X (cE) is called to be independent iff x ¢ o(X\x) for all xeX,
(iii) X (cE) is called to be spanning iff o(X)=E,

(iv) X (cE) is called a base iff X is independent and spanning.

Any subset of an independent set is independent and any superset of a
spanning set is spanning.

We are concerned with greedy-type algorithms for finding an optimal
base with respect to a given weight function w: E-->R, where the weight
w(X) of X (cBE) is defined as w(X)=I{w(x)|xeX}. For notational convenience
we assume E=[e1, 8oy eees en} and w(e1)zw(32)3...2w(en).

Two types of algorithms, dual to each other in a sense, are
considered here; the one of which is based on the principle of greedy
augmentation maintaining independence, whereas the other of which is on

the principle of greedy elimination keeping spanning property.



Algorithm A-max (Finding a maximum-weight base B)

I:=@;

for i:=1 to n do (*)
if e, ¢ 0(I) then I:=IJe,;

B:=I

Algorithm D-min (Finding a minimum-weight base B*)

S:=E;
for i:=1 to n do (%)
if e, € 0(8\e,) then 8:=S\e_;
1 1 1

B¥:=8

(Algorithm A-min and D-max are obtained by replacing (*) in A-max and
D-min respectively by
for i:= n downto 1 do }

As is well known [5], the correctness of A—$?§ for any weight w is
tantamount to the closure system being a matroid, that is, the greedy
augmentation A works iff O satisfies Steinitz's exchange property:

(C5) y#o(X), yeo(ZUz) ==> z€0(XVy) , for XCE and y,z€E.
In this case, algorithms A and D are in some sense equivalent. More
precisely, the greedy elimination D-min (D-max, resp.) applied to a
matroid (E,0) is equivalent to the greedy augmentation A-max (A-min,
resp.) applied to the matroid dual of (E,0). Hence the greedy
elimination D also works for a matroid.

In this note, we will characterize those closure systems for which
the greedy elimination D works. An example of such a closure system,

called the preordered matroid, is also given.
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2. Closure systems for which greedy elimination works
First we consider the unweighted case where w(e)=0 for e<E, i.e.,
the problem of finding a base of (E,0). The following is easy to

establish.

Prop. 2.1. X (cE) is a base iff X is a minimal spanning set, i.e.,

o(X)=E and no proper subset of X satisfies this property.

It follows from Prop. 2.1 that the greedy elimination algorithm D works
for any closure system in the case where w(e)=0 for ecE.
Prop. 2.2. A base of a closure system can be found by the greedy

elimination algorithm D.

Next we turn to the weighted case. The following characterizes

those closure systems for which the greedy elimination works.
Theorem 2.3. Let (E,0) be a closure system. The greedy elimination
algorithm D works for any weight w iff ¢ satisfies

(C6) "a(X)=0(Y)=E, |X|<|¥] ==> o(¥\z)=E for some zeY\X.
(Proof) Let P={XcE|0(E\X)=E}. In view of Prop. 2.1 and the fact that the
greedy augmentation principle characterizes matroids, the greedy
elimination algorithm D works iff F is the family of independent sets of
a certain matroid, i.e., iff

(I1) g e F,

(I2) XeF and YX ==> YeF,

(I3) XeF, YeF and [X|>|Y| ==> YuzeF for some zeX\Y,
Obviously (I1) and (I2) follow from (C1) and (CR), whereas (I3) is

equivalent to (C6) above. Q.E.D.



We will call (C6) the elimination property. Note that the exchange

property (C5) implies (C6), and thus the elimination property is a
relaxation of the matroidal property. As a corollary, we obiain the
equicardinality of bases of a closure system with the elimination
property, by setting w(e)=1 (e€E) in Theorem 2.3.

Prop. 2.4. If a closure system enjoys the elimination property (C6), then

|B,| = [B,| for two bases B, and B,.

3. An éxample of a non-matroidal closure system with elimination property

Let (E,cl) be a matroid on E defined in terms of the closure‘
function cl. We assume that a preorder z is also defined on E,
independently of the matroid. (A preorder is a reflexive and transitive
binary relation.) The triple (E,2,cl) is named the preordered matroid in
(31, [41.

For X (cE), the order ideal <X> determined by X is defined as

<X> = {ecE| x2e for some xeX }. (3.1)

Note that < > satisfies (C1), (C2) and (C3), i.e., < >eC(E). Thus, two
closure functions, cl and < >, are defined in a preordered matroid.

In general, for two closure functions 0, T € C(E), we define the

localization of ¢ by 7, denoted as ¢/T, by the identity:

(o/1)(X) = {ecE| eca(Xnt(e))} (3.2)
for XcE. It is easy to show that o/T is a closure function on E.

Prop. 3.1. o/t € C(E}) for o, T € C(E).



The closure function G of a preordered matroid (E,z,cl) is defined

{31, [4] as the localization of cl by < >, i.e.,

o(X) = (el/< >)(X) = {ecE| eecl(Xn<e>)}. (3.3)
By Prop. 3.1, (E,0) is a closure system, but is not necessarily a matroid.
Prop. 3.4 below states that (E,0) associated with a preordered matroid is
an instance of the closure system with the elimination property. To
prove it, we need the following propositions, where for yeE,

[y] = {e€E| ezy and yzel}. (3.4)
Prop. 3.2. Let 0 be defined by (3.3). If o(X)=0(Y)=E, yeY\X and
o(T\y)#E, then there exists xe(X\Y)n[y] such that o((¥\y)ux)=E.
(Proof) Put Z=Y\y. First we claim that

x ¢ 0(Z) for some x € Xn<y>. (3.5)
Suppose Xn<y> < o(Z). Then for any e € In<y>, we have e € cl(Zn<e>) c
¢1(Zn<y>), and consequently,

Xn<y> ¢ el(Zny>). (3.6)
Since yeo(X)=E, i.e., yecl(Xn<y>), (3.6) implies yecl(Zn<y>), i.e.,
yeo(Z), from which follows that o(Z)=0(Zuy)=0(¥)=E, a contradiction
to the assumption. Thus (3.5) is established.

Obviously, x¢Y in (3.5), since x¢o(Y\y) and ye¥\X. Also notice that
ye<x> holds in (3.5), since x¢0(Z) and xeo(Zuy), i.e., x€el{(Zn<x>) and
xeel{{ZUy)n<x>). Hence, (3.5) is strengthened to

x ¢ 6(Z) for some x € (X\Y)nl[y]. (3.7)

From (3.7) it follows that x ¢ c1(Zn<x>)=cl(Zn<y>), whereas
x € el{¥n<x>)=cl((Zn<y>)Uy) since o(Y)=E. The exchange property (C5) of
cl implies that y e cl{{Zn<y>}ux)=cl((Zux)n<y>), i.e., yeo{Zux), which

means 0(Zux)=0((Y\y)ux)=E when combined with o(Zuy)=E. Q.E.D.



Prop. 3.3. Let ¢ be defined by (3.3). If o(X)=0(Y)=E and o(Y\y)#E for
all yeY\X, then for any yeY\X there exists xeX\Y such that Z=(Y\y)ux
satisfies o(Z)=E and o(Z\z)#E for all zeZ\X.
(Proof) Prop. 3.2 guarantees that, for any yeY\X, there exists
x€(X\Y)n[y] such that o(Z)=E, where Z=(Y\y)ux. For any zcZ\X we have
yé¢o(W), i.e.,

ygel(Wniy>), ' » - (3.8)
where W=Y\{y,z}.

Suppose 0(Z\z)=E for some z€Z\X. Then we have, in particular,
yeo(Z\z), i.e.,

¥y € el{(Wn<y>)ux). (3.9)
By the exchange property of cl, it follows from (3.8), (3.9) and <x>=<y>
that x € cl({Wn<y>)uy)=cl((Wuy)n<x>), i.e., xeo(Wuy), which, along with

o(Wux}=0(Z\z)=E, implies G(Wuy)=0(¥\z)=E, a contradiction. Q.E.D.

Prop. 3.4. The closure function of a preordered matroid defined by (3.3)
satisfies the elimination property (C6).

(Proof) Suppose (C6é) fails and put ¥y=Y. Then by Prop. 3.3, there
exists ¥, such that |Y,[=|Y,], |XnY1|=|XnY0[+1 and o(¥ \z)#E for all
zeY1\X. Repeated application of Prop. 3.3 leads to a contradiction

to Prop. 3.2, since [Y\X| > [X\Y|. Q.E.D.



4. Coneclusion

It has been pointed out that a kind of greedy algorithm, called
here the greedy elimination algorithm D, works for closure systems with
elimination property (C6). This does not seem to fall in the category

considered in [1] or [2].
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