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1, Introduction.

Let x = (xl, cen ,xn)' be a random sample of size n with each x having
the probability demsity function £(x;0). Let LX(9)= H;=1f(xi;8). Hereafter,
we do not exhibit the subscript X in LX(S)\unless we need it. Akaike(1974)

proposes the following information criterion:

(1) AIC = -2 log L(én) + 2

where én is the maximum likelihood estimate for 8. Let 1;(y1, - ,yn)' be
the future observations having the likelihood H2=1f(yi;60) where 60 is a
true parameter, Noticing that 2c¢ is an asymptotic bias removing from
f(Yi;en)“

H2=1f(yi;60) dy ]. Hence, Akaike's idea is to choose én which maximizes In's

n

-2 log L(8_) we have that .as e, ~(20)"N(AIC) > T_ =B [S log T}_,

asymptotically unbiased estimates —(2n)_1(AIC) or equivalently minimizes AIC.
This idea is equivalent to choosing Gn which maximizes In. These ideas
coincide with minimizing the expectation of Kullback's discrimination

information function;

Egl ] log H’;:l(f(yi;eo)/f(yi;@n)) I 1£(y;300) dx 1. |

%) This paper is a refined version of part of Tsuruta's graduation thesis

supervised by Dr. Y. Nogami for his Bachelor's degree at University of Tsukuba.



(These discussions are due to Sugiuvra(l978).)
Sugiura(1978) proposes a corrected {c—) AIC computing the exact bias
directly. Namely, the corrected AIC is defined as follows:
(2) c-AIC = -2 log L(@n) + 2d
where

= hz[log L(aﬁ)]— I

In this paper, we consider the log linear model for contingency tables
under three sampling designs relating to Poisson and Multinomial distributions
which are fully demonstrated by Blshop, Yvonne M., M., Flenberg, Stephen E. and

Holland Paul W (1977), obtaln the formulas for AIC and c~AIC ) and demonstrate

those by examples. Although we only treat 2-way contingency tables for complete
data throughout the paper, we can proceed in the same way for 3 or more way

contingency tables under either complete or 1ncomplete data.

In Sectlon 2 we exhlblt the hypotheses under three sampllng de81gns and
in Section 3 we rephrase:above hypotheses by unified hypothesis le under
the log linear model. Section 4 states the likelihood ratio statistic z,
quoted from E, B, Andersen(1980), testing independence (le). In Section 5
we consider AIC and in Section 6 we work for c-AIC, for testing H12 in both
sections. In Section 7 we exhibit z-test from Andersen(1980) and find c-

AIC for testing marginal effects. Section 8 gives three examples.

Main development is Sections 6 and 7.

‘We.remark -that. S. Goto, S. Hatanaka and T..Tasaki(1980) exhibit AIC

in log linear model for binary data with logistic transformatiom.



2, Three Sampling Designs.

From this section until:the end of this paper we consider 2-way con-

tingency table whose schematic form is shown in Table I below.

Variable 2
I 2 e j eee J Totals
1 N : ) xl.
Variable 1 i veases ; e X.
. x :
I - X7,
- Totals xl.... x‘j seeX g x..
Table I

We consider tests of independence in a contingency table under three
different sampling designs.
[Design I] Xij's are independently distributed according to Poisson
distribution P (). .) with parameter A ..
0 "1]j ij
[Design IT] When the total count x =n is fixed, (Xll’ cer ’XIJ) are
distributed according to Multinomial distribution M(n;pll, v ’pIJ) where

P..'s are parameter such that X.I = 1.

ij i%§ Pij

[Design IIT] When marginal counts X, =n, for i=1, ... ,I are fixed,

(Xil’ “es ’XiJ) for i= 1, ... ,I are independent row observations and for
each 1, (Xil, ese ,XiJ) is distributed according to Multinomial distribution

L F # J #
M(ni,pil’ sae :PiJ) where ZJ

=1Pi5 7

The null hypotheses for testing independence under above three



designs respectively become as follows:
T

1 J

(3) Hoidgy=hg A 4/A, where h; =I5 ;A;5s A ;=25 1A55 and A =D;2 0 5
1T )

(4) Hy™: Py P3P

and
TIT. #

where the superscripts of H, mean Designs.

3. Log Linear Model.

Let ulZ(ij)’ B14)? U2(s) and u be parameters satisfying the model
6 .= B(X, )=, . . .y}
(6) m 5 (XlJ) exp{u + U (4) + U9 5) + ulZ(lJ)}
or equivalently,
*
(7) | mij = log mij =u +ul(i)+ uz(j) + ulZ(ij)
where

Ei%1a1) = E32(3)” Bit2ain)” By M2a)™
*
The basic decomposition of mij makes no assumptions about the mij and is called

the saturated model. For above three sampling designs in Section 2, we have

1 _ # .
mij"Aij_nPij = nipij’ respectively.

Letting
£ S J * ;3 ""'1 I =+ Eid "'1 *
8 s = . .. = I =
(8) my =J 32110 T, 5 ‘£i=1mij and m” (1J) Zizs m;

we know by e.g. Andersen(1980) that all of three hypotheses (3), (4) and (5)
are equivalently expressed by

(9) m; y=m; m j/u

or equivalently,



10 : = i i
(10) H ,: ¥19019) 0 for all i and j
in the log linear model where

% ¥ _—F | %
(11) Uppeig) @iy By R P T,

If the test has shown that all the interactions are 0, we may be interested
in testing the hypotheses concerning the row and column effects,

By letting

_ = _? I _
(12) Upegy= By, Tm s upqy= @y T, andusmo,

the most common null hypotheses are

-

(13) . _ .
Hl' ul(i)—O for all i

and

(14) H2: u2(j)=0 for all j.

In Sections 4, 5 and 6 we consider following three criterions for testing

: the likelihood ratio statistic =z (XZ test), AIC and c-AIC, respectively.

le.

4, z—test for testing 3&% vs El%L

LetE= (u;ul(i), i=l, e ,I;uz(j), j=l, .es ,J;ulz(ij)gi=1, .we ,I,j=
1, vo. ,J)'. By using new parameters u, Uyeqy u2(j) and u12(ij) the log—

likelihood functions in three sampling designs are written in the form

L = X, . X . ) S .
(15) log L(u) X Wk TiX Upegyt ZJX.JUZ(J)+ Z;Z5%5 M12¢19)

- c(u) - h(x)
where c(u) and h(x) are some functions of u and x, respectively. By

Theorem 5.7(Andersen(1980)) MLE's Ef for v under H,_, are given by

12



1.J

I
Zj=1log X

~ 0 =1 ~0 —
Upegy= log x; -~ I Zizllog X5 s u2(j)= log x-j -J

(16) ¥

A0 -1I -1.J
u =41 zi=llog X; *3J ijllog x.j - log X .

Also, from Theorem 5.5 (Andersen(1980)), by denoting HiZ as a compliment of le

‘MLE's u-for u under ﬁizz.are given as follows:
A % — — — —
= - e ¥ 3 A % 3*
w M12(13) T Fi3 L TR TR Y= g, C X
A _— —= ~
Ugray = X o — X¥ = .
2(3) .3 N and u = x

Inserting (16) and (17) into (15) leads to the likelihood ratio.statistic

[

z = -2(log L(ﬁ?) - log L(i))

(18)

il

2 zizj X 5 {log Xy5 - log(xi_x_j/x_.)}.

Hence, at a level of significance ©, the test is to reject le if ZZ>X2((I—1)-

(J-1)). Note that for Design II, x may be replaced by n and for Design III

X; and x may replaced by niaand n, respectively.

5. AIC for testing ng vs le_L

and AICq, be AIC's under H

Letting AIC andlﬁiz, respectively. Testing

12 12
the hypotheses using AIC is to reject H12 if AIC12 - AIC;>0. In the definition

(1) of AIC, let 19 and cq be c's under Hio and'ﬁiz, respectively., c here
represents the number of parameters whose values c&n be changed-freely,
Then, in any design,

(19) AIC., — AIC, = z + 2(C12 - co) = z-2(I-1)(J-1) (=2 = 2E(z))

12

where the second equality follows from Table II below.



Design
I 11 ITY
19 (T-1)+(J-1)+1 (I-1)+(J-1) J-1
< J IJ-1 I(J-1)
Table II.

Hence, testing hypotheses using AIC is to reject le if z > 2E(z).

6. c~AIC for testing le Vs ﬁigé'

In the similar fashion to above Section 5, in case of c-AIC , by letting

dsy and dO be d's under le and Hy,, respectively, the test is to reject le if
(20) c—AICl2 - c-AIC = z + 2(d12—d0) >0

where

(21) 4y, = Fg(log L(u") - EyEy(log Ly(a”)

and

dy = E, (log L) - E,Ey(log Ly(D).

Applying (15) with (16), (6) and Table III below for estimates mij's under le
we .can easily obtain
= - Y
(22) d), = zisz[(xij mij)log mij]
where ﬁ;j is the MLE for m; 4 under H;,. Similarly,

(23) dO = ZiZjE[(xij - mij)log mij]
where mij is the MLE for mij under le.
To obtain dl2 and do we need to consider the sampling distributions of

xij' Now, from (16) and (17) and by using the inverse transformation (6),

we can easily get the following estimators for mij’ m, and m j in Table III:



m, m
ij i. .J
12 %55
X, x
1. J
B, %y, F.j/x..
Table III., Estimators.
. A0
For Design I, we have (22) with mij replaced by Aij' Substituting Aij =
X J/x from Table III leads to
(24) d12 = Zigi((xi_—li.)log xi.) + zjjgi((x-j_k-j)log X.j)
- EX((x -A Ddlog x ).
Expanding log w about the neighborhood of w=n, we get
log w = log n + (w-mn+ = 27 w-m) 22 4 37LGwem)Pn 3
and hence
(25) E((w-n)log w) = log N.E(w-n) + E{Ce-m//}> = (2n®) " B{(w-n) /)3

+ (3 EL(wen) /e,

Substituting moments for.Poisson in Table IV below with n=A into (25) gives

(26) E((w-Nlog w) ¥ 1 + 50 + \3>u1/,\— .
E(w) B(G-m)/vm? BV E(Gen) v
Poisson n 1 ﬂ_% 3412
(P, ()
Binomial np(=n) . 1-2p 3—6n_1+ 1
(B;(n,p)) P /ap(lop) np(1l-p)

Table IV. Moments,



Thus, applying (26) three times to the rhs of (24) leads to

| Sl -1 -1 =1 .-l =3/2_ -3/2 _-3/2
(27) dygmC1g = 2 (Bghy, F5 A M3 Tz Ay A )
Similarly, we obtain

(28) do—c = 2785 g a7t ¢ 37 tn e aTY2,

0 -0 i"§7ij Ay M |

“In the’simitar fashion to above, for Design II, since by (25) and Table IV
E((w-np)log{w/n)) = 1-p + %ﬁ% + O(n_z), using this relation several times gives
-1 -2
(29) dlz_clz = 2 {Zi<l—Pi.)/(npi.) + Zj(l—P_j)/(nP_j)} + 0(n ™)

and

~1
(30) do-cO ~ 2

. -2
Zizj(l_pij)/(npij) + 0(n 7).
For Design III, we can proceed in the same way as above by using the

fact that X; ~ Bi(n,Jﬂlpf } and X §v Bi(n,I"lp#j). Then, we get

- o1 # # -2
(31) djpmeyy 2 Zj(I - p.j)/(np.j) + 0(n %)
and
-1 # # -2
(32) dgcg = 27 nyz,(1-0f 0/ Gk ) + 0GP,
From (20) and (27) through (32), the test using c¢-AIC is to reject le if
. N I -1 gJ 4=l =l 1 o
(33) z — 2E(z) > "Zi=lki. - Ej=1l.j + A‘. +zizj}\ij for Design I
or .
1-p. 1-p.. -P. .
(34) > —Z? — Zq —1l s 51, —21l  for Design II
i=1 np, j=1 np.j i3 npij
or-
-p* l_pfj for Design III
(35) > - z@ R T or Jesig
j=1 np¥ . I, #

where for the parameters on the rhs's we substitute the values of the estimators

from Table III.
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7, Tests for Hland for HZL

In this section, we consider z-test and c~AIC for testing the hypotheses

Hl: ul(i)=0 for all i against le and for testing the hypotheses H2: u2(j)=0
for all j against H12. In sampliﬁg designs I, II and IIT corresponding Hl

and H2 are shown as in Table V, below.

1 2
I Ai =x /I, Vi X =A /J, V]
. -1 V3 -1 Vi
Designs IT p; = I, Vi P j= J &, V]
| — p#j= I v

Table V. Hypotheses.

In the similar fashion to (18) in Sectiom 4, we can see from Theorem 5.9

(Andersen(1980)) that the LR-test for H1 vs le is

I
(36) z; = 257 x; {log x; - 1og(x._/I)}
which is asymptotically XZ(I—l) under H, and the IR~test for H2 vs H, is
(37) z, = 22j=lx'j{log X 5= log (x../J)}

vhich is asymptotically XZ(J—l) under H2.

In the definition of ¢—AIC, let d, and d. be d's under Hl and under

1 2
H2, respectively.

For Design I, in view of (22) and (23), we can easily check

1. -1 -1, =372
-z, oAl J =T+ 2t s a2
(38) d) = By By((x 5= A ) Tog x ) =3+ 272005 + 37507
and
e -l -l -3/2
(39) dy = 55 Byl(xg = 2y Jlog x; }= T+ A7+ 375 45
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In the definition (1) of AIC , let cy and <y be c's under H1 and HZ’

respectively. c1 and c2become as follows:

Designs
I IT IIT
"¢y J J-1
oy I I-1 0

Table VI. D, F.'s

-1. ,-1 -1 \—=3/2
40 d,- = 27BN L+ 3L
(40) 1~ ©1 3] JA.J
and
W oo=lo =l o=l =372
.(41) d2— Cy = 2 Ziki. + 3 ZiAi. .

Similarly, for Design II,

-1
(42) dl_cl = 2 Zj(l_P.J)/(nP.j)
and
(43) dy=cy = 275 (1-p; )/ Capy )

and for Design IIT, since d2=0 and c2=0 by Table VII,

(44) dy-c, = 0.

Therefore, in view of (20), (27), (29) and (31) and by noticing Cqp=Cq=

E(z) the tests using c-AIC to reject H1 if z+2(d1-d12) > 0 or equivalently,

(45) z - E(z) » ~ Z§=1A;l + A—I for Design I,
> Ei(l—pi.)/(npi.) for Design II,
and the tests using c-AIC to reject H2 if z + 2(d2—d12) > 0 or equivalently
(46) z - 2E(z) > ~EjA—% + A_i for Design I,
> Zj(l_P.j )/ (np j) for Design II,

>-Ej(1—p#j)/(np#j) + O(nuz) for Design III,
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where the last inequality follows from (44) and (31)
We remark that if the sample size is small, then we may want to get
further expanded terms in d1 and d2 for c¢-AIC. In this case we may use

L] +

the estimators for mij’ m; and m . under Hl and H2 in Table VII helow.

m. . m. m .

ij i. o]

Hl x'j/I x../I x.J
Hy | =3, /9 Xy, x /J

MT&Bie7§iI.‘Eéfiﬁaéo?%ﬁfdi‘m.., m, and m ..
ij* i, o

8. Examples.

In this section we introduce three examples as applications of Designs
I, IT and III., In all three examples we can see that the tests using AIC
and c-AIC give the same results as those using z-test for large n. Let
éAIC =(AIC under the null hypothesis HO) —~( AIC under the alternative hypo-
thesis H') and Ac-AIC =(c-AIC under HO) ~ (c-AIC under H')., (Examples are
taken from Andersen(1980)s)

Example 1.) As an application of Design I, we consider the data in
Table VIII from Rasch(1973). As part of a major investigation carried out
in Sweden in 1962 to evaluate the influence of speed roads the number of
accidents on Swedish roads were counted in.l5 consecutive weeks, The roads

were counted into groups: State highways, Country roads and Other roads.
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State Country Other

Week highways roads roads Total
1 2 7 4 13

2 8 8 4 20

3 7 9 9 25

4 7 4 8 19

3 3 5 7 15

6 5 4 4 13

7 4 5 7 16

8 4 4 12 20

9 7 3 8 18
10 3 8 12 23
11 4 12 15 31
12 4 5 14 23
13 9 12 10 31
14 10 9 17 36
15 10 9 14 33
Total 87 - 104 145 336

Table VIII, Accidents on Swedish roads classified according to

type of road for 15 weeks in 1962,

The tests according to z-test, AIC and ¢-AIC can be summarized in the

- following variation table:

Null 2
Variation Hypotheses Z D.F. X, os AAIC Ac-AIC

Between cells le: ulZ(ij)=O 27.3 28 41.3 -28.7 -35.7

Between rows H: u,,. =0 33.7 14 23,7 5.7 4,96
1° 71(i)

Between columns H2: uz(j)=0 15.5 2 5.99 11,5 11,475

Total all = 0 75.5 44

Table IX. Table of variation for traffic data.



14.

From Table IX, since 27.3 < 41.3, 4AICKO and 4¢c-AICL0, we cannot reject le.
Hence, there is no relation between roads and the number of accidents. Similar-

ly, we reject both Hl and H2 according to any test . Rejecting Hltells signifi-

cant increase in the number of accidents, but rejecting H2 does not tell us much.

Example 2.) In Table X is shown the distribution of 1517 married
women in-Denmark according to area of residence and type of.occupation. The
data are from Noordhoek(1969). Here, only the total sample is given. So we
have Design II. We want to test if the distribution over occupations is the

same for all three living areas.

i B Occupation .
Living 'ﬂoﬁéé Parttime Fulltime In husbands
. ; Total
area wife work . . work business
Copenhagen 188 66 139 16 409
Suburban 145 32 98 14 289
Copenhagen
Cities 401 114 239 65 819
Total 734 212 476 g5 1517

Table X. Married women in Dénmark in 1964 distributed according
to living area and cccupation,

As sbove. the tests according to z-test, AIC and c-AIC can be summarized

in the following variation table:

Null 5
Variation Hypotheses Z D.F. X os AAIC  Ac-AIC

Between cells Hyot ulZ(ij)=0 15.21 6 12,59 3.21 2,99
Table XI. Table of variation for woman's occupation data.

The result is clearly significant. Hence, occupation pattern is different

in the city areas. Since we reject le, we do not analyze furthermore.
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Example 3.) As an example of the test for homogeneity under Design III,
we consider the data of Table XII in which is shown the results of the polls
in. September 1974 as published by four survey companies: Gallup, Observa, AIM
and K. Vilstrup. It is known that the samples are not random. However, we
shall for the purpose of illustrating the theory by an example consider each
sample as randomly drawn from the Danish population.

It is a reasonable hypothesis that the four multinomial distribution
corresponding to the columns of Table XII have the same cell probabilities,

since each sample is taken from the same population at about the same time.

Party Gallup Observa AIM K. Vilstrup Total
Labour 4&4 403 282 182 1311
Liberals 129 104 93 63 389
Conservatives 105 104 68 56 333
Socialists 58 65 60 42 235
Communists 75 65 52 56 248
Christian 80 52 47 35 214

democrats
Farmers 225 286 196 140 847
Progress 280 143 132 84 639

party
Others 94 78 70 42 284
Sample size 1500 1300 1060 700 4500

Table XII. A comparison of 4 Danish political polls,

The tests according to z-test, AIC and c~AIC can be summarized in the

. following variation table:
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Null 9
Variation Hypothesis z D.F.  X.os AAIC Ac-AIC
Between cells H12: ulZ(ij)=O 76.6 24 36.4 28,6 28,53
Between columns H2: uz(j)zo 1880,75 8 15.5 1864.75 1864.73

Table XIIIL. Table of variation for poll data.

Since the z-test fails at the level of significance .05, there is no homogeneity
of the columns of Table XII., Unfortunately, since le is not accepted, it is
no use of testing for H2. However, for the sake of ah example for the theory,
we compute the values of test statistics. As we can see from the Table XIII,

uniformity assumption H2 is obviously rejected.
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