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Abstract

In special cases of the Leontief technology's constant
input-output coefficients, the general localization theorem that an
interior location is a global optimum if every input or market site is
not a local optimum (Kusumoto[l1984]) is confirmed and strengthened.
Sufficient conditions are proposed for the portion of a triangle space
of three input and output market sites in which the firm will locate.
Finally it is shown that, if input substitution is permitted and
its effects overwhelm spatial effects, the firm's total cost function
will Be monotone, as well as concave, hence the site is a global

optimum #f It :.is a loecal optimum,



Introduction and Summary :

In formulating how the firm locates with respect to a fixed
market and raw material sources, a large number of results are
obtained and termed fLocalization theorems. Essentially, however,
they contain the conditions under which a solution to the Weber
problem can be found in the (closed) convex hull of the (input and
product) markets. See Kuhn and Kuenne[1962], Kuhn[1965], Perreur
and Thi;;;E1§%4], and, Hansen et al [1981l], for example.

This mest fundamental problem in the location theory of the firm
was recently reconsidered in this journal (Kusumoto[1984]), following
the line of discussion initiated by Moses[1959] that incorporates the
economic theory of production into traditional Weberian location theory.
By reducing many product and/or input to only three, it was found
that in a triangle space of admissible locations, (i) the optimal
location is possible only at an interior or an extreme point
(vertex), but never at an intermediate point on the sides of the
space (Theorem 1 (Kusumoto[1984])) and a set of sufficient conditions
was derived involving the first derivatives of the total cost function
at the vertices only, (ii)if the cost decreases at every vertex as
the firm moves toward interior or intermediate locations, the firm
will find an interior point optimal, but never a vertex (Theorem 2
(Kusumoto[1984])).

The present research expands and strengthens these general
results, by dealing with special cases in which production is of a Leon-
tief .type. Given constant input-output coefficients, the input

substitution effects vanish, and the location decision may be reduced
to consideration of spatial properties and transport cost rates. That
is, the fundamental decision is effectively deccoupled from production

decisions as in traditional Weberian location theory.
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Figure 1 below depicts the Weber point problem in a regular
triangle space of transportation. Four (one-output and three-input)
markets are situated at the three vertices of the triangle, O (Ml), MZ’
and M3. F is the production location (x,8). There are 3 goods, one of
which (good 1) is output produced at a location F by 3 inputs {good 1, 2,
3), then transported to market O. The first input is of product itself

and the .ather 2 inputs (good 2 and 3) are hauled from raw material sources

M2 and M3 to the production location(F).

Figure 1

The Location Problem

F=(x,a)

y{x,0)=V(x-acosq) Ztasinly

z(x,a)=f(x—acos(60°—a)¢+asin¢(60°—iy
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First, an alternative, much clearer and more direct, proof, which
could be made by taking an advantage of the Leontief technology, is
provided to the theorem for interior location (Theorem 1). Then, in
the two following theorems {(Theorem 2, Theoreﬁ 3) and Case 2, all of
which presume the nonconcavity assumption of the tramsport cost functioms,
it will be shown that, how closer the chosen interior point will be located
at the center of gravity, at which the transport distance is minimized,
depends on how impartially the tramsport rates per unit / distance will
be given.

Finally, the analy;is will proceed by relaxing the assumption of
fixed input-output coefficients. It will be demonstrated that the
attraction of a vertex, due to input substitutability, would overcome
the pull of transportation cost toward the interior, only by making
the cost function monotone in distance from the relevant vertex.

This is somewhat surprising. A vertex is, therefore, chosen by the
firm for the simple reason that a monotonically increasing cost function

achieves its minimum at the vertex location. Cf. Remark 3 Section 5.3

in Kusumoto[1984].

Section 1 defines the Leontief technology and the derived cost
function. Section 2 examines cases in which the location decision
is (almost) reducible to minimizing transport distance. Section 3
proves, under the different conditions, the existence of an interior
location, and strengthens the results of localization theorems in
the two-dimensional case. In section 4, the condition for a wertex to

be optimal will be remarked even when substitution effects prevail.



1. The Leontief Technology and the Cost Function

The technology employed by a firm for a unit of good 1, output,

*2
is given in a fixed input vector, a.=[a >0, defined in
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physical unmits. We shall examine how the (unit) cost function C*(.,a)

1

varies on X(a) for each aeA. The cost C*#(.,.) is, for each (x,a),
specified as
{1) C*(x,a)=R0(x)+Pl(x)all+P2(y(x,u))321+P3(z(x,a))aBl,
where R is the transport cost on a unit of output and the C.I.F. prices
(market price ﬁi plus transport cost) of a unit of the first input, as
well as the second and third inputs are denoted Pi’ i=2,3, and are assumed
to be continuously twice differentiable functions of (x,¢) in the space.
To enphasize the fundamental feature, we assume transport costs
are proportional to input quantities and Euclidean distance. |
Then, for constant transport rates per unit/distance, C o i=1,2,3,
and for F.0.B. source prices ﬁi’ i=l,2{3, which are given'(with good 1
as a . numeraire, so ?l=l), RO(x)=clx, Pl(x)=l+clx, Pz(y(x,a))=§2fc2y(x,a),
P3(z(x,a))=§3+c32(x,a), and,
(2) C*(x,a)=clx+{1+clx}all+{§2+c2y(x,a)}azf{§3+c3z(x,a)}a31,

This is a nonlinear function which is twice differentiable with respect

to location (x,a)}; see for this Kusumoto[1984, Appendix A].

2. Special Cases in wﬁich No Input Substitution dccurrs and the

Location Decision Reduces to Minimizing Transportation Distance

CLase 1: Suppose that ai1=cl/ci, i=1,2,3., Then, for transport distance
aGe, )=ty (e, 2, @, 90 (x, )/ dxmey [L+3d(x, o)/ 8x)0,

where the positivity is implied because 1>[ad(x;al/ax|. Since the cost

function is strictly monotone in x, location will occur at the market

vertex (x=0).



Case 2: Alternatively, suppose further that a = /ci, i=2,3, and

14
all=0, then, 3C*(x,a)/3x=c13d(x,a)/Bx. Since the distance function
d{.) takes its minimum value at ((/573)a,30°), that point, the center of
gravity, is uniquely optimal. See Appendix B and C in Kusumoto[1984] for
the proof.
We can generally state that there is a uniformly convergent
sequence of continuous cost functions C*n(.) in which c?, i=1,2,3, are
involved, such that for each v>0 and for some number N(v),
| 35" (x,0) /sx~{1+3d (x,a) / 3x ey l<v, n>N(v),
where the limit function is cld(x,u)+z, ¢ is arbitrary. Thus, Case 1 and
2 may be said to be the generic cases in which the typical features are
explicitly visualized.
EEES.Q:TherE is aneother typical case worthy to point out. Let: w(g)=
Cpdyq COS ﬁ+c3a31cosC60?%ml} w (@) may be interpreted as the marginal
cost of location distance at the vertex (x=0) for the second and third
inputs in the direction toward location angle a. Since w(.). is concave
on A and aw(DAIBQQ/3E3331/2; am(ﬁ091ﬁ8a=v/§b2321/2, there exists a unique

d@ such that c.a /c3a =sin(60°-q) /sin a; provided that Q<c2a21/c3a31<w7

2721 31

y + + ‘ )
Thus, weé can have - c1+clall+023213y (Q,u)jax+c3a3132 (0,0} /x>0 for any «, if

' - - . + I ) . .
we assume ¢ teiay >w(a) for this a. That is, 8C*% (0,e)/8x>0. This.is
in turn implying, with the convexity of C%¥ on X for each ¢, the location

is at output site O, In case ouly one market is situated at each vertex

{(e.g. where all=0j, the argument holds if clgw(ﬁ).

Before closing this section, I should like to point out:

Suppose M2 were the origin, instead of Ml, so that the cost function



could be redefined on the same but redifined space S(=[(y,B); veY(8),
BeB]) as D*(y,B)(=C*(x,a)). Then, the redefined cost Ffunction D*(,,B)
would be convex with respect tolY(B) for each BeB, if, for the original
function C* on the space T, BC*'-(a,'OM)/Bxgo and acff’(_a,o.)/a:»:;o,.,"E 3

3. Thxree-Corollaries for Interior Location

We present three theorems here associated with the Leontief
technolegy. Each may be regarded as a corollary to the general theorem
for interior location in Kusumoto[1984].

3.1 First, from (1), for P2(0)=P2(y(a,0)), P3(a)=P3(zCa,0)),
BPZ(O)/3x=P2'(O)By/ax=-P2'(0), and, 3P3(a)/8x=P3’(a)Bz/Bx=P3'(a), ete.,
we shall see: .
BC*_(a,O)/ax=RO'(a)+Pl'(a)all—P2'(O)aZl+P3'(a)a3l/2 > 0,
implying
(3 ) 8C*(x(a),a)/3x>0 for every acA®,
Suppose 02a<30°,
Let us write; x(a)=a¢§72sin(60Q+a), y(a)=y(x(e),a), and z{(a)=z(x{a),a),
ete.. Then, we have, wken we write Pi'Cui) = BPi(uilﬁBui ete.,
30 () @) /3x=Ry" (@) 4B " (03D, B, (y (@), By () /0
+P3'(z(a))a3laz(a)/8x.
It is easily seen that, 8y(a)/3x+az(aj/3x > 0, B8y(a)/30+3z(a)/30= O;
ox(u)/3az0, dy(a)/3a>0, 3z(a)/da<0,
and also
|By(a)/8xl <1, Iaz(m)/axl < 1.

Suppose transport cost functions are concave so that RS(xj:O, Pf(x)go



?;'_!.Cui).%ov’ i=2:3: UZ'=Y(.X’0"). ] U.3=Z(VX,CI'-)__- Then? since

aC*(xfa), a)/8x>R '(x(a})+P '(x(a))a '(y(a))a

ll 2
+P3'(z(alla

31°
and; since the right hand side; denoted by H(g); is increasing in o,
AM(ay730={Ry" (x(0) ) 4R, " (x(&)) &, }3x () /3
- B,"(y(@)) ay, By (@) /B0+P, " (2(a) ) 2, 34(a) /3020,
it follows that I(a)> O if NI(0)> O, which is established if, for a=
x(0),

(&Y 3c*(x(0),0)/ x=RO'(a)+Pl'(a)a "(0)a,,+P '(a)a31/2 =1(0)> 0.

117 2 21 73
Thus, BC*(x(u),a)/Bx;H(a)> 0, for each such a. Similarly for «
such that 30°z20<60°.
Let A=[a;0°§a§60°], X(a)=[st;OixéaVEYZASin(60q+al], then, the
triangle space T is given as
T=[(x,a) ;xeX(a) ,acA],

where xeX(a)® and aeA® <> (x,a)eT®.

Now, we shall prove, with the result just obtained:

Theorem 1(Interior Location): Let the production function be of a

Leontief type. Then, the cost function C*(.,.) takes its minimum at

an interior point (x*,a*)e T°, provided that

(5) 3¢%T(0,a)/ox

It

RO'(O)+P1’(0)311—P2'(a)cos o 321—P3”(a)cos(60°va) a4,

< 0,

(6) 3C* (a,0)/ax% = Ry'(a)+P," (2)a

'(Da '(a)a /2 > 0,

11 2 21 3

and,

(7) 3C* (a,60°)/ox = '(a)+P (a)a +P2 (a)a, /2-P3'(0)331 > 0,



where the one sided partial derivatives are defined as

3CH* (x,0) /3% = 1ig, +{C* (b, ) ~C# (x,0) H/v
and

~{C* (x+v,a)-C*(x,a) }/v.

3C* (x,0)/0x = lim o

Proof: With the above result £3) and (5),apply Theorem of Intermediate
VaTue, then, since any intermediate point on the sides is not
optimal, the conclusion follows.

3.2 The next :lemma assumes stronger conditions and yields a strong-

er counclusion.

Lemma 1: Suppose that transport cost (C.I.F. price) functions are

convex in ranges, i.e. RO”(O)iO, Pl"(x);o and Pi"(u(x,ai));o, p=

2,3. Then, the cost funmction C*(.,a) is convex with respect to X(w)

' for each acA. Here, o, =0, and, a3=60°—a.
Proof: Omitted. u(x,a,)=v{(x,qa), u(x,d3)=z(x,a), here.

Theorem Z(Strong Interjor Location): Let the productien function be

of a Leontief type. Then, the cost function C*(.,.) takes its

minimum at an interior point (x*,a%)e T°, provided that, when (5)

holds, either (8) or (9) also holds, where

(8) cl-!-clall > max(czaZl, Cqdqy

(M ‘{RO'(a/21+Pl'(a/2)all >max PZ'(aéz)azl,PB'(a/Z)a3l R RO"(x);O,
Pl"(x)go, EEQ_Pi"(ui)=O, i=2,3.

Y, ¢y i=1,2,3 constant,

Condition (5) reduces for constant s i=1,2,3, to

(10) cl+clall<m(a),

where the right hand side has been defined in Case 3, and takes its

minimum at «=0° or 60°. Assume max{c¢ J=¢,a,. without loss

2%21°%3%317 " %%

of generality. Conditions (8) and (10) imply;

wla)> max(czaZI, c3a3l);c2321.
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Cbut, w(@)20(0%)=egay +eqay, /27 >e)ay) .

Thus, the two conditions are compatible with each other.
Similarly for the case 30°2a<60°.

An economic interpretation for the set of conditions (5) and
(8) %s_thp transport unit cost (per unit of distance x) for good 1
as output and input at their site is less than the sum of those
for the second and third inputs, but larger than any of those
evaluated everywhere for the second and thrid inputs. A similar

but general interpretation can be made for Condition (9).

Proof: First, we see, for (&) = a cos(60°-a),

¥y =y &@,n), 3yE@),0)/dx = alcos(60°-a)-cosa)/y(%(a),a)

= a s5in(0-30°)/y(%(@),2) £ 0, and 9z®(®),%)/3x = 0 for O such that
0 £af 30°, Since, for this o, '

; o .
cos (a=30°) - Sln(g-30 ) x a951n ¢ 0.

O

a%‘ {% sin(a-30°)} =

This implies, under Condition (8), that

3Cc*(%(®),a)/9x.2 0, with equality only when o = 0°, for such «.
By the strict convexity of C*(.,a) with respect to X for this a,
it follows that 9C*(x,a)/8x > 0 for each x such that %) £ x.

Hence, dC*(x(x),a)/3ax > 0.
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With the condition (9) instead of (8), and, noting that $=y(&(w),0),
we can have;
aC*(&(a) ,a) /3x = RH(R())+P{(R(a)) a1y + {P3(9)ay(2(a),a)/dx}as;.

Hence, 3C*(x(0),0)/3x = R§(a/2)+P{(a/2}ay) -Pi(a/2}az; > O by (9).

It also follows from Lemma 1 that 3C*(x(a),a)/dx > 0

if dC*(R(a),0)/3x > 0.

Thus, we shall show 3C*(%(a),a)/ox > 0, for which it is sufficient
that 32%C*(%(a),a)/dxda = Ry (X(x))dR(a)/3a + {P?(%(a))aﬁ(a)faa}a1¥

+ B §(a))s9/3edf/ox angfpé(f}(a))BZf}'r‘/'Bxad an] > 0, Lf P;('u) = 0:*4‘
The last inequality comes from 8%(&)/30 = a sin(60°-%) > 0,

vy (%(a),0) /9% = a sin{(a-30°)/y(X(a),a) £ 0, and 3%y(%k(x),a)/9xdx > O,

all of which we already have obtained above. &.E.D.

Remark 1: Under the given convexity.of the C.I.F. price functions, and
with the Leontief technology, it may be conjectured that the total
transport cost function C*(.,.) is convex with respect to the space
T X x A. The unique, interior, optimal location can be searched.

by finding a gradient method which converges. For a . gradient method
for convex programming, see Arrow, Hurwicz, anﬁ Uzawa [1958, pp.117-145].
In a somewhat different context, see Weiszfeld [1937, pp.355~386?5for
an initial try. The Weiszfeld algorithm for Weber problems is

generalized by Morris [1981]. 'See also Cooper[1963], Kuhn and Kuenne

[1962] for the generalized Weber problem..
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3.3 1In the Leontief case, suppose transport functions are linear so
that ¢ = R§(x), ¢, =Pj(x), and c; = pi(u), i=2,3. Then, condi-
tion (8) implies Condition (6) and (7) and hence Theorem 1 holds

but not vice versa.

Remark 2 : The conclusion of Theorem 2 is stronger than that of
Theorem 1. in the sense that the location is chosen at a point inside
the shaded area of the space (see Figure2 );whereas, in Theorem 1, it
is somewhere in the whole interior.

The strongest result that can be obtained is perhaps the following:

Theorem 3: 1§ we assume, Lnstead of Condition (5L{6}4{7}, that
aC*(2(x),al/3%> 0, 3C*(Xla),a)/3x> 0, and aC*(x[a),al/ax< 0. Then,

the Location will be chosen at a point inside the area swurounded by the
s0lid Line (see Figure 2). Here %la) 4s evaluated at o such that 307<agb0°,
o) =5inlel-/nZlal-7}, evaluated at o such that 0°<a<30°, and nia)=

cod otceos (60°~a),, and X{a} = a cosa.

Theorem 2 satisfies the first two conditions, but does not
necessarily satisfy the third ome: See Remark 2. Case 2 is a special case
in which all the conditions are satisfiedand this strongest result is
obtained.

Observe also that the optimal location is independent of the level
of ouput. This property that the optimal location is single can be

easily seen even with neoclassical homothetic production technology.
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The Optimal Locations in a Triangle Space
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4. Remarks for Extreme Point Location

A boundary location is equivalent to being an extreme point
location (vertex). A necessary condition for a vertex to be globally
optimal is that the total cost does not decrease (increase) at at
least ome vertex. A sufficient condition for a vertex to be a
global optimum is that C*(.,a) is monotone and BC*(.,a)/szo for
every aeA. By applying the result that BC*“(x(a),a)/éx>0 in Kusumoto
[1984, the proof of Theorem 2], we easily see the necessary condition
implies the monotonicity, if the cost function C*(.,a) is either
convex or concave, with respect to X(w) for each a. This will be true
even with a neoclassical production function, in which case the
substitution effects overcome everywhere in the interval X(a) so
that C*{.,a) is concave there. This establishes a somewhat less
exciting remark for extreme point location.

Remark 3: It may be attributed to the spatial (two-dimensional)
property that, the regular concavity, due to the everywhere over-
whelming substitution effects, will contribute only to making the
cost C*(,,s) monotomne on each interval X{a). This sharply contrasts

with the one-dimensional case which does not possess this property.

This remark, however, does not cover a general case in which C*(.,n)

is neither convex nor concave.
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earlier manuscript has been rewritten under the directions

“""given by the patient reviewer so that it has been much

more readable. The author is also indebted for conversations

with Professor Hidehiko Tanimura, my colleague.

Without loss of generality, we treat the output and first
input as identical (good 1). Use of subscript in aq indicates

that good 1 is produced and a,. is an input of itself. Hence

11

at loxation (x,u), a;q of good 1 is transported to the

location (x,x), at cost (c.i.f.) Pl(k)all and i unit of pro-

duct is hauled to market (0,a¢) at transport cost RO'

Hence, the vertex M2 is a global maximum in the case.

I conjetture the inequality still holds, even if p;(u)>0.

Note first —a¢§/2§8y(ﬁ(a),a)/&aga/§/2, 09(0) /3a<0, and

99(30) /30>0. Then, 3(3C*(®(a),a)/3x)/3a>0 for every a such
that O<asa, 30°=/FM;M3=8=R(2(a),a). Since 3$(30)/30=0 and
3(3C*(R(30),30) /3x) /3a>0, it follows that 3(3aC*(2(a),a)/3x)/3c

>0 for every a in the neighborhood of 30° in A.

Professor H. Tanimura and the reviewer of this jaurnal

acquainted me with the existence of these articles.



