No. 198 (83-21)

ON THE SUBDIFFERENTIAL OF
A SUBMODULAR FUNCTION

. -by
Satoru FUJISHIGE

November 1983






Title: On the Subdifferential of a Submodular Function #
Author: Satoru FUJISHIGE

Affiliation: Institute of Socio-Economic Planning,

University of Tsukuba, Sakura, Ibaraki 305, Japan

Abstract: The author recently introduced a concept of a subdifferential
of a submodular function defined on a distributive lattice. Each
subdifferential is an unbounded polyhedron. In the present paper

we determine the set of all the extreme points and rays of each
subdifferential and show the relationship between subdifferentials of
a submodular function and subdifferentials, in an ordinary sense of
convex analysis, of Lovasz's extension of the submodular function.
Furthermore, for a modular function on a distributive lattice we give
an algorithm for determining which subdifferential contains a given
vector and finding a nonnegative linear combination of extreme vectors
of the subdifferential which expresses the given vector minus the

unique extreme point of the subdifferential.

Keywords: Submodular functions, subdifferentials, polyhedra,

extreme points, extreme rays, Lovdsz's extensions of set functions.

Abbreviated title: Subdifferential of a submodular Ffunction.

*} The present research was carried out when the author was on leave at
Institut fur Okonometrie und Operations Research, Universitit Bonn, and
was supported by the Alexander von Humboldt Fellowship (1982/83), West

Germany.



1. Introduction

The author {6] introduced z concept of a subdifferential 3f(X)
(x ¢ U) of a submodular function f: ¥ + R from a distributive lattice
) c 2E to the set R of reals and developad a theo;y of submodular
programs. (A precise definition of a subdifferential will be given later.)
Bach subdiferential 3f(X) (X € U) is a polyhedron which plays a
fundamental rcle in minimization of the submodular function F.

In the present paper we determine, for each X € U, the set of
all the extreme points and rays of the subdifferential 3f(X) which
generates Jf(X) and show the relationship between subdifferentials of
a submodular function and subdifferentials, in an ordinary sense of convex
analysis, of Lovasz's extension of the submodular function. Furthermore,
for a modular function on a distributive lattice we give an algorithm
for determining which subdifferentiai contains a given vector and finding
a nonnegative linear combination of extreme vectors of the subdifferential
which expresses the given vector minus the unigue extreme point of the

subdifferential.



2. Definitions and Preliminaxries

Let E be a finite set and denote by 2E the collection of all
the subsets of E. Throughout the present paper we consider a distributive
lattice D = 2E formed by all the ideals of a partially ordered set
P = (E, <) with set union and intersection as the lattice operations,
where X c E is an ideal of P = (E, <) if e <e' ¢ X implies e ¢ X
for all e, e' ¢ E. Note that by definition @, E ¢ 0. Aalso let f:

D + R be a submodular function on the distributive lattice D, i.e., for

every pair of X, Y e D
£f(xX) + £(Y) > £(XuY) + £(XnY). (2.1)

(If (2.1) holds with equality for every pair of X, Y ¢ P, f is called

a modular function. A function g: U -+ R 1is called a supermodular

function if -g dis a submodular function.) A subdifferential Jf(A) of

a submodular function f: D+ R at A ¢ P is a polyhedron given by

af(n) = {x Ix € RE, YV X e D: x(X) -~ x(4) < £(x) - F(A)} (2.2)
(see [6]), where RE is the set of all the real-valued functibns (ox
vectors) from E to R and for any x ¢ RE and X ¢ D

x(X) = ] x(e). (2.3)
e ¢ X

Each x ¢ 9f(&) (A ¢ D) 1is called a subgradient of f at A. Note that

denotes the cardinality, and for each distinct 2, B e P 3f(aA) and 3f(R)

RE is divided into [Dl nonempty parts a3f{(a) (A ¢ 0}, where

. . . . E
may have common faces but do not have any common interior point in R .
The concept of a subdifferential of a submedular function is
fundamental 'in the problem of minimizing submodular functions. It trivially

follows from definition (2.2) that A ¢ P minimizes a submodular function



f: P> R if and only if 0 ¢ 3£(A), where O is the zero Qector in RE,
as is an ordinary subdifferential of a convex_function [13].

The system of inequalities appearing in (2.2) contains redundant
inequalities. The following lemma is fundamental and deletes some of the

redundant inequalities in (2.2).

Lemma 2.1: For each A ¢ D the subdifferential 98f(A) is also given by

PE(a) = {x |x ¢ R, ¥ X ¢ (B2l v [A/Ely: x(X) =x(B) <E(X) ~£(a)},

(2.4)

whnere [Q,A]D and {A,E]D are intervals in U defined by
B2l ={x XD, Xxchal, (2.5)
[2,El; ={x[x e D, acx¢cE}L (2.6)

The proof of Lemma 2.1 is immediate and is also given in [6].

Corollary 2.2: For a submodular function f: D+ R, A e 7 minimizes

f on U if and only if 2 minimizes £ on [Q,A]p U [A,E]D.

Consider a submeodular function f£: D+ R and a supermodular
function g: U > R with £(@) = g(@) = 0.. The pair (P,f) is called a

subﬁodular system and the pair (¥,9) a supermodular system (see e.g. [6]).

A polyhedron
P(f) = {x|xe¢ R°, ¥ X e D x(x) < £(X)) (2.7)

is called a submodular polyhedron associated with (D,f), and a polyhedron

B(f) = {x|x ¢ P(f), x(E) = £(E)} (2.8)

is called a base polyhedron associated with (D,f).




Similarly, a polyhedron
E
P(g) = {x|x e R,V XeD: 2 > g(x)} {2.9)

is called a supermodular polvhedron and

It

Blg) = {x |x € 2(g), x(E) = g(2)} (2.10)

& base polyhedron associated with (U,g). Define the dual of D by

D=1{E-x|x¢D} (2.11)

and a supermodular function f#: D+R by

f#(E—X) = f(R) - £(X) (x e Dy, (2.12)

where f# is called the dual supermodular function of £. Note that,

when £{(&) = 0,

]

9f (@) 2(f), (2.13)

If (E) P(f#). {2,.14)

Furthermore, we have the following

Lemma 2.3 ({4], ([15]): For a submodular function f: D - R with
f{@) = 0 we have

B(f) = B(f#}. (2.15)

Lemma 2.3 corresponds to the polymatroid duality [1l]. From

(2.13) -(2.15),

of (@) nIE£(E) = B(f) = B(f#) (2.16)
which is a maximal common face of Jf(f) and J£(E), and the polyhedra
df(¥), S£(E) and B(f) (= B(f#)) have the same set of extreme points.

The extreme points of B(f} are characterized as follows.



Lemma 2.4 [7]: A vector x € R is an extreme point of B(f) 4if and

only if there exists a maximal chain

C: g = SO < Sl S vt g Sn =E {2.17)
in U such that
x(s; -8, ;) = £(8,) - £(5, ) {i=1,2,...,n). (2.18)

Here, note that from the assumption on ¥ we have ]Si --Si_l =1
(t=1,2,...,n) in (2.17) and (2.18). Lemma 2.4 is & generalization of

a result of Edmonds [1] for polymatroids (also see [10]).



3. Determination of Extreme Points and Rays of a Subdifferential

First, we give a characterization of the extreme points of the

subdifferential 9f(A) for each A e D.

Theorem 3.1: PFPor cach 2 ¢ D, x ¢ RE is an extreme point of JF(A) if
and only if there exists a maximal chain
S =E (3.1
in U, including A in it, such that

x(8; =8, ;) = £(8,) - £(s, ) (i=1,2,....m). ©  (3.2)
(Proof) We can assume £(@) = 0. From (2.13) we have 3f(f) = P(f) -and
P(f) and B(f) have the same set of extreme points. Therefore, the
present theorem for the case of A =@ follows from Lemma 2.4. Similarly,
the present theorem for the case of A = E follows from Lemma 2.4, since

of (E) = P(f#) from (2.14), P(f#) and B(f#) have the same set of extreme

points, and B(f#) = B{f) from Lemma 2.3. Furthermore, note that the
system of inequalities in (2.4) is in a separable form as

¥ X e [f,Aly: x(X) - x(B) £ £(X) - £(a), (3.3)

Y X ¢ [A,E]D: x(X) - x(B) < £(X) - £(A). (3.4)

Let f' Dbe a restriction of f to [Q,A]D and f£" be a contraction of

f to [A,E]D/A defined by

L]

[2,E]p/A = {x~2a[X ¢ [A,E}p}, (3.5)

£" (X -A4)

£(X) - £(a) (X ¢ [A,E]D). (3.6}
Then it follows from (3.3) and (3.4) that 9f(A) is the direct product
of 9f'(A) and 9£" (@) and thus that the extreme points of Jf(a) are

given by the direct product of extreme points of 3f'{(A) and those of



9f"(#). Bince A is the maximum element of the domain [QS,A]D of f!
and @ is the minimum element of the domain [A,E}D/A of £", the
present theorem for @ S A ¢ E follows from that for A =E and A = 0§

for £ with the domain D. 0.E.D.

Since for each A ¢ U the subdifferential Jf(A) is a polyhedron
having at least one extreme point due to Theorem 3.1, BJf(R) (A ¢ 7)) is
expressed as

3f(n) = Qf(A) + Cf(A), {3.7)
where Qf(A) is a convex hull of all the extreme points of 3f(A) and
Cf(A) is the convex cone given by

{x|x ¢ RE, ¥ X e D: x(X) -x(n) <0}

Cf(A)

Il

{x|xe®, VXe (8,51 U [3,E]: x(X) -x(8) <0} (3.8)
called the recession cone of GE(A).
Next, we give the extreme rays of 3f(a). (Here, we mean by an
extreme ray of O9f(A) an extreme ray of the recession cone of 3f(a).
An extreme ray of a cone is a class of projectively equivalent extreme
vectors of the cone and is represented by an extreme vector in the class.)
Let G(P) = (E,B*(P)) be a directed graph with a vertex set E
and an arc set B*{P) defined as follows. An ordered pair ({e,e') with
e, e' ¢ E is an arc in B*(P) if and only if e! <e and there exists
no e" ¢ E such that ‘e < e" <e. That is to say, G(P) is the Hasse
diagram which represents the partially ordered set P = (E; <). Let us

+ — . -
denote by E and E , respectively, the set of all the maximal and the

‘ + —
minimal elements of P = (E,=<). Note that E nE may ke nonempty.



For each A ¢ U also denote by A (A) the set of all the arcs (e,e")
. . N
¢ B*(P) such that e ¢ & and e' ¢ A Let us define vectors Eip)

(e ¢, n) (0 € E) and r(a) (a e B*(P)) in RE as follows.

-1 (e = p)

E(o7) (e) = . (e 2 E) (3.9)
0 (e c E-{p

_ 1L (e=p) _

ne)(e) = - (P ¢ E) (3.10)
0 (e e E-{p }
1 (e = )

cla)(e) =< -1 {e = e} (a=1(e',e") € B*(P))
0 (e € E-{e',e"} (3.11)

For each A ¢ D, also define
ER(A) = {0 |p" ¢ E -2} u In) |p € = nal
u {z(a) |a ¢ B*(P) -A (a)}. (3.12)

Then we have the following theorem.

Theorem 3.2: PFor the convex cone Cf(A) appearing in the decomposition
{3.7} of the subdifferential Bf(A), the set of all the extreme rays of
Cf(A) is given by ER(A} in (3.12).
(Proof) Because of the expression (3.8) of the -convex cone Cf(A), we
can easily see that

ER(A) < Cf(A) ‘ {(3.13)
and that each vector in ER{A) can not be expressed as a nonnegative
linear combination of the vectors in ER(A). Therefore, it is sufficient
to prove that every vector in Cf(A) can be expressed as a nonnegative

linear combination of vectors in ER(A). ILet v be an arbitrary vector



in Cf(A). From {3.8),

v(R-X) > 0 (A 2Xe D, (3.14)

v{X-a) <0 (AcxeD. (3.15)
Suppose that each arc of B*(P) - A (A) has an infinite upper capacity
and a zero lower capacity and that each arc in A (A) has zeroc upper and
lower capacities. Then it easily follows frdm (3.14), (3.15) and the
feasibility theorem for network flows [3], [8] that there exists a nonnegative
flow ¢: B*(P) + R in G(P) with ¢(a) = 0 (a e A (A)), a nonpositive
vector X ¢ R? with x(e) =0 (e ¢ E+ -A) and a nonnegative vector vy
3 Ri with wv(e) = 0 (e 4 E n A) such that

ve=23'd+x+y (3.16)
wheré R+ (R_) is the set of zll nonnegative (nonpositive) reals and

9'¢ 1is the boundary of ¢ defined by

3'p(e) = Y b((e,e")) ~ ) $((e",e)) (3.17)
{e,e') e BX¥(P) (e",e) e B*(P)
for each e ¢ E. This completes the proof. Q.E.D.

Here, the symbol 3' £or the boundary of a flow should not ke
confused with the symbol 8 for a subdifferential. I+ should also be
noted that if v satisfies v(a) = 0 in (3.14), then vy = 0 and that

if v satisfies v(E-A) = 0 in (3.15), then x = 0.

Theorem 3.3 {(Tomizawa}: The set of all the extreme rays of the cone
defined by
¢! ={x|xe R, VxecD:x(x <0, x(B) =0} (3.18)

is given by
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{z(a) |a ¢ B*(P)}. (3.19)
(Proof} Note that Cf' = Cf(ﬁ) an(E) and that Cf' is the common facé
of Cf(ﬁ) and Cf{E). Therefore, the present theorem follows from
Theorem 3.2, Q.E.D.

Theorem 3.3 has recently been communicated from Tomizawa [15].
Tt should be noted that Theorem 3.3 also easily follows from the fact
that the cone Cf' given by (3.18) is the collection of all the boundaries
8'¢ of flows ¢ in G{(P), where each arc'in G(P) has an infinite

upper capacity and a zero lower capacity (cf. [17]).
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4. Lovasz's Extensions of Submodular Functions

For a submodulaxr function f£: D+ R with F£(@) = 0, define a

function f: RO -+ Ru{+=} by

£(c) = max{(c,x) |x ¢ 3£(2)}, | (4.1)
where
(c,x) = § cle)x(e). (4.2)
e g B .

o~

Here, £ 1is the support function of 3f(@) and is a positively homcgeneous

convex function {13], [14]. Note that %(c} < t+o if and only if
cecHg = {c’ | % x e Cpi#): (c',x) £ O}, (4.3)

where Cf(ﬁ) is the recession cone of Bf(ﬁ) (see (3.8)) and Cf*(ﬁ)

is its polar cone. Condition (4.3) is equivalent to the one that c:

E + R is a nonnegative monotone nonincreasing function from P = (E, <)

to (R,i) (cf. [7]). Therefore, for each ¢ ¢ Cf*(ﬂ) there uniguely

exist a monotone increasing sequence

Bl gBygmm g8y (4.4)
of nonempty Ai e P (i=1,2,...,k) and positive Ai e R (i=1,2,...,Kk)
such that

k

c = .Z A X(B), . (4.5)

i=1

. y E .
where k > 0, the empty sum is equal to zero, and X(Ai) € R 1is the

characteristic vector of Ai (i=1,2,...,k). Moreover,
k
£(e) = J A f(n,), (4.6)
, i i
i=1

since f(c) defined by (4.1} can be obtained by the so-called greedy

algorithm for c e C_*(#) (cf. [7]). The expression (4.6) (for D = 25

is introduced by L., Lovasz's [10] and the construction of I through
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(4.4) - (4.6) can be applied to any function defined on 7. We call such

~

an extension f TLovéasz's extension of £.

Define
P(D) = the convex hull of ¥(A) (A ¢ D} < Cf*(ﬁ). (4.7)
Lemma 4.1: Let £: D> R be a submodular function with £(@) = 0. Then
min{£(X)| X e D} = min{Z(c)| ¢ ¢ P(D)}. (4.8)

(See [10] for D = 2E.)

Now, define £: RE - R U {4x} by
el (ce DY),

f(c) = 5 (4.9)
o {ce R =-PON.

Theorem 4.2: Let f: P + R be a submodular function with £(@) = 0.
Then, for each a4 ¢ D,

af(n) = Bﬁ(x(A)). (4.10)
Here, aﬁ(X(A)) denotes the subdifferential of the convex function
%: RE + Ru{+»} at Y(A) in an ordinary sense of convex analysis [13].
(Proof}) The condition that x ¢ 3§(x(A)) is equivalent to

(c -x(@),x) < E(e) - E(x(a)) (4.11)

for all c ¢ RE. Since %(x(A)) E{a), condition (4.11) is equivalent

to
£(d) - x(Bn) = min{%(c) - (c,x)| c e R}
= min{f(c) - (¢,x)| ¢ ¢ P(D}
= min{£(X) - x(X)| X ¢ D}. (4.12)

Here, the last equality follows from Lemma 4.1 with f vreplaced by £ - x.
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Condition (4.12) is equivalent to the condition that x ¢ 3f(A). Q.E.D.

For any nonzero vector ¢ ¢ P(P), suppose ¢ 1is expressed as

(4.5) with a chain (4.4). Since ¢ ¢ P(D),

k
Y oh, <1, A, >0 (i=1,2,...,k). (4.13)
i=1 T *
k
If Z Ai < 1, then let us express ¢ as
i=1 X
c= ] X (R (4.14)
i=0
X .
where AO =1 - Z hi >0 and A, = @. In such a way, for any ¢ ¢ P(D),
i=1 '
¢ 1is uniquely expressed as a convex combination:
L
c= ] wx®) (4.15)
i=1
with
B, g B, g *tt g By Bigv (i=1,2,...,%), (4.16)
Y B, =1, My >0 (=1,2,...,0). (4.17)
i=1
Here, Bl may be empty.
Theorem 4.3: For any c¢ ¢ P(D),
9E(c) = n{3£(8)| i=1,2,...,2}, (4.18)

where B, (i=1,2,...,8) are those in (4.15) ~ (4.17) which express c

as (4.15).
(Proof) For c e B{(D), x e 3§(c) if and only if

Vb e PD: (b-c,x) < £(b) - E(o). (4.19)
Then from (4.15) -(4.17), (4.19) i=s equivalent to

)
izlui{f(si) - x(B)} < min{f®) ~ B,x)| b e (D}
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= min{£(X) - x(X)| X ¢ D} (4.20)
because of Lemma 4.l. Furthermore, from (4.17), (4.20) is equivalent to
£(B,) - x(B,) = min{£(x) - x(X)| X ¢ D} (4.21)

for i=1,2, ..., %4, or

x e n{3£(B,) [i=1,2,...,2}. (4.22)
Q.E.D.
For any maximal chain C: g = S68 g°r"gS =E in D, denote

by P(C) the n-simplex with vertices X(Si) {(i=0,1,...,n).

Lemma 4.4: The collection of --P(C)'s for all maximal chains C in 0

is a simplicial subdivision of P(P). - .. . . -

It follows from Lemma 4.4 that the union of P(C)'s for all
maximal chains € in U containing a fixed A ¢ T is a neighborhood of

X(a) in P(D). This implies Corollary 2.2.

Lemma 4.5: Let f: U + R be a submodular function with £(g) = 0.

For any maximal chain C: @ = SO g Sl g e g Sn =E in P and any

interior point ¢ of P((), % has a unique subgradient x at ¢
given by

x(Si-S ) = f(Si) - f(Si_ y (i=l,2,...,n}). (4.23)

i-1 1

(Proof) The present lemma follows f£xrom Theorems 3.1, 3.2 and 4.3.

Q.E.D.
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: . . . E
We defined in [6] the convex conjugate function £%¥: R + R of

a submodular function £: U+ R by

£%(x) = max{x(x) - £(X) | X e D}. (4.24)
By Lemma 4.1,
£*(x) = max{(c,x) - £(c) |c ¢ R°}. (4.25)

Therefore, £* and % are the convex conjugate function of each other

in an ordinary sense {13]. Consequently, the Fenchel-type min-max theorem
for submodular and supermodular functions on distributive lattices [6]
easily follows from Fenchel's.duality theoxem for ordinary convex and

concave- functions-except for-the-integrality property -(cf. [6])z7 -
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5. Modular Functions on Distributive Lattices

Givep a submodular function f£: P+ R and a vector x € RE,
consider the problem: (1) to find A € D such that =x e 9£(A) and then
(2) to find an expression

X = X + X {5.1)

1 2

such that xl is a convex combination of extreme points of O9f£(A) and

X, is a nonnegative linear combination of extreme vectors of Cf(A).
It does not seem to be easy to solve the problem for general £ but in
the special case when f is.a modular function on - D  we can easily
solve it based on the results in Section 3.

In this section we suppose that £: U+ R is a modular -function

(with £(@) = 0}.

Lemma 5.1: For a modular function f: P+ R with £f£{8) = 0, there
exists a unique vector V € RE such that for every X ¢ D

£(R) = ) vie). (5.2)
e € X

Note that for eac£ 2 ¢ D the subdifferential 3f(A) has the
unigue extreme point Vv appearing in Lemma 5.1. Therefore, it follows
from (3.1) that the above problem is reduced to that of finding A e D
such that x - v ¢ CE(A) and of finding a nonnegative linear combination
of ER(A)} given by (3.12) which expresses x -~ V.

The proof of Theorem 3.2 suggests a solution algorithm as follows.
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An Algorithm

(I) Pind a nonnegative flow ¢: B*(P) - R+ in G(P) . and nonnegative
coefficients a(p+) (p+ € E+) and B(pp) (p_ € E") such that
. ) +<>:.(p+)£(}_:+) + Y BEINE) + ¢ =x~v. (5.3)
p e E P €E
(Here, 3'¢ is defined by (3.17), E(p+) by (3.9), n(p ) by

+ -
(3.10) and for p+ =p € E nE we choose the values of a(p+)
- + —
and B(p ) such that ofp )B(p ) = 0.)

(II) Consider a network N = (&(P),8) with an underlying graph G(P)

= (E,B(P)):.cand a capacity furiction-:&"-defined -as:follows. " 'The arcl:’ - -

set B(P) of &(P) is defined by -~ -
B(P) = B*(P) u {(e,e') | (e',e) e B*(P)} : (5.4)

and the capacity function ' € by -

{ ¢ (a) (a e B*(P))

gla) = {5.5)

+ oo (a=(e,e'), (e',e) € B*(P)).

Then find a maximal flow . W: B(P) - R, in N from the entrance

vertex set E+ - E  to the exit vertex set E -~ E+ such that
0 < Wa) £ &(a) (a e B, (5.6)
3 (e) = 0 (e c E - (N UE)), (5.7)
20 (e g.a(p+) (o ¢ E - E), (5.8)
-3 ) < B(p_) P ¢E -E). (5.9)

{Hexe, the boundary operator 3' 1is defined with respect to G(P).)
(III) Put
b((e,e")) « d(le,e’)) - Yl(e,e')) +Yl(e',e)) ((e,e’) e B*(P)),

(5.10)
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alp) «ap) - 3WEH o € E -E), (5.11)
B(p ) « Bip ) + 3W(p ) ® ¢ E ~E). (5.12)

Then find & ¢ P such that

(i) $(a) = 0 (a e A (B)), (5.13)
(11) a(@) =0 (p € E na), (5.14)
(iii) B(p ) = O (p ¢ E -A). (5.15)

For any A ¢ U satisfying (i) - (Lii}) we have x ¢ 9f{A} and =

is expressed as

x=v+ J aIEEH + T B®EING) + d(a)z(a) .
- - ae B*(P) -

{5.16)

+ +
r ¢ E p € E

Remark 5.1: Because of (5:13) - 1(5:15)" x—-v in (5.186) is a nonnegative

linear combination of ER(A).

Remark 5.2: Step (I) can be carried out with a breadth-first type method

(toward the roots) by considering a spanning branching Tl directed from

4 . + . .
the set E of roots (i.e., each vertex e ¢ E - E has a unique arc

(e',e) in Tl) and a spanning co-branching T2 directed to the set E

of roots (i.e., each vertex e ¢ E - E  has a unigque are f{e,e') in T2).

Ty and T, are used for adijusting the value of the boundary 2'¢(e)
for e with x(e) - vi{e) < 0 and x(e) - v{e) > 0, respectively.

Step (I) recuires O(]E[ + |B*(P)|) running time.

Remark 5.3: Step {II) is performed by ordinary maximum flow algorithms,
which reguires O(|E|3) running time or the less. Any minimum cut obtained

by performing Step (II}) gives a desired A ¢ U in Step (III}.
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Remark 5.4: When x = @, the sbove algorithm solves the problem of
minimizing the modular function £. The problem of minimizing a modular
function on a distributive lattice, or equivalently, the problem of finding
a minimum-weight ideal of a partially ordered set can alsc be solved by

the technique presented in [12]. If v: P+ R is a monotone nondecreasing
function, then the set of minimizers of £ i1s trivially given by an
interval [A-'AO]U of D, where A = {e |e € E, Vie) < 0} and B, =

{e ]e € E, vie) < p}. This is a very special case of the results of [2]

and {9] on the so-called greedy algorithm.

Remark 5.5: - Once the expression (5.16) is obtained, any nonnegative

linear combinaticon of:- ER(A)' which -expresses - x:~ V ~can be obtained by -

repeatedly changing the values of the coefficients along cycles and. paths.. ... ...

. . . + -
with both end-vertices in E or E , where these cycles and paths

should be chosen such that they do not contain any arc in {A“(A)I x e 9f(A)}.
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