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Abstract

A‘diagram is an scyclic graph with (linear) maps associated with
arcs. The problem considered is which set of relations characterizes the
commutativity of a given diagram and how to find such a set of relations.
The dependence among parallel paths of an acyclic graph is analyzed by
exploiting their composite algebraic structure of preorder and matroid.
The notion of "homotopy base" is introduced; any two bases are shown to
be equicardinal, and & base can be found by an efficient dual greedy
algorithm, which, starting with a spanning set, deletes dependent

elements one by one in an arbitrary order.
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1. Introduction --- Commutativity of Diagrams

A diagram, as used in mathematics, is an acyclic graph G(V,E) with
(linear) spaces attached to vertices and (linear) maps to arcs. A
diagram is said to commute if for each pair of vertices (u,v) (u,veV),
the product (i.e., the composition) of the maps along any path connecting
u'to v does not depend on the choice of a path. For example, the diagram
in Fig.1 commutes, by definition, iff the following equations hold, where

fi denotes the map associated with the arc e; and feg{x)=g(f(x)):

from v, to Vqt f2=f1of3, {(1.1)
from v, to v, f4=f30f5, (1.2)
from v, to v, f1of4=f1of30f5=f2of5. (1.3)

It is easy to see here that the relations (1.1) and (1.2) are sufficient
for the diagram to commute and the commutativity (1.3) along the paths
from v, to v, are derivable from (1.1) and (1.2). 'In other words, the
commutativity of this diagram is characterized by two relations (1.1) and
{(1.2), and (1.3) is redundant for it. In this paper, we are concerned
with which set 'of relations characterizes the commutativity of a diagram
and how such a set can be found.

More generally, a diagram in this paper will mean a pair of acyclic
graph G(V,E) and a mapping f:E-->F from the arc set E to a semi-group F
with the associative multiflication denoted by ». We denote by Pall the
set of all the directed paths on G. Note that Pall is a finite sgt since
G is acyeclic. A path p (ePall) can be viewed as a sequence of ares, say
P=e ee8, and the mapping f is naturally extended for a path p by
f(p)=f(e1)°...°f(ek). For a path p (ePall)’ 3+p (resp. 9 p) designates
the initial (resp. terminal) vertex of p and 8p={3+p,3_p} the
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endvertices. Two distinet paths p and q are called parallel if 9p=3q and
the set of all the unordered pairs of parallel paths is denoted by Rall’ i.e.,
Ry11=( {psa} | pyaeP, 4, p#q, 8p=dq }.
We will say that a diagram commutes iff
f(p)}=f(q) whenever p and q are parallel. , (1.4)

The following are some of the instances that may be covered by the
notion of commutativity as defined above.
(1) In the case where the semi-group F is the set of square matrices of
a fixed order and the multiplication AeB is defined as the matrix product
BA, the commutativity of a diagram in the sense of (1.,) reduces to the
usual one for linear maps.
(2) Suppose F is the additive semi-group of nonnegative integers and the
acyclic graph G represents the Hasse diagram of a partially ordered set
with f(e)=1 for all eeE. Then the commutativity of the diagram in the
present‘sense is equivalent to the Jordan-Dedekind condition for the
partial order.
(3) As an physical example, consider an electric network with the
underlying graph G(V,E), where F is the real numbers with addition as the
operation o and f(e) stands fér the véltage across the arc e. We may -
assume without loss of generality that G is connected and the arcs are
oriented so that there exists a rooted directed spanning tree (an
arborescence) on G. Then the diagram commutes in the sense of (1.4) iff

the voltages f(e)'s satisfy Kirchhoff's voltage law.

In characterizing the commutativity (1.4) of a disgram, it is

evidently sufficient to consider only those parallel paths which have no
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common intermediate vertices. We will mean by a bilinking such an
unordered pair of parallel paths that share no common vertices except
their end-vertices, and denote by Ry (CRall) the set of all the
bil%nkings. Note that RO, as well as Rall’ is determined by the graph G,
independently ;f the mapping f. The following is obvious.

Proposition 1.1. A diagram (G,f) commutes iff

f{p}=f{q) for any bilinking {p,q}eRO.

A bilinking r=[p,q}eRO corresponds to an equation f(p)=f(q), which
will be referred to as the elementary relation for r. A set R (cRO), or
alternatively, the set of elementary relations f(p)=f(q) for {p,q}eR,
characterizes the commutativity of the diagram iff any elementafy
relation is derivable from the given set of relations in the semi-group
F. 1If we consider a semi-group in general without taking advantage of
any special properties of a particular semi-group, all we have in hand is
the assoclative law; neither the commutative law nor the inverses are
available. In such a case, the question of whether an elementary
relation is derivable or not from the given set of elementary'relations
reduces to that of graph-theoretic nature, since it should be determined by
some topological relation among bilinkings in G.

In the next section, we will investigate what kind of topological
relation in G is relevant to the derivability of & relation from a given
get of elementary relations. In particular, we define an equivalence

relation, called "homotopy", among parallel paths with respect to a given



set of parallel paths and the notion of "homotopy base" is introduced for
an acyclic graph, which corresponds to an irredundant set of elementary
relations characterizing the commutativity of a diagram. By exploiting
the fact that the set RO of bilinkings is equipped with a composite
algebraic structure of preorder and matroid, it is shown that any two

homotopy bases are of equal cardinality and a base can be found by an

efficient algorithm of dual greedy type.



2. Homotopy Base of-Acyclic Graphs
2.1. Homotopy and derivability
Let G(V,E) be an acyclic graph, and P11° Ro11 and Ry be, as above,
the set of all the paths, the set of all pairs of parallel paths and the set
of all bilinkings, respeétively; For two pﬁths p and
q such that 3_p=3+q, we denote by pg (GPall) the concatenation of p and
q, where 8+(pq)=3+p and 3 (pg)=9 q.
Let R be a subset of Rall' The following concepts are of central

importance.

Definition 2.1.. Two paths p, q (ePall) are said to be contiguous
with respect to R if .

(i) they are parallel (i.e., {p,q}eRall),

(ii) there exists {p',q'}&R such that p=op'B and gq=aq'B

for some a, BePall.

Definition 2.2. Two paths p, g (ePall) are said to be homotopic with
respect to R (denoted as "p=q (R)") if for some sequence P, (ePall)
(i=1,44.,k) of paths, P; is contiguous to Py 41 with respect to R for

i=0,...,k, where Po=P and Py1=qe

Evidently, the relation = is an equivalence relation on Pall' Note
that two homotopic paths are necessarily parallel. A comment would be in
order here as to the mutual relation between the commutativity of a
diagram (G,f) and the homotopy of the paths of G. Suppose that the
relations of the form f(p')=f(q') are given for {p',q'} belonging to R

(CRall)' Then it is easy to see that the relation f(p)=f(q) for a pair
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of parallel paths {p,q}eRall can be derived from the given set of
relations if the paths p and q are contiguous with respect to R.
Furthermore, the following is true.

Proposition 2.1. For a pair of parallel paths {p,q}, the relation

f{p)=f(q) is derivable in general from the given set of relations for R
iff the paths p and q are homotopic with respect to R.

Definition 2.3. A subset P of Pall is said to be connected by R (CRall)

(denocted as "P ¢ R" or "R b P")} if
p=q (R) whenever p,q €P and 3p=3q.

Definition 2.4. A subset R of Rall is called a homotopy base if Pall 4R

and no proper subset of R satisfies this property.

Not surprisingly, we may confine ourselves to the bilinkings when we
consider the homotopy bases, as stated below.

Proposition 2.2, If R (CRall) is a homotopy base, then R c Rye

(Proof) Suppose r={p,q}eR and that the paths p and q share some
vertices other than the end-vertices 9p=9q. The symmetric difference of p
and q determines k (21) bilinkings ri={pi’qi} such that p, and g, are
properly contained in p and q, respectively (i=1,...,k). Since R is a
homotopy base, we have P; *qs (R) for i=1,...,k, which is equivalent to
the condition that p,=q, (R\r) for i=1,...,k. This implies that
p=q (R\r), and therefore P.qq ¢ (R\r), which contradicts the minimality
of R. Q.E.D.

It follows from Prop.2.1 and Def.2.3 that the relation f{p)=f(q)
holds true for parallel paths P,q €P if P 4 R and the relations hold for
R (CRall)' Thus, & homotopy base may be viewed as representing an

irredundant set of elementary relations that guarantees the commutativity
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of & diagram. Prop.1.1 can be rephrased as in Prop.2.3 below, and Prop.
244 is immediate from the definition.

Proposition 2.3. Pall 4 RO'
Proposition 2.4. Let RcR'cRa

. ) ]
11 and P'cPcPall. If P 4 R, then P! q R!.

Those concepts introduced are illustrated for the graph G shown in
Fig.1. By inspection we have

RO={ {ez,e1e3}, [94,e335}, {e194,eze5} },

Rall = RO U {e1e4,e193e5}, {eze5,e193e5} }.
Let, e.g., R={ {94’8335}’ {e1e4,eze5} } and P1=8,855 Py=e,6,4e,,
p3=ez, p4=e1e5. Then P, andq:2 are homotopic with respect to R, while p3
and p4 are not, that is, {p3, pA} is not connected by R. This
corresponds to the fact that the relation (1.1) is not derivable from

(1.2) and (1.3). Thus, R is not a homotopy base. The graph G has a

unique homotopy base { {ez,e1e3}, {94,8385} }o



2.2, Preordered matréid on bilinkings

This subsection aims at establishing fundamental properties of
homotopy bases of an acyclic graph G by taking notice of the algebraic
structure of RO. Specifically, RO is & preordered set with the preorder
induced from the reachability among vertices of G, énd at‘the same time,
RO is a matroid with the dependence defined by means of the linear
dependence among elementary cycles in G.

First, we define a preorder, i.e., a reflexsive and transitive
binary relation 2 on RO. The notation 3 is extended for a bilinking
r={p,q}eRo by the well-defined relation 3r=9p(=3q), and simiiarly for 8"
and 3. A vertex u of G is reachable in G to (resp. from) a vertex v if
u=v or there exists a path peP, 1, with a+p=u and 3 p=v (resp. 8 p=u and

B+p=v).

Definition 2.5. For bilinkings r1={p1,q1}, r2={p2,q2}eRo, we define

r, 2 r, iff B+r1 is reachable to 3+r and 8'_1'1 is reachable from 3 r

2 2

Alternatively, r, z r2 iff there exists a path p such that 8p=3r1

and p contains Py+ For reRO, the set

> = {seRO[ rz s} (2.1)
is referred to as the principal ideal defined by r, and the set

(r] = {seRO| r2sand sz r (2.2)
as the block containing r. Since G is acyclie, [r1]=[r2] iff 3r1=8r2,
and therefore each block [r] is identified by a pair [3'r,37r] of the
initial and the terminal vertex of r.

The second algebraic structure, i.e., a matroidal structure [9],
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is defined on RO as follows. A bilinking r={p,q}, being a pair of parallel
paths, determines an elementary cycle, which is nothing but the

collection of arcs contained in either p or q. With this correspondence

we can talk of the dependence among bilinkings on the basis of the linear
dependence over GF(2) among the associated elementary cycles. The

matroid thus defined on RO will be denoted by M, which is obviously
representable over GF(2). For a subset R of RO’ we denote by ¢l(R) the

closure of R in M, i.e., the set of bilinkings that are dependent on R in M.

To sum up, it is revealed that the matroid M is defined on the
ground set X=R0 which is preordered by z. .In general, we will christen

such an algebraic structure H=(X, 2, M) a preordered matroid, in which

_the "closure function" o is defined by

o(R) = {reX| recl(Rn<r>) }, ) . (2.3)
where <r> is the principal ideal defined by (2.1) and cl the closure
function of the matroid M. We will denote by K(G) the preordered
matroid on the bilinkings RO of an acyclic graph G with the preorder and
the matroid as above, A preordered matroid reduces to a usual matroid if
the preorder is trivial in the sense that r z r' for all r,r'eX, namely,
<r>=[r]=X for any reX.

The closure function ¢ of a preordered matroid enjoys the following
natural properties.

Proposition 2.5, Let R, S c X.

(1) R c C‘(R)i
(2) o{R) c o(8} for Rc S,

(3) s € o(R) implies o(Rus) = o(R),



(4) S c o(R) implies o(RuS} = o(R),

(5) o(o(R)) = o(R).

(Proof) (1) If r € R, then r € RKr> and therefore r € cl(ﬁn<r>).

(2) If r € o(R), then r € cl(RN<r>) c cl(Sn<r>).

(3) From (2), we have o(Rus) > o(R). Letr € o(Rus).

[Case 1: s € <r>]: The assumption s € o(R) implies that s € c¢l(Rn<s>) ¢
cl(RN<r>), from which it follows that ¢1(Rn<r>)=cl{(RN<r>}us), since (3)
holds when G is replaced by cl. On the other hand, el{(Rn<r>)us) =
c1({Rus)n<r>) 3r, since r eo(Rus). Hence r € cl(RN<r>), i.e., r € o(R).
[Case 2: s £ <r>]: r e o(Rus) iff r e cl((Rus}n<r>) = cl(Rn<r>).

(4) By induction using (3).

(5) Immediate from (1) and (4) with § = ofR). Q.E.D.

In parallel with the ordinary matroid, we introduce the following
terminology for a preordered matroid with ground set X and closure
function C.

Definition 2.5. r (€X) is said to be dependent on R (cX) if r € o(R).

Definition 2.6. R (cX) is called a gpanning get if o(R) = X.

Definition 2.7. R (cX) is called an independent set if r ¢0(R\r) for

any reR.
Definition 2.8. R (cX) is called a base if R is spanning and
independent.

From Prop.2.5 it follows that any superset of a gspanning set is
spanning; and that any subset of an independent set is independent,
i.e., the independence thus defined determines an independence systenm

in the sense of [5].
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Stated below are the key observations that link the homotopy of G
with the preordered matroid R(G) on the bilinkings of G.

Proposition 2.6. For r={p,q} € RO and R c RO’

p * q (R) implies r & o(R),
where 0 is the closure function of R(G).
(Proof) Suppose p =~ g (R). Then there exists a sequence of paths P=Pg»
Piy eeey Pys Prpq™d such that Py and P;4q 8re contiguous with respect to
R. Identifying a path with a set of arcs on it, we may write as Piyq =
Py @ s for i=0,...,k, from which it follows that q=p$r1$...$rk, or
r=r1$...$rk. Since r, € <r>, this implies that r € 0({r1,...,rk}) <
o(R). Q.E.D.

Proposition 2.7. Let RRy. If 0(R)=RO in R(G), then p=q (R) for

any r={p,q}eRO. ‘
(Proof) For any r={p,q}eR0, there exist r,eR (i=1,...,k) such that rzr,
and r=r1$...$rk. We will prove the proposition by induction with respect
to the preorder on RO.
Basis: Suppese [r] is a minimal block, i.e., [r]=<r>. If we put Py =
pér.6...0r, {i=0y...,k), we have P;_1%P; (R) for i=1,...,k since 8r=3ri.
Hence po=pk'(R), i.e., p=q (R).
Induction: Suppose that p'=q! (R) for any r'={p',q'}ER0 such that
r'e<r>\[r]. Since r2r;, there exist a path o, from 3'r to 8+ri and a
path Bi from B“ri to 3°r (including the cases where 8+r=a+ri and/or
8-r=a-ri). Put ri={pi,qi}.

Since r=r,8...8r,, we can choose ri(1)={pi(1),qi(1)} such that
pnpi(1)#¢. We claim the relation p = ai(1)pi(1)Bi(1) =

ai(1)qi(1)Bi(1) (R), which is obviously true 1; PPy (1) where % (1)
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and Bi(1) are virtually void, and which holds true by the induction
hypothesis otherwise,
In a similar manner, it can be shown that, if rinrj#¢, then aipiBi =

ajijj (R). 8ince r=r,8...8r, , we can find a sequence

rl(j)={pi(:j)’qi(3)} €R (j=1,...,m) such that p = ai(.])pi(,])Bl(‘]) =
ai(j)qi(j)si(j) (R), for j=1,...,m and q = %5 (0)% ()P (m)* This
means that p=q (R). Q.E.D.

Theorem 2.1. Let R c Ry Pa.ll 4R iff o(R) = RO in H(G).

(Proof) Immediate from Prop.2.3, Prop.2.6 and Prop.2.7. Q.E.D.

Theorem 2.2. R (CRO) is a homotopy base of G iff R is a base of the
preordered matroid K(G) on the bilinkiﬁgs of G.

(Proof) Since R (cRO) is independent in the preordered matroid iff
o(R\r)#0(R) for any reR, R is a base iff 0(R)=RO and no proper subset of
R satisfies this property. The theorem follows from this fact. combined
witthef.2.4 and Theorem 2.1. Q.E.D.

Theorem 2.2 reveals the algebraic nature of homotopy bases of an
acyclic graph in terms of the preordered matroid. Henceforth, we will
concentrate on establishing fundamental properties of a preordered
matroid. To be specific, the bases of a preordered matroid are shown in
Theorem 2.3 to be of' the same size. This fact, along with Theorem 2.2,
implies that the homotopy bases of an acyclic graph G contain an equal
number of bilinkings. The common size of a homotopy base of G will be
named the "homotopy rank" of G.

In what follows, ﬁ=(x, 2, M) represents a general preordered
metroid with closure function © defined by (2.3). The following property ’

constitutes the basis of the dual greedy algorithm, given in Section 3,
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for finding a base of a preordered matroid.

Proposition 2.8. Let B € X. B is a base iff B is a minimal spanning

set, that is, iff B is spanning and B\r is not spanning for any r€B.
(Proof) Suppose B is a base. Since B is independent, r ¢ o(B\r) for any
r¢B, Therefore, o(B\r)#X for any reB.

Conversely suppose that B is a minimal spanning set and not an
independent set. Then r € o(B\r) for some reB. It follows from
Prop.2.5(3) that o(B\r) = o(B) = X, which contradicts the minimality of

B. Q.E.D.

It should be remarked in connection with Prop.2.8 that a maximal
independent set is not necessarily a base, in sharp contrast with
erdinary matroids, although a base is certainly a maximal independent set.

For R c X, M|R denotes the restriction of the matroid M to R,
whereas M.R means the contraction of M to R [9]. The following
characterize a spanning set and a base of the preordered matroid K
directly in terms of the bases of minors of M.

Proposition 2.9. Let R ¢ X. R is spanning in a preordered matroid

f=(X, 2z, M) iff Bnlr) is spanning in the matroid minor M|<r>.[r] for each
reX.
(Proof) [ONLY IF] Let R be spanning in K and fix reX. Then Rn[r] is
spanning in M|<r>.[r] since s € e¢l(RN<s>) = ¢1(RN<r>) c
el{(RN[r1)u{<r>\[r])) for all se[r].

{IF] The converse, i.e., the assertion that r € o(R) for all reX,
is established by induction with respect to the preorder. For reX such

that <r>=[r], we have reo(R) since, by the assumption, RN[r]=RN<r> is
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spanning in M|<r>.[r]=M|[r], i.e., recl(RN<#>). Next assume that sec(R)
for se<r>\[r]=S, which implies that seel(Rn<s>) < c¢1l(RN<r>), or that

S c e1(Rn<r>). (*)
Since Rn[r] is spanning in M|<r>.(r], we have r € c1((Rn[r])us) =

cl((Rn<r>)us) = cl{Rn<r>), where the last equality follows from the

]

relation (*) above. Q.E.D.

Prbposition 2.10. Let B c X, B is a base of a preordered matroid
f=(X, z, M) iff Bn[r] is a base of M|<r>.(r] for all reX. '
(Proof) First note that, if BN[r) is spanning in M|<r>.[r] for each reX,
we have

<ro\[r] c eI (Bn{<H\([r])) (*)
for each reX, since s € cl{(Bn[s])u(<s>\[8]})) c el{Bn{<r>\[(r])} for
se<r>\[r].

{IF] By Prop.2.9, it suffices to show that B is independent in K.
Since Bnlr] is independent in M|<r>.[r] and (*) holds, r¢
el((BnlrI\r)u(<e>\(r])} = cl((B\r)h(r)), which is equivalent to rdo(B\r).
Therefore B is independent in K.

[ONLY IF] Let B be = base of K. By Prop.2.9, Bn[r] is spanning in
Mj<r>.[r] for all reX and the inclusion (*) above holds. It then
follows from (*) and the fact s¢o(B\s) for seX that
el((BnlrI\s)u(<r>\[r]}) = c1((B\s)n<r>) = c1(B\sn<s>) # s for all se[r].

This means that Bn[r] is independent in M|<r>.[r]. Q.E.D.

Finally, we obtain the following as an immediate consequence of
Prop.2.10.

Theorem 2.3. |B1] = |B2| if By and B, are bases of ‘a preordered matroid.
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(Proof) From Prop.2.10 and the equicardinality of bases of a matroid, we

have |B,nlr}| = |B,nlr]| for each block [r]. Q.E.D.

Theorem 2.3 above suggests that a kind of rank be defined for a
preordered matroid just as for a ususl matroid. The common size of bases
of a preordered maroid K will be called the "rank" of H, and denoted by
p(R). Moreover, as a collorary of Theorem 2.3, we obtain the following,
where a subset S of R (<X) is called a base of R if 0(R)=0(S) and 8 is
independent.

Proposition 2.11. |s1l = |s,| 1f 8, end S, are bases of R (cX).

The common size of bases of R (cX) will be called the rank of R.

Theorem 2.2 and Theorem 2.3 together reveal that any two homotopy
bases of an acyclic graph G have the same cardinality, denoted as n(G),

which we name here the "homotopy rank" of G.

Theorem 2.4. The size n{(G) of a homotopy base of an acyclic graph G is

equal to the rank p(K(G)) of the associated preordered matroid R(G) on

the bilinkings of G.

In relation to our original interest in a commutative diagram,
Theorem 2.4 implies, when combined with Prop.2.1, that any irredundant
set of elementary relastions sufficient for the commutativity of the
diagram contains the same number of equations, which is equal to the
homotopy rank n{G) of the underlying graph G.

The homotopy rank n(G) of G(V,E) is no larger than |V||E|,

as will be stated with more precision in Prop.3.4
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2.3+ An illustrative example
As an example, consider the acyclic graph G{V,E) depicted in Fig.2
with V={v{,...,v7} and E={e1,...,e11}. All the directed paths on G are

listed below, where a path p is represented by a sequence of arcs on it.

3+p 3 p pEP,qq
v, YV, i oey

V1 V3 H 92

Vy o V. eq8g, 58

v

’ v5 Poei8gy €50

Vi Vg B @838, €588, e 0.0, ©58¢eyr €48

V1 V7 : 82810, 8185811, 9294911
V2 VA H 83

V2 V5 : 85

Vo Vg ' €38ny €g8gy €y
V2 V7 H 85611

V3 VA H 36

V3 Vs : 84

Vy v6': e¢eyr €88

V3 Vg i %0 ©4%1

VA V6 H 87

VS V6 : 88

V5 V7 H 311

The set R0 of bilinkings of G consists of 12 elements, r to T, 88

below.
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[3+r,8"r] r € RO

[v1,v4] : r1={e193,e236}

[vy,ve] r3={e1e397,e2e4e8}, r4={e1e5e8,eze6e7},
r5={e1e9,e2e438}, r6={e1e9,929697}

vl r,=lege,geeqe504)

[v,,ve] r8={e3e7,e5e8}, r9={e397,e9}, r1o={e5e8,e9}
[VB,V6] : r11={e6e7,e498}

}

4.

[v3,v7] r12={e10,e4911
The preorder ( 2 ) of Ry is shown in Fig.3, where it should be remembered
that each block [r] is identified by a pair [8+r,8-r] of the initial and
the terminal vertex.

As for the matroid M, the bilinking rz,'for instance, is dependent on
the set {r3, r8} in M, i.e., rZECI({rE’TS})’ since the cycle
corresponding to r, can be expressed as the sum of those corresponding to
r3 and Tos i.e., r2=r36r8. However, r, is not dependent on {r3, rs} in
the preordered metroid K(G), i.e., rzéo({rB,rS}), since {rj, r8}n<r2>=¢.

On the other hand, the bilinking Ty is dependent on the set {r2, r12} in

R(G), i.e., r7€c({ré,r12

corresponding to Ty is expressed as r7=r2®r12.

}), since > = {rz, Trs r12} end the cycle

The set BO={r1, Tos Tqq2 r12} is included in any base of K(G). A base

of H(G) is obtained from B, by adding any two of {r8, Tys r10} to By. Thus

0
the rank p(R(G)) of K(G) is equal to |B|=6 and, by Theorem 2.4, the

homotopy rank n(G) of G is also equal to 6.
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3. Algorithm for Finding a Homotopy Base

This section describes a polynomial-time algorithm for finding a
homotopy base of an acyclic graph G as a special case of the general
procedure, given in Section 3.1, for finding a base of a preordered
matroid by deleting dependent elements one by one from a spanning set.
Section 3.2 is devoted to the construction of a spanning set, which is
small in size, of the preordered matroid K(G) of bilinkings of an acyclic
graph G by repeated applications of depth-first search on G. Then in
Section 3.3 it is shown that a homotopy base of G can be found in time

polynomial in the size of G. An example is also given for illustration.

3.17. Dual greedy algorithm for a base of a preordered matroid

In this subsection, we deal with & general preordered matroid
R=(X, z, M), the closure function of which is denoted by ¢ as usual. It
is shown below that a base of K can be found by an algorithm of dual
greedy type which starts with a spanning set and deletes dependent
elements one by one.

The algorithm, labelled as Algorithm B, is described as follows.

Algorithm B [Finding a base of a preordered matroidl]
Step 1: Find a spanning set RS={r1, ceay rK}.

Step 2: R:=R_;

for i:=1 to K 4o

if rieo(R\ri) then R:=R\ri;
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The ordering of the elements of RS is not relevant and R decreases

monotone; in

this sense, this algorithm is greedy or myopic. It is easy

to see, by Prop.2.5(3), that the relation O(R)=0(RS)=X is maintained

throughout the iteration, and therefore the set B obtained is spanning.

B is also independent, since, otherwise rjeo(B\rj) for some rjeB, which

contradicts the fact that rj has not been deleted. Thus, the set B is =

base of the preordered matroid K. The complexity of Algorithm B depends

on the size K

=|R | of the initial spanning set Rj and, of course, on the

cost for checking the dependence of T, at each iteration.

Suppose
weight is to

as follows.

Algorithm WB

Step 1t

Step 2:

A base of the

a weight function w:X—->R+ is given and a base B of minimum

be found. The Algorithm B is extended to the weighted version

(Finding & base of minimum weight)
Order all the elements of X={r1, coes rN} in such a way

that isj iff LERELCHE

for i:=1 %o N do

if riEO(R\ri) then R:=R\r.;

B:=R

paximum weight can be found similarly by ordering the

elements of X in an ascending order with respect to their weight. The

reason Algorithm WB works lies in the fact that the family F of the

complements of spanning sets, F = {RcX|o(X\R)=X}, forms the independent

sets of a matroid. Prop.2.10 shows that ReF iff Rn[r] is independent in
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the dual of M|<r>.[r] for each reX. Thus F coincides with the family of
the independent sets of the direct sum of (M|<r>.[r])*, where [r] runs

over all the blocks with respect to the prescribed preorder.

3.2. Finding a small spanning set of bilinkings

A homotopy base of an acyelic graph G(V,E) eould be found by
Algorithm B described above with the obvious choice of the totality R0 of
the bilinkings of G as the initial spanning set Rs' This naive choice of
RS, however, does not lead to a polynomial-time algorithm, since the size
of Ro can be exponentially large; e.g., for the graph G(V,E) of Fig.4,
which is a cascade of m complete graphs K2’2, we have {V]=2m+2 and
|E[=4m, whereas iRO|>2m.

In the following, we construct a spanning set RS (cRO) with

R I=[V]{E

. For each ueV, we denote by V(u) those vertices of G which
are reachable from u, by G(u) the vertex-induced subgraph of G on V(u),
and by E{u} the arc set of G(u). The cyclomatic number [2] {or the
nullity) of G(u) will be designated by v(u)=v(G(u)), i.e.,
v(u) = |E(u)| - |v(u)]| + 1. (3.1)

Let ueV be fixed for the moment. It is well known that there
exists an arborescence, or a rooted directed tree, of G{u} with root. u;
such an arborescence T{u) can easily be found, e.g., by the depth-first
search from u on G [{1]. Those arcs of G(u) which are not contained in
T(u) will be called the cotree arcs of G(u) with respect to T(u). Then
v(u) is equal to the number of cotree arcs of G(u).

Each cotree arc e=(v,w) (directed from v to w) determines an

elementary cycle, i.e., the unique cycle composed of the arc e and some

=2



of the arcs of T(u). As a consequence of the fact that T(u) is an
arborescence, such a cycle, in turn, determines a bilinking as follows.
In the case {ef. Fig.5(a)) where v is an ancestor of w with respect

to T{u), i.e., where there is a path p=e1...ekePa on T{u) such that

11
3+p=v and 9 p=w, the corresponding elementary cycle, consisting of

€ 5+++s€ and e, determines a bilinking r={e1...ek,e}eR Otherwise (ef.

0
Fig.5(b)), there is a common ancestor xeV of v and w, and therefore two
paths p=e,...e, and q=f1...fl exist on T{u) such that B+p=8+q=x, 3 p=w
and 3 g=v; such paths p and q are uniquely determined if they are further
required to be arc-disjoint and the bilinking corresponding to e is given
by r={e1...ek,f1...fle}eRo. Obviously, distinet cotree arcs determine
distinet bilinkings. Note that 9r=3e in the former case, whereas 3 r=3"e
but 3'r#9"e in the latter.

For each ueV, we denote by R{u] (cRO) the collection of the bilinkings

that. correspond in the above-mentioned manner to the cotree arcs with

respect to a fixed arborescence T{u). We obtain the following.

Proposition 3.1. [R[ull = v(u) (uev).

Proposition 3.2. For each ueV, Rliu] is independent in the preordered

matroid K(G).
(Proof) By the weil-known fact that the elementary cycles corresponding

to cotree arcs are linearly independent. Q.E.D.

We now claim the key lemma, where P(u) is defined by
+
P(u) = {pePallla p=u} (3.2)

and the notation 4 is given in Def.2.3.
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Proposition 3.3. P(u) 4 R{u] (uev).

(Proof) Take a path p=e1...ekeP(u). Since T(u) is an arborescence,
there exists a unique path q on T{u) such that 9p=3q. It suffices to
show that p and q are homotopic with respect to R[ul], i.e., p = q (R[ul).
Put Py=eqss ey € P(u) for j=1,+..,k and let a; be the unique path on
T(u) such that B+qj=u, a'qj=a‘pj=a“ej. We will show by induction with

respect to j that

, 2 q, (Rlu L
Py = qy (R[ul) (%)
for j=15+++3k. For j=1, (*) obviously holds. Assume that pj_1 x qj_1
(R[u]), which implies
. 2q. .e. (Rlu . %%
by * a;_qe; (RIul) (%)

since p.=p, .e,.
PiPi-1% :
If ej is contained in T(u), we have 45505_18 from which (*)
follows by (**)}. Otherwise, ej is a cotree are, and it is easy to see
that qj is contigucus to qj-1ej with respect to the bilinking determined by

J J
assumed, Q.E.D.

ey and hence q, = q35_1®; (R[ul). This implies (*) since (*¥) is

The union of R[u] (ueV):

R, = U cyRlul (3.3)

is qualified as the initial spanning set in Algorithm B, as stated below.
Note that R[u]'s for distinct u are not necessarily disjoint.

Theorem 3.1. (1) lel s v s |V}|E],

uev
(2) P, 4R, that is, O(R) = R,.
(Proof) (1) Obvious from Prop.3.1 and (3.3).

(2) TFor p, q €P_ 11 with dp=3q, we have from Prop.3.3 that p = q (R{ul),
where u=3+p=8+q, and hence p = ¢ (Rs)' The equivalence of the two

statements is due to Theorem 2.1. QG.E.D.
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The homotopy rank n(G) of G is bounded in terms of the cyclomatic
number of the subgraphs G{u).

Proposition 3.4. max{v{u)|ueV} s n(G) s ey (W

(Proof) Immediate from Prop.3.2 and Theorem 3.1. Q.E.D.

The exemple in Fig.6 demonstrates that the homotopy rank n(G) of G(V,E)
can be as large as @(|V||E|); the graph G(V,E) is a cascade of £hree
complete bipartite graphs, K1,m’ Km,m and another Km,m’ and n(G)=m3-m,
while |V|=3m+1 and |E|=2m2+m. Note also that max v(u)=v(s)=2n°-2m and
Zv(u)=m3+m-2, the upper bound in Prop.3.4 being asymptotically tight for
m large.

This subsection is coneluded with the consideration on the
computational complexity. TFor each ucV, the directed tree T(u) can be
found in O(|E(u)|) time by the straightforward application of the
depth-first search rooted at u. For each cotree arc e, the corresponding
bilinking can be constructed in O(|V(u)|)} time. Since R{u] contains v{u)
bilinkings, it'can be constructed in O{|E(u)|+|V(u)|v(u)) time. Therefore

the spanning set R_ can be found in 0(Z o (|E(u)[+]V(u) [v(u))), or

uev
roughly in O(|V|2|E|) time.

When the commutativity of a diagram (G(V,E),f) is in question, it
can be deduced, on the basis of Prop.2.1 and Theorem 2.1, from the fact
that f(p)=f(q) for all {p,q}eRs. In other words, the complexity of
testing the commutativity of a diagram is not large, as stated below.
Theorem 3.2. The commutativity of a diagram (G(V,E),f), where f:E-->F,

can be checked in O(CFIV|2|E|) time if one operation e in the semi-group

F can be done in a constant time cF-
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The procedure above will be illustrated by means of the example of
Fig.2 described in Section 2.3. A possible choice of rooted trees T(u)
of G(u) are shown in Fig.7, in which the trees are drawn in bold lines
and the cotree arcs in broken lines. The cotree arcs and the

corresponding bilinkings are listed below, where T, to ry, € RO are defined

in Seecticn 2.3.

root u  v(u) cotree arc bilinking
v.I A e4 r2
96 I'1
ey rg
9 10
e oo
v, 2 . eg rg -
e A 9
V3 2 s 11
11 T12
""v;__"a """""" - T
Vg 0 - -
Ve 0 - -
Ve 0 - -

Thus we obtain R[v1]={r1,r2,r7,r8,r10}, R[v2]={r8,r9}, R[v3]={r11,r12}
and R[vi]=¢ for i=4yees,7. Notice that R[v1]nR[v2]={r8}#¢ and RS=UR[u]
is certainly spanning. Also notice that Prop.3.4 holds with n{a)=6,

maxuevv(u)=5 and Zuevv(u)=8.



3.3. Finding & homotopy base

A homotopy base of an acyclic graph G(V,E) can be found in a
polynomial time by applying Algorithm B of Section 3.1 with the initial
spanning set R, (|R_|s[V||E|) constructed in Section 3.2, since the
dependence of r; on R\r, can be tested in O(IRS||E|2) time as follows.

‘First recall that rieG(R\ri) is equivalent to riECI(Rn<ri>\ri). We
may assume that, for each Tiy the pair [3+ri,3_ri] is stored in memory.
The set RN<r;> can be determined in O(|R|[E|) time if Def.2.5 is checked
directly on G for each reR. (If 0(|v|2) space is afforded for listing
explicitly the reachability relation among the vertices of G, the set
RN<r.> is determined in O(|R[) time.)

Suppose that each bilinking reRS is represented by an incidence vector
of size |E| that expresses which arcs are contained in r. Then the
dependence rieol(Rn<ri>\ri) reduces to the linear dependence of the
corresponding 0-1 vectors over GF(R), and can be determined in
0(|Rs][E|2) time by the usual Gaussian elimination over GF(2). (A
bilinking can alsoc be represented by a vector of size V{(G), if we take
advantage of the fact that it corresponds to a cycle and can be expanded
with respect to a cycle basis of G.} _

Since the Step 1 of Algorithm B can be done in O(|V|2|E|) time.and
| Is|V[|E], the whole algorithm runs in O(|V|2|E|+|RS|2[E|2) =
O(]V|2|E|4) time to find a homotopy base of G. Thus we have the

following.

Theorem 3.3. A homotopy base of an acyeclic graph G(V,E) can be found by

Algorithm B in o(lv|2|E|4) time and in O(IVllElz) space.
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It is pointed out in [7] that a homotopy base of G(V,E) can be found
in O(]V|2|E|) time and in O(|E|) working space by a straightforward graph

algorithm without involving the notion of preordered matroid.

4; Concluding Remarks

It has been shown that a base of a preordered matroid f=(X, &, M) can be
found by Algorithm B of Section 3.1 which eliminates dependent elements
from a spanning set. It is likewise possible to construct an algorithm
which augments elements, mhintaining independence, to get a base; more

precisely, the following augmenting algorithm also finds a base of K.

Algorithm A [Finding a base of a preordered matroid]
Step 1: Find a spanning set RS={r1,...,rK} with the ordering
being consistent with the preorder 2, i.e., such that

r,e<r >\[rj] => i<j i

J
Step 2: R:=@;

for i:=1 to. ¥ do

Af r,¢0(R) then R:=Rur, ;

In contrast with Algorithm B, the consistent ordering of the
elements of RS in Step 1 of Algorithm A is indispensable. The validity
of Algorithm A can be easily verified by Prop.2.10. The above algorithm

can readily be adapted to the weighted case.
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The concept of the preordered matroid introduced in this paper can
be useful in other contexts. TFor example, the equisignum decomposition
of real vectors [6] and, in particular, the decomposition of flows into
conformal simple flows [3] can be treated in terms of the preordered
matroid as follows.

Let E be a finite set and XcR", and for r=(r(e)|eeE)eRE define
car+f={eeE|r(e)>0} and car r={ecE|r(e)<0}. A vector s (eRE) is said to
be r-equisignum iff car+sccar+r and car sccar r. We will say here that

B={r1,...,rm} (cX) is an equisignum basis of X if any reX can be

expressed as

m
r=1x o

i=1 (a;20),

iT1
where ry is r-equisignum if aiso.

For r, se€X, we can define the preorder z by

rzs iff s is r-equisignum.
Thus we can recognize a preordered matroid f=(X,z,M) on X with the
matroid M defined by the usual linear dependence. An equisignum basis of
X is then nothing but a base of ¥, and the arguments for general
preordered matroids apply to this problem; e.g., any two egquisignum bases
are equicardinal (by Theorem 2.3) and an optimum equisignum basis with
respect to a given weight can be found by a dual greedy algorithm (i.e.,
Algorithm WB of Section 3.1).

The equisignum decomposition has been treated (e.g. [3], [6]) in
terms of elementary vectors [8] (or minimal vectors [6]) in the
particular case where X is a linear subspace of RE. Then the structure
of equisignum bases is known to be quite simple since an equisignum base

B can be expressed as
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B = {a,r, |ieI} v (-B,r, |ieI},
vwhere «,>0, B.>0 and {r,[ieI} denotes a collection of all the
noncollinear elementary vectors of X.
An algebraic structure, named the geometry on a poset, involving
partial order and matrold has been investigated in [4], but does not seem

to have a direct connection with the concept of preordered matroid.
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Fig.1. A simple diagram

Fig.2. An acyclic graph G

Fig.3. Preorder of the bilinkings of G in Fig.2.
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Fig.4., A graph with exponentially many bilinkings

*U
Y

Ny
\

€\

¥Fig.5. The elementary cycle determined by a cotree arc

(a) r={e1...ek,e} (b) r={e1...e .fle}

F( i.m

sy

Km,m

k:fnr m

Fig.6. A graph G(V,E) with N(G) as large as O({V||E|)

(The arcs are directed downwards.)
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(C) G(U3) (d) G(Uy)

® U U, @

ey Gqlvs) ) Gg) P GWp

Fig.7. The arborescence T(u) of the subgraph G(u) for G in Fig.2.
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