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Abstract

The notion of homotopy base of an acyclic graph was introduced by
K. Murota. Consider an acycliec graph G=(V,A) with a vertex set V and an
arc set A. For any directed path in G, p can be translated into another
path p' by replacing a subpath P4 of p by a directed path Py such that P,
and Py nave the common end-vertices but no common intermediate vertices.
Such a pair of paths Py and Py is called a bilinking and we say p' is
obtained by an elementary transformation of p by the bilinking {p1,p2}.
A homotopy base of G is a minimal set R (minimal relative to set
inclusion) of bilinkings in ¢ with the property that, for any two
directed paths p and p' in G with common end-vertices, p' is obtained by
repeated elementary transformations of p by bilinkings in R. We give a
simple characterization of homotopy bases of G and propose an ﬂ(|V|2|Al)
algorithm, with O(|V|+[A[) working space, for finding a homotopy base of

G=(V,4).



1. Introduction

Consider an acyclic graph G=(V,A) with a vertex set V and an arc set
A. We assume the familiarity with the basic terminology and definitions
in greph theory (see e.g. [1], {3]). Throughout the present paper a path
means a directed path unless otherwise stated.

For any arc acA we denote the initial and the terminal vertices of a
by B+a and 9 a, respectively. For a finite set S the cardinality of S is
denoted by [8|. An unordered pair of distinet paths in G with common
end-vertices but no common intermediate vertices between the end-vertices
is called a bilinking (or bi-linking). Let r={p1,p2} be a bilinking
consisting of paths P, and Py in G, and suppose that p is a path in G
which contains p, as a subpath of p. Then we can obtain a path p' having
the same end-vertices as p by replacing the subpath P, in p by Py- We

say the path p' is obtaeined by the elementary transformation of p by

r={p1,p2}, and denote p' by pBr. Note that we also have p=p!'@r.
Given a set R of bilinkings, if for a sequence r.eR (1=1,2,%4%,k)
with k20 we have
I e Yy ao e
or equivaiently
- e e | '

p = ((ree(p'ér, )o---)6r,)0r,, (1.2)
then two paths p and p' are called homotopic with respect to R, and
we write

D :R p'. (1-3)
By definition, homotopic p and p' have common end-vertices. A set R of

bilinkings in G is called a homotopy base of G if




(1} for every pair of paths p and p' in G with common end-vertices,
we have p *5 r',
and

(2) no proper subset of R enjoys the above property (1).

The notion of homotopy base was first introduced in (2] in an
analysis of commutativity of diagrams; a characterization of a homotopy
base was given in terms of the preordered matroid associated with the
underlying acyeclic graph and an O(]V|2]A14) algorithm with O([V|]A]2)
working space for finding a homotopy base was presented as an application
of the dual greedy algorithm for preordered matroids. In the present
paper we shall give an alternative complete characterization of homotopy
bases and show an O(|V|2|A|) algorithm, with O(|V|+|A|) working space
(excluding the space for the storage of the solution), for finding a

homotopy base of G=(V,A).
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2. A Characterization of Homeciopy Bases

For any two vertices u,veV an interval [u,v] of G is the subgraph of
G induced by the set of-all the vertices which lie on paths from v to u
in G. The interval [u,v] is empty if there is no path from v to u. The
length of a path is the number of arcs on the paths. When [u,v] is
nonempty, the length of [u,v] is the maximum length of paths from v to u
in G.

For any nonempty interval [u,v] of G with u#v, we call a set of

subgraphs Gié(Vi,Bi) (iel) a decomposition of [u,v] if

(i) for each i,i'€l we have VinVi,={u,v},

(ii) {Bi[ieI} is a partition of the arc set of the interval [u,v].
Moreover, if there is no decomposition G3=(V5,Bg) (jed) of [u,v] such
that the partition {Bé]jeJ] is strictly finer than {Bi|ieI}, then we call

the decomposition Gi:(Vi,Bi) (i€I) & minimal decomposition of [u,v].

(Here, the partition {BgljeJ} is strictly finer than (B, |iel} if {lejeJ}
# {Bi|ieI] and for each iel there exists je&J such that ngBi.)

We can easily show

Lemma 2.7: For each noﬁempty interval {u,v] with u#v, there exists a
urique minimal decomposition Gi=(Vi,Bi) (ieIl) of [u,v]. Moreover, for
gach i€l, either
(a) Vi=[u,v} and Bi={ai} with B_ai=u and 8+ai=v,
or
(b) |Vv,|23, there is no arc aeB, with 37a=u and 3'a=v, and
by deleting from Gi the vertices u and v (together with arcs

incident to u or v), we have a connected graph.



We omit the proof. The minimal decomposition of an interval is
closely related to the structural theory of two-connected graphs (cf.
(3], [4]}. Ar example of a minimal decomposition is shown in Fig.2.1.

Given the minimal decomposition G, (ieI) of an interval [u,v], we
define the degree of the interval [u,v] by the cadinality |I|, and denocte
it by d([u,v]). Turthérmore, suppose that R is a set of bilinkings in G.
We define an undirected graph G([u,v],R}) = (V,%) with a vertex set

V= (¥, | iel ) (2.1)
and an edge set E as follows: Let Ruv be the set of bilinkings
‘r=(p,p‘} in R such that p and p' are paths from v to u. The edge set
B is defined by

E = {8, l reR 1, (2.2)
where for each r={p,p'}eRuv with p and p' contained in G, and G, ,
respectively, the edge Er connects vertices Gi and Gi' in G([u,v],R).
Here, note that G, and Giev have the same index iel. We call G({u,v],R)

the graph associated with [u,v] and R.

Now, the following theorem gives a complete characterization of

homotopy bases of G. °

Theorem 2.2: A set R of bilinkings in G is a homotopy base of G if and
only if for each mnonempty interval [u,v] of G with u#v the graph
G(f{u,v],R)={V,E) associated with [u,v} and R is a spanning tree, i.e.,

&([u,v],R) is connected and [H#| = |V]-1.



(Proof) [ONLY IF part] Let {u,v] be a nonempty interval of G with u#v,
and Gi=(Vi,Bi) (i€I) be the minimal decomposition of [u,v]. The graph
G([uw,v],R)=(V,E) is defined by (2.1) and (2.2). Suppose that G([u,v],R)
is not connected and that vertices Gi,?i,ev for some i,i'€l belong to
different connected components of &([u,v]},R). Let p and p' be any paths
from-v to u in G, and G, ,, respectively. (Here, note that Fi and Gi'
correspond to Gi and G, ;s respectively, in the definition of G({u,v],R).)
Then we can easlly see that p' cannot be obiained from p by repeated
elementary transformations by elements of R, i.e., p and p' are not
homotopic with respect to R. This is a contradlctlon So, G([u v],R)
must be connected.

. Now,.if. |E|.z |V], then &({u,v],R) contains a cycle, expressed by a

sequence of vertices ;i Vi see, Vi o Gi , say. For each j=0,1,**+*,k
0 ¢

1 k
. . e (1) _(2) (1) (2 )
there exists a bilinking rj—{p P +1} in R such that p and p are,

respectively, paths from v to u in Gij and Gij+1’ where lk+1=l0' We
define p(g)—péiz For each j=0,1,+¢*,k, if p§1)%p§2), then there are

bilinkings # ={p1,ql] {(1=1,2,+++,m; m21) with paths ﬁl, al (1=1,2,**+,m)
(2)

in G such that p(1) and p are homotopic with respect to

{# |1 1,2,***,n} and that none of the paths B, §; (1=1,2,+*+,m) in G,

connect u and v (due to Lemma 2.1(b)). Hence, pl and ql (l=1,2,--',m)

must be homotopic with respecit to R!' = R\{rk}. Consequently, p§1) R pgz)

{i=0,1,"+*,X). We thus have

(2) (1) . (. (D). ... (2. (D

Pyy1 “rt Pg o gt Py Tpi Py R! "Rt Py gt Py ¢

This implies that r “{p(1),p§32} is redundant, which contradicts the

(2.3)



assumption that R is a homotopy base. Therefore, we must have |E| =
|¥]-1 and &([u,v],R)=(¥,E) is connected, i.e., §([u,v],R) is a spanning
tree.

[IF part] Suppose that for each nonempty interval [u,v] with u#v,
G([u,v],R) is a spanning tree. We show the "IF" part by induction.

For each interval [u,v] of length 1, [u,v] is composed of parallel
arcs from v to u. Therefore, we can easily see from the connectedness of
G([u,v],R) that any two paths, each composed of a single arc, from v %o u
are homotopic with respect to R.

Next, for some k21 let us suppose that for each interval [u,v] of
length k'sk any two paths from v to u are homotopic with respect to R.
Let [u',v'] be any interval of length k+1, and Py and Py be any paths
from v! to u'. Then, because of the induction hypothesis and the
connectednegs of G([u,v],R) we have P, =p P, by the same argument as in
the proof of tﬂe HONLY IF! part.

Consequently, for any two paths Py Py with common end-vertices, we
have P, *p Py by inductien.

To complete the proof of the "IF" part, we must show the minimality
of R. For any r={p,p'}eR let p and é' be paths from v to u with u#v.
Then G([u,v],R\{r}) defined by R\{r} instead of R is not connected. By
the same argument as in the proof of the "ONLY IF" part, p and p' are not

homotopic with respect to R\{r}. This completes the proof. Q.E.D.
It follows from Theorem 2.2 that all the homotopy bases have the

same cardirality, which is the homotopy rank n(G) of G [2].

Furthermore, from Theorem 2.2, we have
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Corollary 2.3: The homotopy rank n(G) is expressed as
n(¢) = z{d([u,v])-1|[u,v}:a nonempty interval of G with u#v}, (2.4)

where d([u,v]) is the degree of the interval [u,v].

Corollary 2.4 (cf. Proposition 3.4 of [2]): Define W={v|vev, &' vif},
where & v={a|ach, 9'a=v]. Then we have n(a) = |vi(|al-|w]).
(Proof) Since d([u,v]) is not larger than the out-degree |6+v| of v, it
follows from Coreollary 2.3 that

ne) = &% (|8%v]-1) = [vi(]a]-lw]).

ueV veW
Q.E.D.

3. An Algorithm for Tinding a Homotopy Base
Based on Theorem 2.2, an algorithm for finding a homotopy base R of

G=(V,A) is furnished as follows.

An Algorithm
(1) Put R:=@.
(2) For each distinct vertices u, v such that the interval [u,v] is
nonempty, do the following:
(a) Find the minimal decomposition Gi=(Vi,Bi) (i=1,2,*+*,k)
of the interval [u,v].
(b) If k22, then find a path p; in G, from v to u for each
i=1,2,+¢,k, and put R:=RU{{pi,pi+1}|i=1,2,---,k—1}.

(End of the algorithm)



The validity of the algorithm follows from Theorem 2.2. By the use
of Lemma 2.7 we can carry out (a) in Step (2) in O(IA[) running time for
each interval [u,v]. Therefore, the total running time is O(|V|2|AI),
and the required working space (not for storing the homotopy base) is
o(|vi+[al).

Based on Theorem 2.2, we caﬁ generate all the homotopy bases by

N

slightly modifying the above algorithm.

References

[11 C. Berge: Graphs and Hypergraphs (translated by E. Minieka),
North-Holland, Amsterdam, 1973.

(2] X. Murota: Homotopy base of acyclic graphs --- A combinatorial
analysis of commutative diagrams by means of preordered matroid,
Discussion Paper Series No.238 (84-32), Institute of Socio-Econonic
Planning, University of Tsukuba {April 1984).

[3) W.T. Tutte: Connectivity in Graphs, University of Toronto Press,
London, 1966.

[4] H. Whitney: Two-isomorphic graphs, American Journal of Mathematics,

Vol.55 (1933), pp.245-254.



)

Fig.2.1.. An interval [u,v] and its minimal decomposition Gy (i=1,2,3)



