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OPTIMAL STOPPING PROBLEM WITH UNCERTAIN RECALL

P

Abstract

A model of stopping problem is examined in which an offer once
passed up is available in the future with a known probability. The

main results are as follows. With a finite horizon, the optimal

stopping rule is characterized by the twofold reservation values for

a present offer, causing the choice among the next three alterna-

tives: 1. Stop the search with accepting the present offer, 2. Pass
up it to countinue the search, and 3. Stop the search with accepting
the past best among offers which still remain available at present,

This property, called a double reservation values property, dis-
appears gradually as a time horizon tends to infinity.
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1. Introduction

Different models of an optimal stopping problem have been presented so far
in many literatures of economics and management science, and various interest-
ing aspects of this problem have been made clear. For the reason that they re-
present quite fitly some facets of human's decision behavior, many attempts
have been being made to apply these models to examine dynamic natures underly-
ing a class of ecomomic or managerial phenomena which we encounter in the real-
world. '

Farly examples in such applications include an inventory problem by [1], a
house selling problem [16], a commodity purchasing problem [12], and so om.
Presumably it is to the field of job search problem in labor ecouwomics [8],[9],
[11],[15] that these models were most extensively applied. 1In almost all of
them it is assumed that an offer once inspected and passed up either becomes
immediately and forever unavailable (lost) or is available with certainty later

on. The former is referred to as a stopping problem with no recall, the

latter a stopping problem with recall. In studying actual economic or mana-
gerial decision problems by using these models, however, it will be rather re-
alistic to postulate that an offer once passed up is available in the future
with a known probability. '

For example, suppose you are searching for a house to live in and have
just found a desirable one for sale. Then probably you will avoid giving its
owner an immediate answer about whether or not to buy it and will continue the
search for another more desirable one. In this case, if it takes a long time
to make the decision of buying it and then signify that effect of yours to its
owner, then it might have been purchased by any other house searcher. If so
and if unfortunately you could not find thereafter a more desirable one than
it, it must be said to be a quite regretful end for you. Accordingly it will
come to be a crucial problem to decide whether to stop the search with accept-
ing the best among the currently available houses or to continue thé search for
another one.

In a job search problem, suppose a job searcher had an interview with a
personnel manager of a certain company and the manager decided to hire him. If
he postpones the decision of joining the company, then the company might hire

other applicant before he notifies the intention of his to the manager.



In a research and development, the following problems will arise. Among
some prototypes of mnew products that have been created till now, which and when
should be marketed before the similar product might have been placed in the
market by one of competitive companies ?

A stopping problem with such future unavailability of offers is called a

stopping problem with uncertain recall. The previous works on this subject

were made by Landsberger, et al. [7] and Karni et al, [5]. In the former it is
assumed that the searcher is only concerned about the past best offer and neg-
lects all the others and that this past best is unavailable at the next time
with a known probability. They pointed out that a model in which the prob-
ability of future unavailability is defined for each of all past offers will
require remarkably complicated and intractable mathematical treatments. The
latter literature tackles a model with such difficulties and succeeds in deriv-
ing some interesting results but under some severs assumptions, say, that the
probability for future availability 6f offer is strictly decreasing in age,
that the marginal cost of search is strictly increasing with the number of
searches and reinspections, and sco on. The purpose of this paper is to re-
formulate strictly the model whose mathematical treatment were expected in [7]
to bgcome quite difficult and to reveal some interesting properties of its
optiﬁal stopping rule.

In Section 2 we present the strict definition of our model. Section 3
provides, using the simplest case, the rough sketch of the structure of the
optimal stopping rule. Section 4 which follows summarizes the conclusions that
are derived analytically in Section 5. The last section presents some inter-

esting as well as important future studies which should be tackled.



2. Definition of Model

Consider the following version of the standard discrete-time stopping pro-
blem with a finite time horizon [2],[14] where points in time are numbered
backward from the final time of the horizon, termed time 0. Assume that an
offer is made immediately after payiﬁé a search cost ¢ > 0 and that values of
successive offers w, w', w', ... are independent identically distributed random
variables with a known continuous distribution function F(w) having a finite
expectation E. ‘For gfven real numbers X, Y with 0 < X < Y, let F(w) = 0 for w
<X, 0<F(w) <1 for X{w<Yand F(w) =1 for Y {w, so X<E < Y. Here
notice the following. Although an offer w takes in actuality only value on
interval [X,Y] owing to the assumption of its distribution function, the domain
of the w can be extended, without loss in generality, to [0,®) in an analyti-
cal treatment of the model. In the case, an offer w with w < X or Y < w should
be called a fictitious offer,

Let Pj’ j =20,1,..., represent the probability of an offer which was in-
spected and passed up j periods ago becoming unavailable at the next time, pro-
vided that it has been being available till now (so P, is the probability
that an offer made at present is unavailable at the next time). Here we shall
assume that, for any past offer, it is always possible to know free and in-
stantly whether it 1s currently available or not. Furthermore postulate that
there exists a fixed integer N > 1 such that 0 < pj <1 for j <N and P;
=1 for ] > N. This implies that any offer becomes unavailable with cer-
tainty up to N+l periods after, in other words, every offer has the maximum age
of N periods. Let a (0 < o < 1) represent a discount factor.

The objective is to maximize the expected gain under the condition that
the searcher must accept one offer up to time 0, where the expected gain means
the expectation of "the value of an offer accepted less the total search cost
incurred up to the termination of the process with its acceptance'.

Now suppose the process starts from time t. Then let wj denote the value
of an offer which was made j periods ago, or at time t+j. If the offer wj has
already been unavailable at present, then let kj = (0, otherwise kj = wj, s0

always k For convenience of explanation, we shall use the term offer kj.

=W,
0 0
Then since the event of kj = 0 implies that the offer wj has already been with-
drawn, such offer kj should also be called a fictitious offer. Define the vec—

tors K = (ko,kl,...,kN), R = (kO‘kl""’kN—l) and G = (kl’kZ""’kN)’ and let



the maximum elements in these vectors be denoted by, respectively, k, r, and 2.
Furthermore let K = {0,1,...,N}, R = {0,1,...,N-1) and G = {1,2,...,N},
which represent the sets of the subscripts of kj in these vectors. We shall
sometimes write the vector K as (kO,G).

A state of the decision process can be described by the vector K. Hence
the state space is defined by I = (kg AITLOTETI TR R kj < ®, je€K) Let
At denote an action space of time t. Then we have A = {xl} and At = {xo,xl}

0
for t > 1 where x, = stop the search with accepting the best offer k and x. =

1 4]
continue the search for another offer. The simplest form of a decision rule is
a mapping from state space I onto action space At' We shall, however, extend
the domain of decision rules up to randomized, history-dependent ounes. By a de-

cision policy we shall mean the time sequence of decision rules. Then define

vt(K) = the maximum expected gain over all possible decision policies,
starting from time t with offers K e I.
Vt(G) = E[vt(k »G)], the expectation with respect to offer k (~ kA ).

Let V V (G) with k = 0 for all } & G.
From the definition of the model, clearly
(2.1) vO(K) =k, KelI

We shall refer to the decision policy attaining the v (K) for all K e T and
all t > 0 as an optimal decision policy, which is given by a non~randomized,
history~independent decision rule [3]. When t > 1, if action x, is taken, then

1
the gain obtained is k, and if action x_ is taken, then the maximum expected

0
gain is given by Ut_l(R), which implies the present value of the maximum expect—
ed gain starting from time t-1 less an additional search cost.
Let R* represent the N-vector resulting from replacing part of elements in

vector R by value 0, and let an element of R* be denoted by kJ* that is, R* =

(k 0 ,kl seeesk Nwl « There exist 2 different kinds of R* in all. Now
define

2.2) (1) =1~ p, and .(0) = p,

( qJ( ) P qJ( P

where qj(l) (qj(O)) means the probability that offer kj € R is available (unavai-

lable) at the next time. Therefore the probability of offers R changing into



offers R* at the next time is provided by the product
(2.3) P(R®) = 1 qj(nj), a product over all j € R,

where if offer kj is available, then let ny = 1, otherwise n, = 0. Then Ut_l(R)

is expressed as

(2.4) Ut-l(R) =a Z P(R*)Vt_l(R*) ~ ¢, a sum over all possible R%,
where note

¥From the principle of optimality in dynamic programming, for all K and t 21, we

have

(2.6) vt(K) = max{k, Ut-l(R)}'
Now define
(2.7 Qt-l(K’j)_= Ut_l(R) - kj, jexr.

Suppose k. is the maximum element in K, that is, kj = k. Then if Q,_ (K,J) <0,
it is optlmal to stop the search with accepting the best offer k .y otherWLSe to

continue the search., Define the following sets.
(2.8) §.(3) = {K[Qt_l(K,j) < 0} for all j € K and

(2.9) St =y St(j), a union over all j e K

Now let kj =k. IfKege St’ then X € 8 (i) for at least one i € K, and
hence Q. (K i) < 0. This yields Q_ (K,J) < 0 due to k 2 k.. Therefore it
becomes opt1ma1 to stop the search w1th accepting the offer k On the contrary,
if K &8 ¢ then K ¢ s (J) for all j € K, hence Q (K,J) >0 for all j e
K, which implies that it is optimal to continue the search. Consequently we
may refer to St as a stop region and to its complement, denoted by Ct’ as a con-—
tinuation region. The current paper will prove that the optimal stopping rule,

prescribed by the above sets, has an interesting property such as defined below.



DEFINITION 0. A stopping rule of a certain point in time is said to have a

double reservation values property if there exist the following two values £, g'

such as X < g < g' < Y for at least one fixed G = (kl’kZ""’kN)' For a given
present offer Wy if either Y CEorg'< Wy it is optimal to stop the search
with accepting the best among presently available offers K, otherwise to con-

tinue the search.

That a decision rule has the double reservation values property means that,
when ) travels from X toward Y, the decision to make changes from stop to con-
tinuation at Wy = and from continuation to stop at Wy = £'. The usual defini-
tion of a reservation value (price, wage) [4],[8],[13] claims that if, for a

given present offer Wy it is optimal to continue the search, then so also is

]
0 0°
must exist a maximum & such that, for any offer L < &, it is optimal to con—

to continue the search for any offer w! with w6 <w This means that there

tinue the search. The § is just what is commonly called a reservation value,

When there exists such the reservation value, the problem in question is said to

have a reservation value property. Accordingly it follows that our problem has

not always a reservation value property in a sense of the coaventional defini-
tion.
Before procceeding to further discussions, we shall here provide in advance

one lemma that will be used in the subsequent sections. Define

I

(2.10) T(x) = E[max{w - x,0}] = [ (w - x)dF(w), - < x < o,

woX

(2.11) H(x) = a(x + T(x)) - x - c.

which are continuous functions. Let the solution to H(x) = 0 (if exists) be
denoted by h*. When there exist more than one solutions, let h* represent the
smallest one of them. The following lemma will be used in the subsequent sec-

tions.

LEMMA 0. We have
(a) T(x) is a decreasing convex function, which is strictly decreasing on x LY
| and equal to E - x on x { X and to 0 on Y < x.
(b) x + T(x) is an increasing convex function, which is strictly increasiag on

X { x and equal to E on x L X and to x on Y £ x.



(¢) E[max{w,x}] = x + T(x)
(d) Suppose (1-0)2 + ¢? % 0. Then the solution h* of H(x) = 0 is unique. If X
oE - ¢ where H(x) >

0, then h* = Y

H

< oE -~ c, then X < h* < Y, and if aE - ¢ { X, then h¥

0 for x < h* and H(x) < 0 for h* < x. If (l-ot)2 + 2

where H(x) > 0 for x < b¥ and H(x) = 0 for h* < x.
(e) If g{w) <xfor X<{w(lX+e wiéh infinitesimal € > 0, then

]

E[max{g{w)},x}] > E[g(w)]. I

Proof: Easy for (a) to (d). (e). Clear from max{g(w),x} > g(w) and £(w) >
0 fqr X<w<<X+e. ]

2

Note: The inequality oE - ¢ < X implies (l—a)z + ¢~ &% 0 because if not so,

then we have the contradiction of E S_X).



3. Simple Cases

It is indicated in section 5 that the optimal stopping rule of our model is
characterized by a remarkably complicated structure. Then, in order to facili-
tate the understanding of a general configuration of the structure, we shall
give in the section its rough sketch,'using the simplest case with N = 1, i.e.,
0 < Py < i, P =1 for j > 1. In the case, K = (ko,kl), R = (ko), G (kl), K
= {0,1}, R = {0}, G={l}, and k = max{ko,kl}. Now suppose the process

i

starts from time' 1 with offer ko (= wo). Then we have
vl(ko,kl) = max{k, Uo(ko)}

Uo(ko) = apOE[w] 3 a(l—pO)E[max{w,ko}] -c

apOE + a(l—po)(ko + T(ko)) -c (Lemma 0(c))

where E[+] denotes an expectation as to offer w of time 0. Then the stop region

S1 is given by the union of

$,(0) {(ko,kl)tqo((ko,kl),o) <0y Qllky.k(),0) = Uo(ko) -k

0

8,(1) = {(k;,k)[Q;((ky,k,),1) <0, Q{(ky,ky),1) = Uglky) - K.
It can be easily seen by use of Lemma 0(a,b) that the continuation region

Cl is depicted as the domain enclosed by bold lines in Figure 1, Here the curv-

ed line ab and the straight line cb are the graphs of points (ko,kl) satisfying,
1= 0 and Uo(ko) - ko = 0 where hl(l) = UO(O) =gE - ¢ >
0 and h1 is the unique positive solution to Uo(h) - h = 0. Then we have hl(l)
£ hl because of hl(l) = UO(O) < Uo(hl) = hl owing to hl > 0. Suppose hl(l) <
hl’ and let x be the solution to Uo(x) = kl for any given kl with hl(l) < kl <
h Then the optimal decision becomes as follows. If h1 < ko, then stop the

regpectively, Uo(ko) -k

1'
search with accepting the offer ko, if x £ ko < hl’ then continue the search,
and if kO < x, then stop the search with accepting the offer ki Accordingly it

follows that the optimal stopping rule of time 1 has a double reservation values
property.

It is obvious that this property is lost if h = hl(l). Then the question

1
arises as to what conditions assure the inequality h(l) < hl effecting the pro-

perty. Let aE - ¢ < X. Then since UO(hl(l)) = Uo(aE -¢) =@gE - ¢ = hl(l), it

is the unique solution to Uo(h) = h. Hence,

1

must be that hl = hl(l) because h



0
cl
a"
Stop
Sl(0)=(c'cc")
1]
h,(0) = h, }< ¢
1 1 A b
Continue |
I
x ////
Cl=(0abc) Stop Sl(l)=(a'aa")
r
n/4 a a kl
0 hl(l) kl hl .

Fig 1: Stop region Sl = Sl(O)USl(l) and continuation region Cl
(enclosed by bold lines) of time 1 for case with 0< P,
<1 and pj =1 for j > 1.



if «E - ¢ < X, then it follows that the property does not appear. Suppose oE -
1 > hl(l) because h1 = Uo(hl) > Uo(hl(l)) = UO(aE -c) >
UO(X) =gE - ¢ = hl(l). Thus it follows that the inequality oE - ¢ > X provides

¢ > X. Then we have h

a necessary and sufficient condition on which the optimal stopping rule of time
1 has the double reservation values property. The present paper will verify
that this holds for any t > 2 not only for this simplest case but also for case
with any N > 2.

In cage with N = ?, i.e., 0 < pj <1 for j =0, 1 and P =1 for j > 2, the
continuation region Ct is provided by the curved cube as being depicted in
Figure 2, enclosed by three coordinate planes and three curved surfaces., This

figure demonstrates that it is the very curvature of a continuation region that

causes the double reservation values property. Two points A and B ia the figure,
at which the straight line LL' intersects with the surfaces, provide twofold cri-
tical numbers, ¥ and £', at which the decision to make changes from stop to

continuation and vice versa when k, travels from point L to L'.

0

4
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4, Summery of Results and Considerations

Define the following sets.

(4.1) o={K[ogkjgaE-c,jei}

(4.3) Y {klo < ks <Y, jek),

(4.4) H* = {K[0 < ko Sh¥, joe K},
(4.5) H = {K[0- < ke <Bys § €KY,
(4.6) H! = (|0 < k. <h.(§), § ek,
(4.7) - X = {Kl|0 SkiLX, je K},

where ht(j) is a kj-intercept of continuation region Ct’ and ht is the coordi-
nates of the intercept of Ct and straight line emerging from origin at angle of

w/4 with each coordinate axis (Figure 2). The main results are:

1. Condition for stop with one search

If ¢E - ¢ { X, then Ct = H¥ = 0 for all t > 1 (Theorem 3(b)) where h* = qE
- ¢. This implies the following. Suppose the pfocess starts from any time t
without any offer. Then if once an offer w, is made, then it follows that the

0

searcher has offers K = (w.,0,0,...,0) ¢ Ct due to X < ¥ and hence that it

;
is optimal to accept the ogfer ) because of K ¢ St' In other words, the

inequality aE - ¢ < X provides the condition on which it is optimal to make a
search only one time with accepting an offer from it. This is an intuitively
obvious conclusion because oE - ¢ £ X implies that a net profit gained from a
further additional search, aE — ¢, does not make up -for passing up the present

offer wo due to E - ¢ < V-

2. Condition for double reservation values property

If gE = ¢ > X, then the double reservation values property appears strictly
for all t > 1 (Theorem 6(a)). Why such property will appear in a finite horizon
are reasoned as follows, using Figure 3. Consider the vector G = (ko,kl) in the
figure, Now suppose the present offer ko is not so large as to be in the bar
L -A in the figure. Then a continuation decision may bring, on the searcher,
such risk that the present best offer k = max{ko,kl,k } becomes unavailable at

2
the next time and unfortunately no any better one than the lost best could be



encountered over the remaining finite horizon. Consequently, it will follow
presumably in the case that it becomes optimal to stop a search with accepting

the present best offer k., If the present offer k, is neither so small nor so

large to be in the bar A-B, then the risk stated gbove might be reduced to a
certain degree (A degree of the risk for each of the above two cases is of
course relative. Consider the following two examples as present available
offers: X' = (5,0,20) and K" = (10,0,20). Then although the values of the

best ones in offers K' and K" are equal to 20 (= k' = k"), if they will be un-
available at the next time, then the second bests are 5 for XK' and 10 for X",
Consequently offer K' can be said to be more risky, in a sense that we presented
above, than offers K"). Accordingly it might not be so unreasonable that the
searcher plans to obtain a better offer than the present best by continuing a

search. 1If the present offer k., is enough large to be in the bar B-L', then

0
it is of course that it would be quite reasonable rather to accept the present

offer ko than to continue a search with such risk.

3. Structure of continuation region

Suppose oE - ¢ > X, Then, for any th 1, the continuation region Ct is
given by (N+l)-dimensional cube, which is enclosed by N+l coordinate planes and
N+1 curved planes (Figures 1,2,3, Theorem 1l). The continuation region Ct is in-
creasing in t and has the inclusion relationships of Y o H* > Ht > Ct o) Hé )

0 (Theorems 3(a), Lemmas 7(c)). The following are true from Lemma 0(d)., If
(l—a)2 + c2 % 0 and aE - ¢ >.K, then Y 5 H¥ 2 X, and if oE - ¢ { X, then X >
1f (1-a)? + ? = 0, then Y

0.
= h*, and hence Y = C*, Furthermore, for all t > 1, it follows from Theorem 6(b)

0 = C%, where h* is a unique solution of H(x) =

that, for all t > 1,

a. If N = 1, then h (1) < h_and b (0) = h,
b. If N > 2, then h (N) <k, (§) <h  for all je R, and
c. If P; >(=) Py then ht(l) (=) ht(J).

1t follows from the above and Theorem 2(b) that it is optimal to

d. Continue a search if kj £ ht(N) for all j e K,
e. Stop a search if kj > ht for at least one j € K,

Furthermore, since ht(N) is increasing in t (Lemma 5(b)) and ht £ h¥* (Lemma

4(b)), it is optimal to

12
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" g

h*

Fig 2: Inclusion relationships, Y o H¥ o Ht > Ct o) Hé 50 o X, of

continuation region Ct and other regions, given o«FE - ¢ > X
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A Stop
ht(2)
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G =(k; ,k,)

Fig. 3: Double reservation values property caused by a curvature of
continuation region Ct in which points A and B provide

twofold eritical numbers.
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f. Continue a search if kj S.hl(N) for all j € K,

g. Stop a search if kj > h* for at least one j € K,

4, Maximum expected gain, search amount, and value realization

Suppose the process starts with offers K € H*, given a finite horizon.

Then the expected gain attained, the search amount (the expected number of sear-
ches), and value realization (the expectation of the value of an offer accepted)
are not greater than or equal to, respectively, the expected gain, the search
amount and the value realization for the standard stopping problem with recall,
provided that the optimal stopping rule are followed (Theorem 7{a),8(b)). If
(1-a)? + 2
values as a time horizon tends to infinity, provided that K is an inner point of

H* (Theorem 7(c},8(b)).

% 0, then, for the both problems, they converge to the same finite

5. Fading double reservation values property as a horizon tends to infinity

A continuation region Ct (curved cube} is increasing in t and converge to
H* (a perfect cube) as t + » (Theorems 4(a),5(b)). This implies that the double
reservation values property disappears gradually as a time horizon tends to in-
finity and vanishes in its limit and moreover that the optimal stopping rule
with a limiting horizon becomes just the same as the ome for the standard stop-
ping problem with recall because h* gives a reservation value of it (the stan-
dard stopping problem with recall). This conclusion, derived purely analytical-
ly, may be plausible intuitively for the following reason.

Consider again the vector K = (kO,G) in figure 3. Then suppose that a con-

tinuation decision is made, given a sufficiently large horizon, and that the

present best offer is lost at the next time. In the case, the risk described

in 2. could hardly be incurred because a better offer than the lost best will be
almost possibly made sometime during the remaining horizon. Accordingly it
follows eventually that the double reservation values property may vanish in the
limiting horizon. However, this explanation may not always be persuasive from
the following rsason. The fact that a cost is incurred every search cannot

allow the searcher to continue the search as sufficiently many time as he wants,
Accordingly it possibly follows that such risk cannot always be eventually avoid-
ed even with a sufficiently large horizon, and hence that the double reservation
values property will be preserved even ia a limiting horizon., The analytical

results obtained in the current paper, however, fully denies this conjecture,

/5



and claims that the double reservation values property will fade gradually as a

horizon becomes larger and larger and vanishes totally in its limits.

6. Reduction to case with N =1 in a limiting horizon

Consider case with a limiting horizon. Let K' = {kl’kZ""’kN+l} be offers
of time t+l (the previous time)‘and k! = max K' where clearly g < k' ...(*).
Now suppose the process continued up to time t+l. Then, since limt_mct = H*,

the optimal stopping rule of time t (the present time) becomes as follows. If
k < h*, then stop, otherwise continue. In the case, the following results.

If k¥ < h*, then Y < h* because of w, < k. On the contrary suppose h¥* < k.

0
Now the assumption that the process had continued up to time t+l implies k' < h¥,

which yields g £ h*. Therefore k = max {Wo,g} £ max {wo,h*}, from which h* <

¥y follows because Yy £ h#* produces the contradiction of k £ h*. The above

things implies that the stopping rule is merely reduced to a comparison of h¥

and Vo In other words, it always suffices to memorize only the current offer

Wy with neglecting all past ones. Eventually it follows that, in a limiting
horizon, our model is always reduced to the model with N =1, i.e., 0 < Py <1,
Pj =1 for j > 1, and the optimal stopping rule is the same as that for the stan-

dard stopping problem with recall.

/b



5. Analysis

5.1. Monotonicity of Optimal Stopping Rule

Throughout this section, a function £(x) is said to be increasing (decreas-
ing) in x if £(x) >(£) £(y) for any x > y on its domain and strictly increasing
(strictly decreasing) in x if £(x) >(K) f(y) for any x > y on its domain. Fur-
thermore a function £(Z) of vector Z is said to be increasing (decreasing) in Z

if it is increasing (decreasing) in each element of 2.

LEMMA 1. For all t > 0,
(a) Vt(G) > E and Vt(G) > kj.for j € G.
(k) Y > Vt(G), and Vt(G) and Ut—l(R) are increasing as well as convex in R.
(e} Q

t_l(K,j) is increasing in ki with 1 % j and convex in K. |

Proof: (a). Obvious from vt(ko,G) > kj for j € K. (b). Since vo(ko,G) =
max{ko,g} <Y, we have VO(G) £ Y and VO(G) = g + T(g) (Lemma 0(c)). Since g is
increasing and convex in G and g + T(g) is increasing and convex in g (Lemma
0(b)), VO(G) is also increasing as well as convex in G. Suppose Vt_l(R) <Y for
any R and is increasing and co§vex in R. Then also Vt_l(R*) <Y and is increas-

ing and convex in R¥*.

Remark. Here the elements kj* with replacement by 0 are fixed and all

others are regarded as variables.

Now since P(R¥) is independent of values of elements in R* and moreover
since the sum of P(R¥) over all possible R* equals 1, it follows from the induc-—
tion hypothesis that Ut—l(R) La¥ - c £Y and is inmcreasing as well as convex in
R, and hence also in G. In addition, since k { Y and is increasing and convex
in G, vt(K) = vt(ko,G) £ Y and is increasing and couvex in G, and hence so also

is Vt(G). Thus the induction completes. (c). Immediate from (b). 0
THEOREM 1. St(j) is a convex set for all j € K and all t > 1. I

Proof: Immediate from (2.7), (2.8) and Lemma 1(c). ]

7



/'8

LEMMA 2, For all t > 1 and all j € K, we have

(a) th_l(R) - kj is decreasing in kj and tends, as kj +®, to -» if ] = N, 0
if j{Nand ¢« =1, and -» if j { N and o« < 1.

(n) Qt_l(K,j) is strictly decreasing in kj and tends to - as kj + @,

(¢} The equation Qt—l(K’j) = 0 with unknown kj has a unique solution, denoted
by kt,j(K)' If E = ¢ > 0, then the solution is positive. 1
Proof: It is obvious from R being independent of kN that the assertion

(a2} and (b) holds for j = N. Let j < N. Now we have
(5.1) ‘uVO(R) - kj = a(r + T(x)) - kj = (*),

Clearly (*) is decreasing in kj on kj {r. On kj = r we have (*) = aT(kj) -
(l—u)kj, which is decreasing in kj and tends, as kj >, to 0 if ¢ = 1 and -=
if @ < 1. Hence (a) holds for t = 1. Since the sum of P(R*) over all possible

R* equals 1, we have
(5.2) avt(kO,G) - kj = max{o+max{k,,2} - kj, xQ,_;(K,j) - (l—a)kj},
(5.3 Q._;(K,j) = 5 P(R*)(aV,_; (R¥) —"kj) - e,

Suppose that (a) holds for a given t > 1., Then th_l(R*) - kj is decreas-
ing in kj for all j (Note Remark in the proof of Lemma 1(b)). Hence Qt_l(K,j) is
also decreasing in k,. Consider R* resulting from replacing all elements of R
by value 0. Then, for the null vector R¥*, th_l(R*) - kj for each j is strictly
decreasing in kj and tends to -~ as kj + @ (Again note Remark). Moreover
P(R#*) = PoPy** Py 1 > 0 for the R¥. Consequently it follows that, for each j,
Qt_l(K,j) is strictly decreasing in kj and tends to - as kj + o, From the
above and the faet that a-max{ko,g} - kj for each j "is decreasing in kj and
tends, as kj +@, to 0 if ¢ = 1 and ~» if o < 1", it follows that the above
assertion put between two double quotation marks is true for the right side of
(5.2). Hence the assertion is also true for th(G) - kj (= E[vt(ko,G) - kj])
cwith 1 < j < N. Furthermore it is also true for j = N+l because of it being

independent of kN+ Thus the induction completes. (ec). Clear from (b) and

1.
the facts that Qt_l(K,j) + ® as kj-+ -o and aE - ¢ > 0 yields Qt_l(K,j) >

oE - ¢ > 0 (Lemma 1(a))}. 0

Let Ki with 1 < i < N+2 denote the set of elements in K except the first



i-1 omnes, k., k
K = ¢I

N+2 .
DEFINITION 1. For any subset M of K and for any i with I < i < N+2,

that is, Ki = {ki_l,ki,...,kN} where K, = K and

1ot Fioge 1

0!

(a) Let X{M,i,h) be the vector resulting from replacing kj € Ki with j e M
by a real number h and kj € Ki w%th j ¢ M by value 0 where K(M,N+2,h)
= K.

(0) Let Q__;(RK(M,i,0)) = U, _,(R(M,i,h)) - h. I

For example, let'N = 2 and K = (3,7,5) (K = {0,1,2}). 1If M = (0,2},
then we have K(M,1,h) = (h,0,h), K(M,2,h) = (3,0,h}, K(M,3,h) = (3,7,h),
RK(M,4,h) = (3,7,5) = K. Then we have

(5.4) Q__,(K(¥,i,n)) = Z P(R*(ﬁ,i,h))(avt_l(n*(ﬁ,i,h)) - h) - c,
1< 1< N+2

(5.5) avt(K(ﬁ,i,h)) - h = max{s(R(M,1,h)), aQ__, (R(¥,i,h)) ~ (l-w)h}
| 1 <i<N+2
where "

(5.6) s(X(M,i,h)) = a-max{ko,kl,...,ki_z,p} -h, p=0orh, 1 <i< N+2,

LEMMA 3. For all M, all t > 1 and all i with 1 < i < N+2
(a) th_l(R(ﬁ,i,h)) ~ h is decreasing in h.

() Q,_,
(c) Qt_l(K(ﬂ,i,h)) = 0 with unknown h has a unique solution. If aE - ¢ > 0,

(K(M,i,h)) is strictly decreasing in h and tends to -= as h -+ =,
then the solution is positive. I

Proof: (a,b). First we have
aVO(R(ﬂ,i,h)) - h = aE[max{w,ko,kl,...,ki_z,p}] -h, p=0o0rh,

which is decreasing in h. Thus (a) holds for t = 1. Suppose (a) holds for a

given t > 1. Then th_ (R*(M,1,h)) - h is also decreasing in h (Note Remark

in the proof of Lemma l%b)). Then, in the same fashion as in the proof of Lemma
2, Qt_l(K(ﬁ,i,h)) can be proved to be strictly decreasing in h and tends to

~®» a5 h + =, From this and the fact that (5.6) is decreasing in h, the right
side of (5.5), hence its left side also becomes decreasing in h. Let K' = (kl,
k2""’kN+1) represent offers of time t+l (the previous time), R' = (kl’kz""’
kN) (= G) and define M' to be a subset of X' = {1,2,...,N+1} (a set of sub-
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scripts of elements in K') where note K = (kD,G) = (kO,R'). Then, for 2 { i <
N+2, the left side of (5.5) can be expressed as avt(kO,R'(ﬁ',i—l,h)) ~ h where
M' =M - {0). Accordingly th(R'(ﬁ',i—l,h)) = h for 2 { i < N+2, hence
th(G(ﬁ',i,h)) - h for 1 < i { N+l is increasing in h. Finally we have
th(G(ﬁ',N+2,h)) -~ h = th(G) - h, which is decreasing in h. Therefore it
follows that th(G(ﬁ',i,h)) ~ h is decreasing in h for 1 < i < N+l. Thus the
induction completes. (c). Clear from (b) and the facts that Qt_l(K(ﬁ,l,O)) -+ o
as h » -» and o -~ ¢ > 0 leads to Qt_l(K(ﬁ,i,h) 20aE - ¢ > 0 (Lemma 1(a)). |

DEFINITION 2. Let ht(K,ﬁ), h.(3), and h, denote the unique

solutions to, respectively,

(5.7) Qu_q (R(M,1,h)) =0,

(5.8) Q._; (K({j},1,h)) = 0,

(5.9) Qu_q (K(K,1,h)) = 0.

where note ht = ht(K,K), ht(j) = ht(K,{j}) and ht(N) = th_l - c. I

THEQREM 2, For all ¢,
(a) ht(j) < ht for all j € K.
(b) For a given K
1. If ht < kj for at least one j € K, then K & St'
2, If kj < ht(j) for all j € X, then K € Ct. ]

Proof: (a). Suppose L < ht(j) for a certain j € K. Then the following

contradiction is derived.

0= Qt_l(K(K,l,ht))

= Q. ((h ,h,eeih))

= Q1 ((h ,enesb,neih), 5)

> Q_ (b, eesh (3),000,h),3)  (Lemma 2(b))
2 Qt_l(CO,...,o,ht(j),o,...,0),j) (Lemma 1(c))

= Qt_l(K({j}sl’ht(j))) = 0.

20
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(bl). <Consider kj such as kj = k where ht < kj and ki £ kj for all i € K.
Then it follows that

SRICH ML M (COVPPRIN SRR OB
SQt_l((kj"-'akjs"-skj),_'l) (Lemma l(c))

Consequently it follows that K € St(j), hence K € §, . (b2). For all j € K,

we have
Qt_l(K,j) > Qt_l((O,...,O,kj,O,...,O),j) (Lemma 1(e¢))
= Qt-l(K({j}’l’kj))

2 Q. (R({3},1,0,(§))) = 0 (Lemma 3(b)).

, which implies K ¢ St(j). Therefore we have K ¢ S_, hence K ¢ C.- 0

t’
LEMMA 4. For all t > 0,

(a) If K € H¥*, then vt(K) £ h*, and if K ¢ H*, then vt(K) = k,

(b) ht(K,ﬁ) < h#* for all M, ‘and hence h, < b* and h (j) < b* for all
j e X |

Proof: (a). Since VO(K) = k, the assertion is true for t = 0. Suppose it

is true for t-1. Notice Vt-l(R) is expressed as
= x *
Vt_l(R) E[vt_l(w,R)I(w>h ) + vt_l(w,R)I(h >w)l.

A, Let K € H*, Then k { h* and r { h*, If w > h*, then (w,R) ¢ C* and
max{w,R} = w. If h* > w, then (w,R) € H¥. Consequently from the induction hypo-
thesis, we have Vt_l(R) £ E[wI(w>h*)} + h*I(h*>w)}] = h* + T(h*). Therefore since
also Vt_l(R*) £ h#* + T(h*), we get Ut_l(R) < a(h*® + T(h*}) - ¢ = H(h*) + h* = h*
voo(*), which produces vt(K) < max{k,h*} = h*,

B. Let K ¢ C*, Then k > h¥#,

Bl. Suppose kN £ h*. Then since kj > h* for at least one j € R, we have

(w,R) ¢ H* for any w, hence vt_l(w,R) = max{w,r} = max{w,k}, from which we
have Vt_l(R) =k + T(k), and hence Vt_l(R*) < Vt_l(R) (Lemma 1(b}). Consequent-—
ly Ut_l(R) < alk + T(k)) - ¢ = H(k) + k < k because of H(k) < 0 owing to k > h*
(Lemma 0(d,e)), and hence it follows that vt(K) = k.



B2. Suppose kN > h*., Then if kj > h* for at least one j € R, then (w,R)
¢ H* for all w, hence vt_l(w,R) = max{w,r} < max{w,k} because r { k in the
case, hence Vt_l(R) £k + T(k). Accordingly the same discussion as in Bl pro-
duces vt(K) = k. On the contrary, suppose kj < b* for all j € R. Then apply-
ing the same discussions as in A yields also Ut_l(R) £ h#¥, and hence Vt_l(R) <
k. Therefore we have vt(K) =k ’

(b). If h £ h*, then K(M,1,h) € H*., Noticing this and (*), we have
Qt_l(K(ﬁ,l,h)) £ h* - h., Thus Qt_l(K(ﬁ,l,h*)) £ 0, which meaus ht(K,ﬁ)
« £ h* from Lemma 3(b,c). ]

THEOREM 3. For all t > 1,
(a) YoH*¥*>H o C_>H'.
2t 2t t
(b) If (1-a)” + ¢ % 0 and aE - ¢ € X, then C, = H* = 0 for all t, and hence

the double reservation values property does not appear at all. |

Proof: (a). Y o H* and H* > C, are clear from, respectively, Lemma 0(d)
and Lemma 4(b). Consider any K € C,, for which Qt_l(K,j) > 0 for all j e K.
Here if K ¢ Ht’ then since ht < ki for ki = k, we have the contradiction of
0 < Qt_l(K,l)

= Qu_;((kyyeee ke yenn k), i)

< Qt—lc(ki’ki""’ki)’i) (Lemma 1(c))
= Qt_l(K(K,l,ki))
<Qu(R(K, L)) =0 (Lemma 3(b)),

Therefore it must be that X € Ht’
Theorem 2(b2). (b). h* = aE - ¢ from Lemma 0(d). For all j € K, QO(K({j},l,h))
= a(l—pj)(h + T(h)) + aij - ¢ - h. Therefore since QO(K({j},l,aE -e)) =20

-
hence Ht o) Ct. Ct > Ht 18 clear from

from Lemma 0(b), we have hl(j) = oE = ¢ from Lemma 3(c). Hence we have Cl = H*
= 0, which implies Ct = H* = 0 for all t because Ct is increasing in t and con-

verges to H¥. i

LEMMA 5. TFor all X, j and M,
(a) vt(K) and Qt_l(K,j) is inereasing in t.
(b) ht(K,ﬂ) is increasing in t. |



Proof: (a). Easily proved by inductiom, starting with Vl(K)<Z k = vO(K)
for any K. (b). Clear from (a) and Lemma 3(b,c). 0

THEOREM 4. We have
(a) St is decreasing in t, and Ct is increasing in t.

{b) Ht and Hé are increasing in t. 1

Proof: (a). Since Qt(K,j) < 0 leads to Qt_l(K,j) < 0 from Lemma 4(a3), we
have St+l(J) c St(J) for all j, which implies Sip1 © §,, hence Crpy 2 Cpo
(b). Clear from Lemma 4b. |
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5.2. Behavior of Optimal Stopping Rule near a Limiting Horizon

We shall investigate the behaviors of the optimal stopping rule as a time
horizon tends to infinity. To do this, some results that have been derived for

two types of the standard stopping problems: One is of with-no-recall, the other

is of with-recall. To begin with, we’shall summarize them that are used in this
section [2],[11].

In case with no recall, all past offers are unavailable with certainty, and
hence G 1s always null vector. Therefore it suffices to define ounly v (k ,0,0,
+++). Then let this and its expectation as to a present offer ko (~w0) be denot-~
ed by, respectively, vt(ko,—]O) and Vt(—IO). As being well-known, we have

(5.10) v (kq,=[0) = max{k,, av__,(=]0) - ¢}, ¢ > 1.

with vo(ko, [0) = k and Yy (-]10) = E where av, _ -IO) -~ ¢ provides a reservation
value of time t. In case w1th recall, the maximum expected gain attained depends
ouly on the best offer k so far. Then we shall denote the maximum expected gain
by vt(kll), and define Vt_l(kll) = E[vt_l(max{w,k}ll)}, the expectation as to an

offer w of time t-1 (the next time). Then we have the well-known equation
(5.11) v _(k[1) = max(k, v, _ (kl1) = e}, €50

where vo(kll) = k and Vo(kll) =k + T(k) and where th_l(kll) give a reservation

values of time .

LEMMA 6. We have
(a) In case with no recall,
l. v (ko, 10) and V.. 1 (-10) are increasing and comverges in t,
2. Their limits are given by v(ko,—lo) = max{ko,h*} and V(-|0) = (h¥*+c) /o,
3. The limiting reservation value is provided by h¥.
(b) 1In case with recall,
1. vt(kll) and Vt_l(kll) are increasing and coaverges in .
2. Their limits in t are provided by v{(k|l) = max{k,h*} and V(k|1l) =
max{k + T(k), h¥ + T(h*)},

3. The reservation values for all t 2 1 are given by h* (This time-

independency of the reservation value is commonly referred to as a

myopic property). I




Proof: Refer to [2],[11]. ij

LEMMA 7. For all t 2> 0,
(a) vt(kll) > vt(K) > vt(ko,—IO)
(@) v (gl >v. (6 >v . (-]0)
() av__,(-]10) - ¢ ht(K,ﬁ) for all M, and hence of - ¢ < ht(K,ﬁ), which

implies Hé 50. |

Proof: (a,b)., It is clear that vo(kll) =k = VO(K) = vo(ko,G) 2 k, =

vo(ko,-lo), from which VO(G) > VO(-|0). Since vo(kll) = vo(max{ko,g}il)

max{ko,g} = VO(RO,G), we have Vo(g!l) = VO(G). Thus the assertions (a,b) are

1]

true for t = 0.

Suppose Vt-l(R) > Vt_1(~|0) for all R. Then since Vt_l(R*) > Vt_l(-|0), we
have Ut—l(R) 2 th_l(-IO) - ¢, which yields vt(K) = vt(ko,G) > max{ko, th_l(—IO)
-c) = vt(ko,HIO), and hence Vt(G) > Vt(—IO). Suppose Vt—l(R) < Vt_l(rll) for
any R. Then since Vt_l(R*) < Vt_l(rll) < Vt_l(kll) because'Vt_lfkll) is increas—
ing in k (easily proved by induction), we have Ut_l(R) < th_l(k[l) - ¢. There-
fore we have vt(K) £ max{k, th_l(k[l) - c) = vt(kll), and hence vt(ko,G) <
vt(max{ko,g}ll), which yiglds Vt(G) £ Vt(g!l). Thus the induction completes.
{c). Since Vt-l(R) 2 Vt_l(—IO) for all R from (b), we have Qt_l(K(ﬁ,l,h)) >
aV. . (-{0) - ¢ - h, the both sides of which are strictly decreasing h. Accord-

t-1
ingly the solution to Qt_l(K(M,l,h)) = 0, or ht(K,M), must be greater than

H

or equal to that for th_l(—|0) - ¢ —-h=20, or th_l(—[Q) - ¢. Since Vt_l(-IO)

is increasing in t, o - ¢ = aVOC-IO) -cX ht(K,ﬁ). 1

THEOREM 5. We have
(a) 1If K € H*, then both vt(K) and ht(K,ﬁ) converges to h¥% as t -+ =,

(b) H_, C Hé converge to H¥ as t » «, |

A

Proof: (a). Suppose K € H*. Then k £ h* and ko
6(a2,b2), the first and the third terms of the inequalities in Lemma 7(a) tends
t_l(-|0) - ¢c+h*as t
+ o from Lemma 6(a2), it follows from Lemmas 4(b) and 7(c) that ht(K,ﬁ) + h*

to h* as t + », Hence vt(K)-+ h* as t + o, Now since aV

as t + =, (b). From (a), since both h, and ht(j) converge to h* for all j € K,
both Ht and Hé converge to H¥*, and hence Ct must also converge to H* from

Theorem 3. ]
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5.3. Double Reservation Values Property

Figure 3 claims that the double reservation values property will appear
if and only if ht(j) < ht for at least one j € G. The following theorem

guarantees that the comjecture is right in general.

LEMMA 8. Suppose aE - ¢ > X. For a given t > 1, if ht(j) < ht for at least

one j € G, then the optimal stopping rule of time t has a double reservation

values property. |

Proof:  Suppose ht(j) < h, for a certain j € G. Then consider an
infinitesimal £ > 0 such as ht(j) + e < h . Wow for a fixed x > h* -~ hy oo,
let A = h*/(x+ht) where 0 < A < 1 by noticing h* > 0 and ht > 0 from Lemmas 0(d)
and 3(¢). Using the A, define the following (N+l)-vector

K{x)

= (1-k)(0,...,0,ht(j)+s,o,...,0) + A(ht+x,ht,...,ht)
= (k(ht+x),xht,...,xht,L,xht,...,xht),
Kg = (S,Xht,...,kht,L,lht,...,lht).

where L = (1-M)(h _(j)+€) + Ah,, Ah <L < hy (£ h*), and

R(0) = (1-MK({]},L,h (f)+e) + XK(E,I,ht)

C VPRI LIN A LU VIR

Consider any given x' > x. Then we have X(x'+ht) > h*, which implies
K(x') ¢H%*, and hence K(x') € St because K(x') ¢ Ct from Theorem 3(a), There-
fore, given the present offers K(x'} (= K6 with § = l(x'+ht)), it is optimal to
stop the search, that is, Qt—l(KS’O) < 0., Here notice k(x'+ht) > h* > L.
Accordingly it follows that there exists a § > L such as Qt—l(KS’O) < 0. Then
let g' = min{Gth_l(Kﬁ,O) <0, L8} Next, from Lemmas 1(c) and 3(b), we have
Q(R(0),3) < (1-MQUR({j},1,h (§)+e) + AQUR(K, 1,0 )) < (1-MQ(R({5), 1,0, (§)) =

0, implying K(0) = K, € St(j) where § = Ah, < L, Hence if the K , are present

3 .8
offers, then it is optimal to stop the search. Accordingly it follows that

there exists a § < L such as Qt_l(KG,j) < 0. Then let £ = mai{GIQt_l(Ks,j) < 0,
§ <L}, It is of course that £ < £'. Here notice that Qt—l(KG’O) is decreasing

in & (Lemma 2(b)) and Qt—l(KS’j) is increasing in § (Lemma 1(c)). Then the
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optimal decision for a present offers Ks becomes as follows. If either § < g
or ' < 8§, then stop the search, if L < § < g', then continue the search because
Qt-l(KS’O) >0 and § > max{L,kht}, and if £ < § < L, then continue the search

because Qt-l(KG’j) 20 and L > max{&,lht}. 1

Below, for 0 { j < N-I, let such an N-vector (x,y,...,z) that the (j+1)-th
element from the left is h be denoted by (x,y,...,z)j.

LEMMA 9. .Suppose ®E - ¢ > X. Then for all t > 1, if ht(N) < h, then

Ve(0,000,0,0,0,.00,0)5 > ¥, 0 <5 < N-L I

Proof: First we shall prove case of j = N-1. It is easily proved by induc-
t_l(w,O,...,O) = Ut_l(w,x,...,X)

pe] — C = ht(N) and Ut_l(X,X,...,X) =

c = ht(N) where X < af - ¢ S_ht(N) (Lemma 7(c)). From this and the fact

tion that Ut_l(o,...,O) = Ut_l(X,...,X) and U
for X { w. Here note Ut_l(w,X,...,X) 2 av
ey ”
that Ut_l(.) is a continuous function, for w such as ¥ { w { X + &¢ < h with an

infinitesimal € > 0, we have ht(N) < Ut_l(w,O,...,O)) < h, hence max{w,Ut_l(w,O,

v.+,0)) < h. Therefore

Elmax{w,h,U (w,0,...,0)3]

t-1
(w,0,...,0)}] (Lemma 0(e))

Vt(O,...,O,h)

v

E[max{w,Ut_l

= vt.

Next for 0 £ j < N-2

]

Vt(D,...,O,h,O,...,O)j E[max{w,h,Ut_l(w,O,...,O,h,O,...,O)j+1}]

[~

E[max{w,h,Ut_l(w,O,,..,0)}] (Lemma 1(b))

> V.- 1

THEOREM 6. Suppose oE - ¢ > X, Then

(a) The optimal stopping rule of any time t > 1 has a double reservation
values properties.

(b) If N =1, then ht = ht(O) and ht > ht(1)° If N > 2, then ht > ht(j) >
ht(N) for j € R. ht(N) =av, .y - ¢ for all t > 1, N > 1,

(¢) 1If Ps >(=) p; for i, j € R, then ht(j) (=) ht(i) for all t > 1, If Py
= p for j € R, then ht(j) is constant on j € R. I



Proof: If (b) is true, then (a) is immediate from Lemma 8. Then first let
us prove (b). Suppose N = 1. Then, for all t > 1, since Qt_l((h,h)) =
Q_;((n,0)), we have b, =k (0). NowqQ _,((h,h)) =alpyV, , + (1-p)v,_,(R)) -
¢ -—h = (%), From Lemma 9, (*) > av,_, =c = h = Qt—l((o’h))' Accordingly ht >
ht(l) from Lemma 3(b,c). Next let N > 2. For 0 £ j £ ¥-1, let (0,...,0,h,0,
...,O)j be N-vector such that the (j+l)-th element from the left is h > 0 and

all the others are 0. From the definition, we have immediately

I

Q,_;(K({N},1,0)) = av, ; = ¢ - h

t...

Qt_l(K({j},l,h)) a(l-pj)vt_l(o,...,O,h,o,...,0)j+1 + ch.V - Cc - h

jte-1

a(l*pj)(Vt_l(O,...,O,h,O,...,O) - Vt_l) +aV,_;-c-h
eea(1%)
for 0 < j < N-1. Suppose ht(N) < h, Then from Lemma 9, we have Qt—I(K({j}’l
,h)) > Qt_l(K({N},l,h)), which yields ht(j) > ht(N) from Lemma 3(b,c). Since
Ut_l(K(E,l,h)) 2 Ut—l(K({j}’l’h)) from Lemma 1(b), Qt_l(K(i,l,h)) 2 Qt—l(

K({j},1,h)) ...(2%) Consider the following corresponding terms in both sides of

j+l

the inequality (2%)

it

(1%*) p.Hi#j(l—pi)Vt_l(h,...,h,O,h,...,h) and

J

(2%) (1-p )V, _,.

Pl
Since Vt_l(h,...,h,O,h,...,h) > Vt_l(h,O,...,O) > Ve from Lemmas 1(b) and 9,
we have (1*) > (2%), hence Qt_l(K(R,l,h)) > Qt-l(K({j}’l’h))° Accordingly

it follows that h > ht(j). (e). Clear from the fact that Qt_l(K({j},l,h)) is

strictly decreasing in pj from (1%). ]
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5.4. Search Amount and Value Realization

Let nt(K) and Et(K) denote, respectively, the search amount and the value
realization, provided that the process starts from time t with offers K., The
approach employed in the section is a generalization of that in [7]. From the

definition, nO(K) = 0 for all K and nE(K) =0 if K ¢ Ct. Then we have

(5.12) n, (X) =1+ Z P(R¥*)E[n__, (w,R¥)I((w,R¥)eB*)], K € C_ (c B¥)

where E[+] represents the expectation as to an offer w of time t-l and where the
sum is over all possible R¥, In case with recall, if the process starts with
the maximum offer k £ h*, then the search amount is independent of k. Then let

it be denoted by . The n, sattgfies n, = 1+ nt_lF(h*) for all £ > Q with n,
= 0 and increases in t, and furthermore if (l—a)2 + c2 % 0 and X < ¢E ~ ¢, then

n,_ converges to (1 - F(h*))“l as t + = due to F(h%) < 1 because h* { Y in the
case ({71, Lemma 0(d)).

THEQREM 7, We have
(a) nt(K) < n, for all t, K,
(b) nt(K) is increasing in t for all K.
(¢) 1If (1—04)2 + c2 % 0 and X { ¢E - ¢, then nt(K) converges to (1 - F(h'c’f))—l

for any inner point K of H*, |

Proof: (a). Clear for t = 0. Suppose the assertion is true for a given

t-1. If K ¢ Ct’ then nt(K) =0 X< n.. If K e C,, then we have, from (5.16)

n(K) <1 +n Z P(R*)E[I(w<h¥)]

£-1
1+ n_ BII(i<h®)]

1 + nt_lF(h*) = nt.

(b), Easy. (c). Since nt(K) < n, < (l—F(h‘-‘r))_l for all t, XK (, or upper bound-
ed), the limit of nt(K) exists, denoted by n{K). For any given inner point K of
H*, we have K & Ct for all t > T with a sufficiently large T. Hence, for such K,
(5.16) holds for all t > T. Then t approaching * produces

n(R) = 1 + 2 P(R®)E[n(w,R*)I({w,R¥)ecH*)] ...(*).

Suppose there exist two different solutions for the above equation, m(K) and



n{k), and let A = supKIm(K) - a(X)| > 0. Then from (*) we have immediately A ¢
A+F(h*), which yields the contradiction of 1 £ F(h*) < 1 (Lemma 0(b)}. Thus the
solution must be unique. It is easy to check that (1 - F(h‘t’*‘))wl satisfies the

equation. Accordingly nt(K) must comverges to (1 - F(h*))_l. 0

Value realization for case with recall does not depend on the best offer k
on k < h*, Then let it be represented by Et(-ll). Clearly we have

(5.13) v (K) = E_(K) ~ en (X), v, (kl1) = E (-I1) - en,

Let the limits of Et(K) and Et(-ll) be denoted by, respectively, E(K)
and E(k|1).

THEOREM 8. We have
(a) E.(x) £ Et(—ll) for all t, K.
() 1f (1-a)?
K of H*. I

+ c2 % 0 and X < aFE - ¢, then E(K) = E(k|1l) for any inner point

Proof: (a). From (5.12) we have Et(K) - Et(—ll) = vt(K) - vt(k[l) +
c(nt(K) - nt), which is non-positive from Lemma 7(a) and Theorem 7(a). Hence

Et(K) < Et(—il). (b). Immediate from Lemma 6(b2) and Theorems 5(a), 7(ec). |
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6, Future studies

The final section presents some interesting future studies for this model,
every subject of which is expected to be very difficult to explore but is very
challenging as well as worth intemnsive investigatioms.

1. In general, an offer with relatively high value will be also preferable
for any other searcher. This implies that the higher the value of an offer, the
larger the probability of future unavailability of it. Such consideration can
be incorporated in our ﬁodel by assuming the probabilities pj to be a fune-
tion of w, that is, pj(w). This extention tells us the possibility of a game
theoretic variation of our model. Counsider a searcher I, and suppose each of
other searchers employs a randamised strategy for accepting a present best offer.
Then, for the searcher T', future unavailability for each of his present offers
K will become stochastic, and hence the probabilities of unavailability for each
offer will be to be defined as a function of its value, which are constructed
through integrating other searchers' randamized strategies by use of simple prob-
abilty computations. The introduction of such w-dependency, however, will make
a mathematical treatment of the model formidably intractable, 2, The introduc-
tion of a baysian up-to-date for the distribution function of w with some unknown
parameters is another interesting subject not only from the practical viewpoint
but also from the theoretical viewpoint. In the case, however, we should note
that this case may often cause a non-existence of the reservation value [13].

3. Relationship between model parameters and a degree to which the double reser-
vation values property appears. The degree can be measured by, for instance,
(h*—ht(N))/h*, showing the extent of the curvature of the continuation region
which is the wvery reason effecting the property. Which parameters is the most

contributive to its appearance ?
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